/* mpfr_pow_si -- power function x^y with y a signed int
Copyright 2001-2018 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* The computation of y = pow_si(x,n) is done by
* y = pow_ui(x,n) if n >= 0
* y = 1 / pow_ui(x,-n) if n < 0
*/
int
mpfr_pow_si (mpfr_ptr y, mpfr_srcptr x, long int n, mpfr_rnd_t rnd)
{
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg n=%ld rnd=%d",
mpfr_get_prec (x), mpfr_log_prec, x, n, rnd),
("y[%Pu]=%.*Rg", mpfr_get_prec (y), mpfr_log_prec, y));
if (n >= 0)
return mpfr_pow_ui (y, x, n, rnd);
else
{
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else
{
int positive = MPFR_IS_POS (x) || ((unsigned long) n & 1) == 0;
if (MPFR_IS_INF (x))
MPFR_SET_ZERO (y);
else /* x is zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
MPFR_SET_INF (y);
MPFR_SET_DIVBY0 ();
}
if (positive)
MPFR_SET_POS (y);
else
MPFR_SET_NEG (y);
MPFR_RET (0);
}
}
/* detect exact powers: x^(-n) is exact iff x is a power of 2 */
if (mpfr_cmp_si_2exp (x, MPFR_SIGN(x), MPFR_EXP(x) - 1) == 0)
{
mpfr_exp_t expx = MPFR_EXP (x) - 1, expy;
MPFR_ASSERTD (n < 0);
/* Warning: n * expx may overflow!
*
* Some systems (apparently alpha-freebsd) abort with
* LONG_MIN / 1, and LONG_MIN / -1 is undefined.
* http://www.freebsd.org/cgi/query-pr.cgi?pr=72024
*
* Proof of the overflow checking. The expressions below are
* assumed to be on the rational numbers, but the word "overflow"
* still has its own meaning in the C context. / still denotes
* the integer (truncated) division, and // denotes the exact
* division.
* - First, (__gmpfr_emin - 1) / n and (__gmpfr_emax - 1) / n
* cannot overflow due to the constraints on the exponents of
* MPFR numbers.
* - If n = -1, then n * expx = - expx, which is representable
* because of the constraints on the exponents of MPFR numbers.
* - If expx = 0, then n * expx = 0, which is representable.
* - If n < -1 and expx > 0:
* + If expx > (__gmpfr_emin - 1) / n, then
* expx >= (__gmpfr_emin - 1) / n + 1
* > (__gmpfr_emin - 1) // n,
* and
* n * expx < __gmpfr_emin - 1,
* i.e.
* n * expx <= __gmpfr_emin - 2.
* This corresponds to an underflow, with a null result in
* the rounding-to-nearest mode.
* + If expx <= (__gmpfr_emin - 1) / n, then n * expx cannot
* overflow since 0 < expx <= (__gmpfr_emin - 1) / n and
* 0 > n * expx >= n * ((__gmpfr_emin - 1) / n)
* >= __gmpfr_emin - 1.
* - If n < -1 and expx < 0:
* + If expx < (__gmpfr_emax - 1) / n, then
* expx <= (__gmpfr_emax - 1) / n - 1
* < (__gmpfr_emax - 1) // n,
* and
* n * expx > __gmpfr_emax - 1,
* i.e.
* n * expx >= __gmpfr_emax.
* This corresponds to an overflow (2^(n * expx) has an
* exponent > __gmpfr_emax).
* + If expx >= (__gmpfr_emax - 1) / n, then n * expx cannot
* overflow since 0 > expx >= (__gmpfr_emax - 1) / n and
* 0 < n * expx <= n * ((__gmpfr_emax - 1) / n)
* <= __gmpfr_emax - 1.
* Note: one could use expx bounds based on MPFR_EXP_MIN and
* MPFR_EXP_MAX instead of __gmpfr_emin and __gmpfr_emax. The
* current bounds do not lead to noticeably slower code and
* allow us to avoid a bug in Sun's compiler for Solaris/x86
* (when optimizations are enabled); known affected versions:
* cc: Sun C 5.8 2005/10/13
* cc: Sun C 5.8 Patch 121016-02 2006/03/31
* cc: Sun C 5.8 Patch 121016-04 2006/10/18
*/
expy =
n != -1 && expx > 0 && expx > (__gmpfr_emin - 1) / n ?
MPFR_EMIN_MIN - 2 /* Underflow */ :
n != -1 && expx < 0 && expx < (__gmpfr_emax - 1) / n ?
