Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
// ratio -*- C++ -*-

// Copyright (C) 2008-2017 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file include/ratio
 *  This is a Standard C++ Library header.
 */

#ifndef _GLIBCXX_RATIO
#define _GLIBCXX_RATIO 1

#pragma GCC system_header

#if __cplusplus < 201103L
# include <bits/c++0x_warning.h>
#else

#include <type_traits>
#include <cstdint>

#ifdef _GLIBCXX_USE_C99_STDINT_TR1

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  /**
   * @defgroup ratio Rational Arithmetic
   * @ingroup utilities
   *
   * Compile time representation of finite rational numbers.
   * @{
   */

  template<intmax_t _Pn>
    struct __static_sign
    : integral_constant<intmax_t, (_Pn < 0) ? -1 : 1>
    { };

  template<intmax_t _Pn>
    struct __static_abs
    : integral_constant<intmax_t, _Pn * __static_sign<_Pn>::value>
    { };

  template<intmax_t _Pn, intmax_t _Qn>
    struct __static_gcd
    : __static_gcd<_Qn, (_Pn % _Qn)>
    { };

  template<intmax_t _Pn>
    struct __static_gcd<_Pn, 0>
    : integral_constant<intmax_t, __static_abs<_Pn>::value>
    { };

  template<intmax_t _Qn>
    struct __static_gcd<0, _Qn>
    : integral_constant<intmax_t, __static_abs<_Qn>::value>
    { };

  // Let c = 2^(half # of bits in an intmax_t)
  // then we find a1, a0, b1, b0 s.t. N = a1*c + a0, M = b1*c + b0
  // The multiplication of N and M becomes,
  // N * M = (a1 * b1)c^2 + (a0 * b1 + b0 * a1)c + a0 * b0
  // Multiplication is safe if each term and the sum of the terms
  // is representable by intmax_t.
  template<intmax_t _Pn, intmax_t _Qn>
    struct __safe_multiply
    {
    private:
      static const uintmax_t __c = uintmax_t(1) << (sizeof(intmax_t) * 4);

      static const uintmax_t __a0 = __static_abs<_Pn>::value % __c;
      static const uintmax_t __a1 = __static_abs<_Pn>::value / __c;
      static const uintmax_t __b0 = __static_abs<_Qn>::value % __c;
      static const uintmax_t __b1 = __static_abs<_Qn>::value / __c;

      static_assert(__a1 == 0 || __b1 == 0,
		    "overflow in multiplication");
      static_assert(__a0 * __b1 + __b0 * __a1 < (__c >> 1),
		    "overflow in multiplication");
      static_assert(__b0 * __a0 <= __INTMAX_MAX__,
		    "overflow in multiplication");
      static_assert((__a0 * __b1 + __b0 * __a1) * __c
		    <= __INTMAX_MAX__ -  __b0 * __a0,
		    "overflow in multiplication");

    public:
      static const intmax_t value = _Pn * _Qn;
    };

  // Some double-precision utilities, where numbers are represented as
  // __hi*2^(8*sizeof(uintmax_t)) + __lo.
  template<uintmax_t __hi1, uintmax_t __lo1, uintmax_t __hi2, uintmax_t __lo2>
    struct __big_less
    : integral_constant<bool, (__hi1 < __hi2
			       || (__hi1 == __hi2 && __lo1 < __lo2))>
    { };

  template<uintmax_t __hi1, uintmax_t __lo1, uintmax_t __hi2, uintmax_t __lo2>
    struct __big_add
    {
      static constexpr uintmax_t __lo = __lo1 + __lo2;
      static constexpr uintmax_t __hi = (__hi1 + __hi2 +
					 (__lo1 + __lo2 < __lo1)); // carry
    };

  // Subtract a number from a bigger one.
  template<uintmax_t __hi1, uintmax_t __lo1, uintmax_t __hi2, uintmax_t __lo2>
    struct __big_sub
    {
      static_assert(!__big_less<__hi1, __lo1, __hi2, __lo2>::value,
		    "Internal library error");
      static constexpr uintmax_t __lo = __lo1 - __lo2;
      static constexpr uintmax_t __hi = (__hi1 - __hi2 -
					 (__lo1 < __lo2)); // carry
    };

