Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
// <shared_mutex> -*- C++ -*-

// Copyright (C) 2013-2017 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file include/shared_mutex
 *  This is a Standard C++ Library header.
 */

#ifndef _GLIBCXX_SHARED_MUTEX
#define _GLIBCXX_SHARED_MUTEX 1

#pragma GCC system_header

#if __cplusplus >= 201402L

#include <bits/c++config.h>
#include <condition_variable>
#include <bits/functexcept.h>

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  /**
   * @ingroup mutexes
   * @{
   */

#ifdef _GLIBCXX_USE_C99_STDINT_TR1
#ifdef _GLIBCXX_HAS_GTHREADS

#if __cplusplus >= 201703L
#define __cpp_lib_shared_mutex 201505
  class shared_mutex;
#endif

#define __cpp_lib_shared_timed_mutex 201402
  class shared_timed_mutex;

#if _GLIBCXX_USE_PTHREAD_RWLOCK_T
  /// A shared mutex type implemented using pthread_rwlock_t.
  class __shared_mutex_pthread
  {
    friend class shared_timed_mutex;

#ifdef PTHREAD_RWLOCK_INITIALIZER
    pthread_rwlock_t	_M_rwlock = PTHREAD_RWLOCK_INITIALIZER;

  public:
    __shared_mutex_pthread() = default;
    ~__shared_mutex_pthread() = default;
#else
    pthread_rwlock_t	_M_rwlock;

  public:
    __shared_mutex_pthread()
    {
      int __ret = pthread_rwlock_init(&_M_rwlock, NULL);
      if (__ret == ENOMEM)
	__throw_bad_alloc();
      else if (__ret == EAGAIN)
	__throw_system_error(int(errc::resource_unavailable_try_again));
      else if (__ret == EPERM)
	__throw_system_error(int(errc::operation_not_permitted));
      // Errors not handled: EBUSY, EINVAL
      __glibcxx_assert(__ret == 0);
    }

    ~__shared_mutex_pthread()
    {
      int __ret __attribute((__unused__)) = pthread_rwlock_destroy(&_M_rwlock);
      // Errors not handled: EBUSY, EINVAL
      __glibcxx_assert(__ret == 0);
    }
#endif

    __shared_mutex_pthread(const __shared_mutex_pthread&) = delete;
    __shared_mutex_pthread& operator=(const __shared_mutex_pthread&) = delete;

    void
    lock()
    {
      int __ret = pthread_rwlock_wrlock(&_M_rwlock);
      if (__ret == EDEADLK)
	__throw_system_error(int(errc::resource_deadlock_would_occur));
      // Errors not handled: EINVAL
      __glibcxx_assert(__ret == 0);
    }

    bool
    try_lock()
    {
      int __ret = pthread_rwlock_trywrlock(&_M_rwlock);
      if (__ret == EBUSY) return false;
      // Errors not handled: EINVAL
      __glibcxx_assert(__ret == 0);
      return true;
    }

    void
    unlock()
    {
      int __ret __attribute((__unused__)) = pthread_rwlock_unlock(&_M_rwlock);
      // Errors not handled: EPERM, EBUSY, EINVAL
      __glibcxx_assert(__ret == 0);
    }

    // Shared ownership

    void
    lock_shared()
    {
      int __ret;
      // We retry if we exceeded the maximum number of read locks supported by
      // the POSIX implementation; this can result in busy-waiting, but this
      // is okay based on the current specification of forward progress
      // guarantees by the standard.
      do
	__ret = pthread_rwlock_rdlock(&_M_rwlock);
      while (__ret == EAGAIN);
      if (__ret == EDEADLK)
	__throw_system_error(int(errc::resource_deadlock_would_occur));
      // Errors not handled: EINVAL
      __glibcxx_assert(__ret == 0);
    }

    bool
    try_lock_shared()
    {
      int __ret = pthread_rwlock_tryrdlock(&_M_rwlock);
      // If the maximum number of read locks has been exceeded, we just fail
      // to acquire the lock.  Unlike for lock(), we are not allowed to throw
      // an exception.
      if (__ret == EBUSY || __ret == EAGAIN) return false;
      // Errors not handled: EINVAL
      __glibcxx_assert(__ret == 0);
      return true;
    }

    void
    unlock_shared()
    {
      unlock();
    }

    void* native_handle() { return &_M_rwlock; }
  };
#endif

#if ! (_GLIBCXX_USE_PTHREAD_RWLOCK_T && _GTHREAD_USE_MUTEX_TIMEDLOCK)
  /// A shared mutex type implemented using std::condition_variable.
  class __shared_mutex_cv
  {
    friend class shared_timed_mutex;

    // Based on Howard Hinnant's reference implementation from N2406.