MPFR_EMAX_MAX /* Overflow */ : n * expx;
return mpfr_set_si_2exp (y, n % 2 ? MPFR_INT_SIGN (x) : 1,
expy, rnd);
}
/* General case */
{
/* Declaration of the intermediary variable */
mpfr_t t;
/* Declaration of the size variable */
mpfr_prec_t Ny; /* target precision */
mpfr_prec_t Nt; /* working precision */
mpfr_rnd_t rnd1;
int size_n;
int inexact;
unsigned long abs_n;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ZIV_DECL (loop);
abs_n = - (unsigned long) n;
count_leading_zeros (size_n, (mp_limb_t) abs_n);
size_n = GMP_NUMB_BITS - size_n;
/* initial working precision */
Ny = MPFR_PREC (y);
Nt = Ny + size_n + 3 + MPFR_INT_CEIL_LOG2 (Ny);
MPFR_SAVE_EXPO_MARK (expo);
/* initialize of intermediary variable */
mpfr_init2 (t, Nt);
/* We will compute rnd(rnd1(1/x) ^ |n|), where rnd1 is the rounding
toward sign(x), to avoid spurious overflow or underflow, as in
mpfr_pow_z. */
rnd1 = MPFR_EXP (x) < 1 ? MPFR_RNDZ :
(MPFR_IS_POS (x) ? MPFR_RNDU : MPFR_RNDD);
MPFR_ZIV_INIT (loop, Nt);
for (;;)
{
MPFR_BLOCK_DECL (flags);
/* compute (1/x)^|n| */
MPFR_BLOCK (flags, mpfr_ui_div (t, 1, x, rnd1));
MPFR_ASSERTD (! MPFR_UNDERFLOW (flags));
/* t = (1/x)*(1+theta) where |theta| <= 2^(-Nt) */
if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
goto overflow;
MPFR_BLOCK (flags, mpfr_pow_ui (t, t, abs_n, rnd));
/* t = (1/x)^|n|*(1+theta')^(|n|+1) where |theta'| <= 2^(-Nt).
If (|n|+1)*2^(-Nt) <= 1/2, which is satisfied as soon as
Nt >= bits(n)+2, then we can use Lemma \ref{lemma_graillat}
from algorithms.tex, which yields x^n*(1+theta) with
|theta| <= 2(|n|+1)*2^(-Nt), thus the error is bounded by
2(|n|+1) ulps <= 2^(bits(n)+2) ulps. */
if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
{
overflow:
MPFR_ZIV_FREE (loop);
mpfr_clear (t);
MPFR_SAVE_EXPO_FREE (expo);
MPFR_LOG_MSG (("overflow\n", 0));
return mpfr_overflow (y, rnd, abs_n & 1 ?
MPFR_SIGN (x) : MPFR_SIGN_POS);
}
if (MPFR_UNLIKELY (MPFR_UNDERFLOW (flags)))
{
MPFR_ZIV_FREE (loop);
mpfr_clear (t);
MPFR_LOG_MSG (("underflow\n", 0));
if (rnd == MPFR_RNDN)
{
mpfr_t y2, nn;
/* We cannot decide now whether the result should be
rounded toward zero or away from zero. So, like
in mpfr_pow_pos_z, let's use the general case of
mpfr_pow in precision 2. */
MPFR_ASSERTD (mpfr_cmp_si_2exp (x, MPFR_SIGN (x),
MPFR_EXP (x) - 1) != 0);
mpfr_init2 (y2, 2);
mpfr_init2 (nn, sizeof (long) * CHAR_BIT);
inexact = mpfr_set_si (nn, n, MPFR_RNDN);
MPFR_ASSERTN (inexact == 0);
inexact = mpfr_pow_general (y2, x, nn, rnd, 1,
(mpfr_save_expo_t *) NULL);
mpfr_clear (nn);
mpfr_set (y, y2, MPFR_RNDN);
mpfr_clear (y2);
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_UNDERFLOW);
goto end;
}
else
{
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_underflow (y, rnd, abs_n & 1 ?
MPFR_SIGN (x) : MPFR_SIGN_POS);
}
}
/* error estimate -- see pow function in algorithms.ps */
if (MPFR_LIKELY (MPFR_CAN_ROUND (t, Nt - size_n - 2, Ny, rnd)))
break;
/* actualization of the precision */
MPFR_ZIV_NEXT (loop, Nt);
mpfr_set_prec (t, Nt);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (y, t, rnd);
mpfr_clear (t);
end:
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd);
}
}
}