  // Same principle as __safe_multiply.
  template<uintmax_t __x, uintmax_t __y>
    struct __big_mul
    {
    private:
      static constexpr uintmax_t __c = uintmax_t(1) << (sizeof(intmax_t) * 4);
      static constexpr uintmax_t __x0 = __x % __c;
      static constexpr uintmax_t __x1 = __x / __c;
      static constexpr uintmax_t __y0 = __y % __c;
      static constexpr uintmax_t __y1 = __y / __c;
      static constexpr uintmax_t __x0y0 = __x0 * __y0;
      static constexpr uintmax_t __x0y1 = __x0 * __y1;
      static constexpr uintmax_t __x1y0 = __x1 * __y0;
      static constexpr uintmax_t __x1y1 = __x1 * __y1;
      static constexpr uintmax_t __mix = __x0y1 + __x1y0; // possible carry...
      static constexpr uintmax_t __mix_lo = __mix * __c;
      static constexpr uintmax_t __mix_hi
      = __mix / __c + ((__mix < __x0y1) ? __c : 0); // ... added here
      typedef __big_add<__mix_hi, __mix_lo, __x1y1, __x0y0> _Res;
    public:
      static constexpr uintmax_t __hi = _Res::__hi;
      static constexpr uintmax_t __lo = _Res::__lo;
    };

  // Adapted from __udiv_qrnnd_c in longlong.h
  // This version assumes that the high bit of __d is 1.
  template<uintmax_t __n1, uintmax_t __n0, uintmax_t __d>
    struct __big_div_impl
    {
    private:
      static_assert(__d >= (uintmax_t(1) << (sizeof(intmax_t) * 8 - 1)),
		    "Internal library error");
      static_assert(__n1 < __d, "Internal library error");
      static constexpr uintmax_t __c = uintmax_t(1) << (sizeof(intmax_t) * 4);
      static constexpr uintmax_t __d1 = __d / __c;
      static constexpr uintmax_t __d0 = __d % __c;

      static constexpr uintmax_t __q1x = __n1 / __d1;
      static constexpr uintmax_t __r1x = __n1 % __d1;
      static constexpr uintmax_t __m = __q1x * __d0;
      static constexpr uintmax_t __r1y = __r1x * __c + __n0 / __c;
      static constexpr uintmax_t __r1z = __r1y + __d;
      static constexpr uintmax_t __r1
      = ((__r1y < __m) ? ((__r1z >= __d) && (__r1z < __m))
	 ? (__r1z + __d) : __r1z : __r1y) - __m;
      static constexpr uintmax_t __q1
      = __q1x - ((__r1y < __m)
		 ? ((__r1z >= __d) && (__r1z < __m)) ? 2 : 1 : 0);
      static constexpr uintmax_t __q0x = __r1 / __d1;
      static constexpr uintmax_t __r0x = __r1 % __d1;
      static constexpr uintmax_t __n = __q0x * __d0;
      static constexpr uintmax_t __r0y = __r0x * __c + __n0 % __c;
      static constexpr uintmax_t __r0z = __r0y + __d;
      static constexpr uintmax_t __r0
      = ((__r0y < __n) ? ((__r0z >= __d) && (__r0z < __n))
	 ? (__r0z + __d) : __r0z : __r0y) - __n;
      static constexpr uintmax_t __q0
      = __q0x - ((__r0y < __n) ? ((__r0z >= __d)
				  && (__r0z < __n)) ? 2 : 1 : 0);

    public:
      static constexpr uintmax_t __quot = __q1 * __c + __q0;
      static constexpr uintmax_t __rem = __r0;

    private:
      typedef __big_mul<__quot, __d> _Prod;
      typedef __big_add<_Prod::__hi, _Prod::__lo, 0, __rem> _Sum;
      static_assert(_Sum::__hi == __n1 && _Sum::__lo == __n0,
		    "Internal library error");
  };

  template<uintmax_t __n1, uintmax_t __n0, uintmax_t __d>
    struct __big_div
    {
    private:
      static_assert(__d != 0, "Internal library error");
      static_assert(sizeof (uintmax_t) == sizeof (unsigned long long),
		    "This library calls __builtin_clzll on uintmax_t, which "
		    "is unsafe on your platform. Please complain to "
		    "http://gcc.gnu.org/bugzilla/");
      static constexpr int __shift = __builtin_clzll(__d);
      static constexpr int __coshift_ = sizeof(uintmax_t) * 8 - __shift;
      static constexpr int __coshift = (__shift != 0) ? __coshift_ : 0;
      static constexpr uintmax_t __c1 = uintmax_t(1) << __shift;
      static constexpr uintmax_t __c2 = uintmax_t(1) << __coshift;
      static constexpr uintmax_t __new_d = __d * __c1;
      static constexpr uintmax_t __new_n0 = __n0 * __c1;
      static constexpr uintmax_t __n1_shifted = (__n1 % __d) * __c1;
      static constexpr uintmax_t __n0_top = (__shift != 0) ? (__n0 / __c2) : 0;
      static constexpr uintmax_t __new_n1 = __n1_shifted + __n0_top;
      typedef __big_div_impl<__new_n1, __new_n0, __new_d> _Res;