    // The high bit of _M_state is the write-entered flag which is set to
    // indicate a writer has taken the lock or is queuing to take the lock.
    // The remaining bits are the count of reader locks.
    //
    // To take a reader lock, block on gate1 while the write-entered flag is
    // set or the maximum number of reader locks is held, then increment the
    // reader lock count.
    // To release, decrement the count, then if the write-entered flag is set
    // and the count is zero then signal gate2 to wake a queued writer,
    // otherwise if the maximum number of reader locks was held signal gate1
    // to wake a reader.
    //
    // To take a writer lock, block on gate1 while the write-entered flag is
    // set, then set the write-entered flag to start queueing, then block on
    // gate2 while the number of reader locks is non-zero.
    // To release, unset the write-entered flag and signal gate1 to wake all
    // blocked readers and writers.
    //
    // This means that when no reader locks are held readers and writers get
    // equal priority. When one or more reader locks is held a writer gets
    // priority and no more reader locks can be taken while the writer is
    // queued.

    // Only locked when accessing _M_state or waiting on condition variables.
    mutex		_M_mut;
    // Used to block while write-entered is set or reader count at maximum.
    condition_variable	_M_gate1;
    // Used to block queued writers while reader count is non-zero.
    condition_variable	_M_gate2;
    // The write-entered flag and reader count.
    unsigned		_M_state;

    static constexpr unsigned _S_write_entered
      = 1U << (sizeof(unsigned)*__CHAR_BIT__ - 1);
    static constexpr unsigned _S_max_readers = ~_S_write_entered;

    // Test whether the write-entered flag is set. _M_mut must be locked.
    bool _M_write_entered() const { return _M_state & _S_write_entered; }

    // The number of reader locks currently held. _M_mut must be locked.
    unsigned _M_readers() const { return _M_state & _S_max_readers; }

  public:
    __shared_mutex_cv() : _M_state(0) {}

    ~__shared_mutex_cv()
    {
      __glibcxx_assert( _M_state == 0 );
    }

    __shared_mutex_cv(const __shared_mutex_cv&) = delete;
    __shared_mutex_cv& operator=(const __shared_mutex_cv&) = delete;

    // Exclusive ownership

    void
    lock()
    {
      unique_lock<mutex> __lk(_M_mut);
      // Wait until we can set the write-entered flag.
      _M_gate1.wait(__lk, [=]{ return !_M_write_entered(); });
      _M_state |= _S_write_entered;
      // Then wait until there are no more readers.
      _M_gate2.wait(__lk, [=]{ return _M_readers() == 0; });
    }

    bool
    try_lock()
    {
      unique_lock<mutex> __lk(_M_mut, try_to_lock);
      if (__lk.owns_lock() && _M_state == 0)
	{
	  _M_state = _S_write_entered;
	  return true;
	}
      return false;
    }

    void
    unlock()
    {
      lock_guard<mutex> __lk(_M_mut);
      __glibcxx_assert( _M_write_entered() );
      _M_state = 0;
      // call notify_all() while mutex is held so that another thread can't
      // lock and unlock the mutex then destroy *this before we make the call.
      _M_gate1.notify_all();
    }