    public:
      static constexpr uintmax_t __quot_hi = __n1 / __d;
      static constexpr uintmax_t __quot_lo = _Res::__quot;
      static constexpr uintmax_t __rem = _Res::__rem / __c1;

    private:
      typedef __big_mul<__quot_lo, __d> _P0;
      typedef __big_mul<__quot_hi, __d> _P1;
      typedef __big_add<_P0::__hi, _P0::__lo, _P1::__lo, __rem> _Sum;
      // No overflow.
      static_assert(_P1::__hi == 0, "Internal library error");
      static_assert(_Sum::__hi >= _P0::__hi, "Internal library error");
      // Matches the input data.
      static_assert(_Sum::__hi == __n1 && _Sum::__lo == __n0,
		    "Internal library error");
      static_assert(__rem < __d, "Internal library error");
    };

  /**
   *  @brief Provides compile-time rational arithmetic.
   *
   *  This class template represents any finite rational number with a
   *  numerator and denominator representable by compile-time constants of
   *  type intmax_t. The ratio is simplified when instantiated.
   *
   *  For example:
   *  @code
   *    std::ratio<7,-21>::num == -1;
   *    std::ratio<7,-21>::den == 3;
   *  @endcode
   *
  */
  template<intmax_t _Num, intmax_t _Den = 1>
    struct ratio
    {
      static_assert(_Den != 0, "denominator cannot be zero");
      static_assert(_Num >= -__INTMAX_MAX__ && _Den >= -__INTMAX_MAX__,
		    "out of range");

      // Note: sign(N) * abs(N) == N
      static constexpr intmax_t num =
        _Num * __static_sign<_Den>::value / __static_gcd<_Num, _Den>::value;

      static constexpr intmax_t den =
        __static_abs<_Den>::value / __static_gcd<_Num, _Den>::value;

      typedef ratio<num, den> type;
    };

  template<intmax_t _Num, intmax_t _Den>
    constexpr intmax_t ratio<_Num, _Den>::num;

  template<intmax_t _Num, intmax_t _Den>
    constexpr intmax_t ratio<_Num, _Den>::den;

  template<typename _R1, typename _R2>
    struct __ratio_multiply
    {
    private:
      static const intmax_t __gcd1 =
        __static_gcd<_R1::num, _R2::den>::value;
      static const intmax_t __gcd2 =
        __static_gcd<_R2::num, _R1::den>::value;

    public:
      typedef ratio<
        __safe_multiply<(_R1::num / __gcd1),
                        (_R2::num / __gcd2)>::value,
        __safe_multiply<(_R1::den / __gcd2),
                        (_R2::den / __gcd1)>::value> type;

      static constexpr intmax_t num = type::num;
      static constexpr intmax_t den = type::den;
    };

  template<typename _R1, typename _R2>
    constexpr intmax_t __ratio_multiply<_R1, _R2>::num;

  template<typename _R1, typename _R2>
    constexpr intmax_t __ratio_multiply<_R1, _R2>::den;

  /// ratio_multiply
  template<typename _R1, typename _R2>
    using ratio_multiply = typename __ratio_multiply<_R1, _R2>::type;

  template<typename _R1, typename _R2>
    struct __ratio_divide
    {
      static_assert(_R2::num != 0, "division by 0");

      typedef typename __ratio_multiply<
        _R1,
        ratio<_R2::den, _R2::num>>::type type;

      static constexpr intmax_t num = type::num;
      static constexpr intmax_t den = type::den;
    };

  template<typename _R1, typename _R2>
    constexpr intmax_t __ratio_divide<_R1, _R2>::num;

  template<typename _R1, typename _R2>
    constexpr intmax_t __ratio_divide<_R1, _R2>::den;

  /// ratio_divide
  template<typename _R1, typename _R2>
    using ratio_divide = typename __ratio_divide<_R1, _R2>::type;

  /// ratio_equal
  template<typename _R1, typename _R2>
    struct ratio_equal
    : integral_constant<bool, _R1::num == _R2::num && _R1::den == _R2::den>
    { };

  /// ratio_not_equal
  template<typename _R1, typename _R2>
    struct ratio_not_equal
    : integral_constant<bool, !ratio_equal<_R1, _R2>::value>
    { };

  // Both numbers are positive.
  template<typename _R1, typename _R2,
           typename _Left = __big_mul<_R1::num,_R2::den>,
           typename _Right = __big_mul<_R2::num,_R1::den> >
    struct __ratio_less_impl_1
    : integral_constant<bool, __big_less<_Left::__hi, _Left::__lo,
           _Right::__hi, _Right::__lo>::value>
    { };

  template<typename _R1, typename _R2,
	   bool = (_R1::num == 0 || _R2::num == 0
		   || (__static_sign<_R1::num>::value
		       != __static_sign<_R2::num>::value)),
	   bool = (__static_sign<_R1::num>::value == -1
		   && __static_sign<_R2::num>::value == -1)>
    struct __ratio_less_impl
    : __ratio_less_impl_1<_R1, _R2>::type
    { };

  template<typename _R1, typename _R2>
    struct __ratio_less_impl<_R1, _R2, true, false>
    : integral_constant<bool, _R1::num < _R2::num>
    { };

  template<typename _R1, typename _R2>
    struct __ratio_less_impl<_R1, _R2, false, true>
    : __ratio_less_impl_1<ratio<-_R2::num, _R2::den>,
           ratio<-_R1::num, _R1::den> >::type
    { };

  /// ratio_less
  template<typename _R1, typename _R2>
    struct ratio_less
    : __ratio_less_impl<_R1, _R2>::type
    { };

  /// ratio_less_equal
  template<typename _R1, typename _R2>
    struct ratio_less_equal
    : integral_constant<bool, !ratio_less<_R2, _R1>::value>
    { };

  /// ratio_greater
  template<typename _R1, typename _R2>
    struct ratio_greater
    : integral_constant<bool, ratio_less<_R2, _R1>::value>
    { };

  /// ratio_greater_equal
  template<typename _R1, typename _R2>
    struct ratio_greater_equal
    : integral_constant<bool, !ratio_less<_R1, _R2>::value>
    { };

#if __cplusplus > 201402L
  template <typename _R1, typename _R2>
    inline constexpr bool ratio_equal_v = ratio_equal<_R1, _R2>::value;
  template <typename _R1, typename _R2>
    inline constexpr bool ratio_not_equal_v = ratio_not_equal<_R1, _R2>::value;
  template <typename _R1, typename _R2>
    inline constexpr bool ratio_less_v = ratio_less<_R1, _R2>::value;
  template <typename _R1, typename _R2>
    inline constexpr bool ratio_less_equal_v =
      ratio_less_equal<_R1, _R2>::value;
  template <typename _R1, typename _R2>
    inline constexpr bool ratio_greater_v = ratio_greater<_R1, _R2>::value;
  template <typename _R1, typename _R2>
    inline constexpr bool ratio_greater_equal_v
    = ratio_greater_equal<_R1, _R2>::value;
#endif // C++17

  template<typename _R1, typename _R2,
      bool = (_R1::num >= 0),
      bool = (_R2::num >= 0),
      bool = ratio_less<ratio<__static_abs<_R1::num>::value, _R1::den>,
        ratio<__static_abs<_R2::num>::value, _R2::den> >::value>
    struct __ratio_add_impl
    {
    private:
      typedef typename __ratio_add_impl<
        ratio<-_R1::num, _R1::den>,
        ratio<-_R2::num, _R2::den> >::type __t;
    public:
      typedef ratio<-__t::num, __t::den> type;
    };

  // True addition of nonnegative numbers.
  template<typename _R1, typename _R2, bool __b>
    struct __ratio_add_impl<_R1, _R2, true, true, __b>
    {
    private:
      static constexpr uintmax_t __g = __static_gcd<_R1::den, _R2::den>::value;
      static constexpr uintmax_t __d2 = _R2::den / __g;
      typedef __big_mul<_R1::den, __d2> __d;
      typedef __big_mul<_R1::num, _R2::den / __g> __x;
      typedef __big_mul<_R2::num, _R1::den / __g> __y;
      typedef __big_add<__x::__hi, __x::__lo, __y::__hi, __y::__lo> __n;
      static_assert(__n::__hi >= __x::__hi, "Internal library error");
      typedef __big_div<__n::__hi, __n::__lo, __g> __ng;
      static constexpr uintmax_t __g2 = __static_gcd<__ng::__rem, __g>::value;
      typedef __big_div<__n::__hi, __n::__lo, __g2> __n_final;
      static_assert(__n_final::__rem == 0, "Internal library error");
      static_assert(__n_final::__quot_hi == 0 &&
        __n_final::__quot_lo <= __INTMAX_MAX__, "overflow in addition");
      typedef __big_mul<_R1::den / __g2, __d2> __d_final;
      static_assert(__d_final::__hi == 0 &&
        __d_final::__lo <= __INTMAX_MAX__, "overflow in addition");
    public:
      typedef ratio<__n_final::__quot_lo, __d_final::__lo> type;
    };