    // Shared ownership

    void
    lock_shared()
    {
      unique_lock<mutex> __lk(_M_mut);
      _M_gate1.wait(__lk, [=]{ return _M_state < _S_max_readers; });
      ++_M_state;
    }

    bool
    try_lock_shared()
    {
      unique_lock<mutex> __lk(_M_mut, try_to_lock);
      if (!__lk.owns_lock())
	return false;
      if (_M_state < _S_max_readers)
	{
	  ++_M_state;
	  return true;
	}
      return false;
    }

    void
    unlock_shared()
    {
      lock_guard<mutex> __lk(_M_mut);
      __glibcxx_assert( _M_readers() > 0 );
      auto __prev = _M_state--;
      if (_M_write_entered())
	{
	  // Wake the queued writer if there are no more readers.
	  if (_M_readers() == 0)
	    _M_gate2.notify_one();
	  // No need to notify gate1 because we give priority to the queued
	  // writer, and that writer will eventually notify gate1 after it
	  // clears the write-entered flag.
	}
      else
	{
	  // Wake any thread that was blocked on reader overflow.
	  if (__prev == _S_max_readers)
	    _M_gate1.notify_one();
	}
    }
  };
#endif

#if __cplusplus > 201402L
  /// The standard shared mutex type.
  class shared_mutex
  {
  public:
    shared_mutex() = default;
    ~shared_mutex() = default;

    shared_mutex(const shared_mutex&) = delete;
    shared_mutex& operator=(const shared_mutex&) = delete;

    // Exclusive ownership

    void lock() { _M_impl.lock(); }
    bool try_lock() { return _M_impl.try_lock(); }
    void unlock() { _M_impl.unlock(); }

    // Shared ownership

    void lock_shared() { _M_impl.lock_shared(); }
    bool try_lock_shared() { return _M_impl.try_lock_shared(); }
    void unlock_shared() { _M_impl.unlock_shared(); }

#if _GLIBCXX_USE_PTHREAD_RWLOCK_T
    typedef void* native_handle_type;
    native_handle_type native_handle() { return _M_impl.native_handle(); }

  private:
    __shared_mutex_pthread _M_impl;
#else
  private:
    __shared_mutex_cv _M_impl;
#endif
  };
#endif // C++17

#if _GLIBCXX_USE_PTHREAD_RWLOCK_T && _GTHREAD_USE_MUTEX_TIMEDLOCK
  using __shared_timed_mutex_base = __shared_mutex_pthread;
#else
  using __shared_timed_mutex_base = __shared_mutex_cv;
#endif

  /// The standard shared timed mutex type.
  class shared_timed_mutex
  : private __shared_timed_mutex_base
  {
    using _Base = __shared_timed_mutex_base;

    // Must use the same clock as condition_variable for __shared_mutex_cv.
    typedef chrono::system_clock	__clock_t;

  public:
    shared_timed_mutex() = default;
    ~shared_timed_mutex() = default;

    shared_timed_mutex(const shared_timed_mutex&) = delete;
    shared_timed_mutex& operator=(const shared_timed_mutex&) = delete;

    // Exclusive ownership

    void lock() { _Base::lock(); }
    bool try_lock() { return _Base::try_lock(); }
    void unlock() { _Base::unlock(); }

    template<typename _Rep, typename _Period>
      bool
      try_lock_for(const chrono::duration<_Rep, _Period>& __rel_time)
      {
	return try_lock_until(__clock_t::now() + __rel_time);
      }

    // Shared ownership

    void lock_shared() { _Base::lock_shared(); }
    bool try_lock_shared() { return _Base::try_lock_shared(); }
    void unlock_shared() { _Base::unlock_shared(); }

    template<typename _Rep, typename _Period>
      bool
      try_lock_shared_for(const chrono::duration<_Rep, _Period>& __rel_time)
      {
	return try_lock_shared_until(__clock_t::now() + __rel_time);
      }

#if _GLIBCXX_USE_PTHREAD_RWLOCK_T && _GTHREAD_USE_MUTEX_TIMEDLOCK

    // Exclusive ownership

    template<typename _Duration>
      bool
      try_lock_until(const chrono::time_point<__clock_t, _Duration>& __atime)
      {
	auto __s = chrono::time_point_cast<chrono::seconds>(__atime);
	auto __ns = chrono::duration_cast<chrono::nanoseconds>(__atime - __s);

	__gthread_time_t __ts =
	  {
	    static_cast<std::time_t>(__s.time_since_epoch().count()),
	    static_cast<long>(__ns.count())
	  };

	int __ret = pthread_rwlock_timedwrlock(&_M_rwlock, &__ts);
	// On self-deadlock, we just fail to acquire the lock.  Technically,
	// the program violated the precondition.
	if (__ret == ETIMEDOUT || __ret == EDEADLK)
	  return false;
	// Errors not handled: EINVAL
	__glibcxx_assert(__ret == 0);
	return true;
      }

    template<typename _Clock, typename _Duration>
      bool
      try_lock_until(const chrono::time_point<_Clock, _Duration>& __abs_time)
      {
	// DR 887 - Sync unknown clock to known clock.
	const typename _Clock::time_point __c_entry = _Clock::now();
	const __clock_t::time_point __s_entry = __clock_t::now();
	const auto __delta = __abs_time - __c_entry;
	const auto __s_atime = __s_entry + __delta;
	return try_lock_until(__s_atime);
      }

    // Shared ownership

    template<typename _Duration>
      bool
      try_lock_shared_until(const chrono::time_point<__clock_t,
			    _Duration>& __atime)
      {
	auto __s = chrono::time_point_cast<chrono::seconds>(__atime);
	auto __ns = chrono::duration_cast<chrono::nanoseconds>(__atime - __s);

	__gthread_time_t __ts =
	  {
	    static_cast<std::time_t>(__s.time_since_epoch().count()),
	    static_cast<long>(__ns.count())
	  };

	int __ret;
	// Unlike for lock(), we are not allowed to throw an exception so if
	// the maximum number of read locks has been exceeded, or we would
	// deadlock, we just try to acquire the lock again (and will time out
	// eventually).
	// In cases where we would exceed the maximum number of read locks
	// throughout the whole time until the timeout, we will fail to
	// acquire the lock even if it would be logically free; however, this
	// is allowed by the standard, and we made a "strong effort"
	// (see C++14 30.4.1.4p26).
	// For cases where the implementation detects a deadlock we
	// intentionally block and timeout so that an early return isn't
	// mistaken for a spurious failure, which might help users realise
	// there is a deadlock.
	do
	  __ret = pthread_rwlock_timedrdlock(&_M_rwlock, &__ts);
	while (__ret == EAGAIN || __ret == EDEADLK);
	if (__ret == ETIMEDOUT)
	  return false;
	// Errors not handled: EINVAL
	__glibcxx_assert(__ret == 0);
	return true;
      }

    template<typename _Clock, typename _Duration>
      bool
      try_lock_shared_until(const chrono::time_point<_Clock,
						     _Duration>& __abs_time)
      {
	// DR 887 - Sync unknown clock to known clock.
	const typename _Clock::time_point __c_entry = _Clock::now();
	const __clock_t::time_point __s_entry = __clock_t::now();
	const auto __delta = __abs_time - __c_entry;
	const auto __s_atime = __s_entry + __delta;
	return try_lock_shared_until(__s_atime);
      }

#else // ! (_GLIBCXX_USE_PTHREAD_RWLOCK_T && _GTHREAD_USE_MUTEX_TIMEDLOCK)

    // Exclusive ownership

    template<typename _Clock, typename _Duration>
      bool
      try_lock_until(const chrono::time_point<_Clock, _Duration>& __abs_time)
      {
	unique_lock<mutex> __lk(_M_mut);
	if (!_M_gate1.wait_until(__lk, __abs_time,
				 [=]{ return !_M_write_entered(); }))
	  {
	    return false;
	  }
	_M_state |= _S_write_entered;
	if (!_M_gate2.wait_until(__lk, __abs_time,
				 [=]{ return _M_readers() == 0; }))
	  {
	    _M_state ^= _S_write_entered;
	    // Wake all threads blocked while the write-entered flag was set.
	    _M_gate1.notify_all();
	    return false;
	  }
	return true;
      }

    // Shared ownership

    template <typename _Clock, typename _Duration>
      bool
      try_lock_shared_until(const chrono::time_point<_Clock,
						     _Duration>& __abs_time)
      {
	unique_lock<mutex> __lk(_M_mut);
	if (!_M_gate1.wait_until(__lk, __abs_time,
				 [=]{ return _M_state < _S_max_readers; }))
	  {
	    return false;
	  }
	++_M_state;
	return true;
      }