  template<typename _R1, typename _R2>
    struct __ratio_add_impl<_R1, _R2, false, true, true>
    : __ratio_add_impl<_R2, _R1>
    { };

  // True subtraction of nonnegative numbers yielding a nonnegative result.
  template<typename _R1, typename _R2>
    struct __ratio_add_impl<_R1, _R2, true, false, false>
    {
    private:
      static constexpr uintmax_t __g = __static_gcd<_R1::den, _R2::den>::value;
      static constexpr uintmax_t __d2 = _R2::den / __g;
      typedef __big_mul<_R1::den, __d2> __d;
      typedef __big_mul<_R1::num, _R2::den / __g> __x;
      typedef __big_mul<-_R2::num, _R1::den / __g> __y;
      typedef __big_sub<__x::__hi, __x::__lo, __y::__hi, __y::__lo> __n;
      typedef __big_div<__n::__hi, __n::__lo, __g> __ng;
      static constexpr uintmax_t __g2 = __static_gcd<__ng::__rem, __g>::value;
      typedef __big_div<__n::__hi, __n::__lo, __g2> __n_final;
      static_assert(__n_final::__rem == 0, "Internal library error");
      static_assert(__n_final::__quot_hi == 0 &&
        __n_final::__quot_lo <= __INTMAX_MAX__, "overflow in addition");
      typedef __big_mul<_R1::den / __g2, __d2> __d_final;
      static_assert(__d_final::__hi == 0 &&
        __d_final::__lo <= __INTMAX_MAX__, "overflow in addition");
    public:
      typedef ratio<__n_final::__quot_lo, __d_final::__lo> type;
    };

  template<typename _R1, typename _R2>
    struct __ratio_add
    {
      typedef typename __ratio_add_impl<_R1, _R2>::type type;
      static constexpr intmax_t num = type::num;
      static constexpr intmax_t den = type::den;
    };

  template<typename _R1, typename _R2>
    constexpr intmax_t __ratio_add<_R1, _R2>::num;

  template<typename _R1, typename _R2>
    constexpr intmax_t __ratio_add<_R1, _R2>::den;

  /// ratio_add
  template<typename _R1, typename _R2>
    using ratio_add = typename __ratio_add<_R1, _R2>::type;

  template<typename _R1, typename _R2>
    struct __ratio_subtract
    {
      typedef typename __ratio_add<
        _R1,
        ratio<-_R2::num, _R2::den>>::type type;

      static constexpr intmax_t num = type::num;
      static constexpr intmax_t den = type::den;
    };

  template<typename _R1, typename _R2>
    constexpr intmax_t __ratio_subtract<_R1, _R2>::num;

  template<typename _R1, typename _R2>
    constexpr intmax_t __ratio_subtract<_R1, _R2>::den;

  /// ratio_subtract
  template<typename _R1, typename _R2>
    using ratio_subtract = typename __ratio_subtract<_R1, _R2>::type;


  typedef ratio<1,       1000000000000000000> atto;
  typedef ratio<1,          1000000000000000> femto;
  typedef ratio<1,             1000000000000> pico;
  typedef ratio<1,                1000000000> nano;
  typedef ratio<1,                   1000000> micro;
  typedef ratio<1,                      1000> milli;
  typedef ratio<1,                       100> centi;
  typedef ratio<1,                        10> deci;
  typedef ratio<                       10, 1> deca;
  typedef ratio<                      100, 1> hecto;
  typedef ratio<                     1000, 1> kilo;
  typedef ratio<                  1000000, 1> mega;
  typedef ratio<               1000000000, 1> giga;
  typedef ratio<            1000000000000, 1> tera;
  typedef ratio<         1000000000000000, 1> peta;
  typedef ratio<      1000000000000000000, 1> exa;

  // @} group ratio
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace

#endif //_GLIBCXX_USE_C99_STDINT_TR1

#endif // C++11

#endif //_GLIBCXX_RATIO