#endif // _GLIBCXX_USE_PTHREAD_RWLOCK_T && _GTHREAD_USE_MUTEX_TIMEDLOCK
  };
#endif // _GLIBCXX_HAS_GTHREADS

  /// shared_lock
  template<typename _Mutex>
    class shared_lock
    {
    public:
      typedef _Mutex mutex_type;

      // Shared locking

      shared_lock() noexcept : _M_pm(nullptr), _M_owns(false) { }

      explicit
      shared_lock(mutex_type& __m)
      : _M_pm(std::__addressof(__m)), _M_owns(true)
      { __m.lock_shared(); }

      shared_lock(mutex_type& __m, defer_lock_t) noexcept
      : _M_pm(std::__addressof(__m)), _M_owns(false) { }

      shared_lock(mutex_type& __m, try_to_lock_t)
      : _M_pm(std::__addressof(__m)), _M_owns(__m.try_lock_shared()) { }

      shared_lock(mutex_type& __m, adopt_lock_t)
      : _M_pm(std::__addressof(__m)), _M_owns(true) { }

      template<typename _Clock, typename _Duration>
	shared_lock(mutex_type& __m,
		    const chrono::time_point<_Clock, _Duration>& __abs_time)
      : _M_pm(std::__addressof(__m)),
	_M_owns(__m.try_lock_shared_until(__abs_time)) { }

      template<typename _Rep, typename _Period>
	shared_lock(mutex_type& __m,
		    const chrono::duration<_Rep, _Period>& __rel_time)
      : _M_pm(std::__addressof(__m)),
	_M_owns(__m.try_lock_shared_for(__rel_time)) { }

      ~shared_lock()
      {
	if (_M_owns)
	  _M_pm->unlock_shared();
      }

      shared_lock(shared_lock const&) = delete;
      shared_lock& operator=(shared_lock const&) = delete;

      shared_lock(shared_lock&& __sl) noexcept : shared_lock()
      { swap(__sl); }

      shared_lock&
      operator=(shared_lock&& __sl) noexcept
      {
	shared_lock(std::move(__sl)).swap(*this);
	return *this;
      }

      void
      lock()
      {
	_M_lockable();
	_M_pm->lock_shared();
	_M_owns = true;
      }

      bool
      try_lock()
      {
	_M_lockable();
	return _M_owns = _M_pm->try_lock_shared();
      }

      template<typename _Rep, typename _Period>
	bool
	try_lock_for(const chrono::duration<_Rep, _Period>& __rel_time)
	{
	  _M_lockable();
	  return _M_owns = _M_pm->try_lock_shared_for(__rel_time);
	}

      template<typename _Clock, typename _Duration>
	bool
	try_lock_until(const chrono::time_point<_Clock, _Duration>& __abs_time)
	{
	  _M_lockable();
	  return _M_owns = _M_pm->try_lock_shared_until(__abs_time);
	}

      void
      unlock()
      {
	if (!_M_owns)
	  __throw_system_error(int(errc::resource_deadlock_would_occur));
	_M_pm->unlock_shared();
	_M_owns = false;
      }

      // Setters

      void
      swap(shared_lock& __u) noexcept
      {
	std::swap(_M_pm, __u._M_pm);
	std::swap(_M_owns, __u._M_owns);
      }

      mutex_type*
      release() noexcept
      {
	_M_owns = false;
	return std::exchange(_M_pm, nullptr);
      }

      // Getters

      bool owns_lock() const noexcept { return _M_owns; }

      explicit operator bool() const noexcept { return _M_owns; }

      mutex_type* mutex() const noexcept { return _M_pm; }

    private:
      void
      _M_lockable() const
      {
	if (_M_pm == nullptr)
	  __throw_system_error(int(errc::operation_not_permitted));
	if (_M_owns)
	  __throw_system_error(int(errc::resource_deadlock_would_occur));
      }

      mutex_type*	_M_pm;
      bool		_M_owns;
    };

  /// Swap specialization for shared_lock
  template<typename _Mutex>
    void
    swap(shared_lock<_Mutex>& __x, shared_lock<_Mutex>& __y) noexcept
    { __x.swap(__y); }

#endif // _GLIBCXX_USE_C99_STDINT_TR1

  // @} group mutexes
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace

#endif // C++14

#endif // _GLIBCXX_SHARED_MUTEX