/* $NetBSD: elf.c,v 1.18 2019/01/05 22:11:07 maxv Exp $ */
/*
* Copyright (c) 2017 The NetBSD Foundation, Inc. All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Maxime Villard.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#define ELFSIZE 64
#include "prekern.h"
#include <sys/exec_elf.h>
struct elfinfo {
Elf_Ehdr *ehdr;
Elf_Shdr *shdr;
char *shstrtab;
size_t shstrsz;
Elf_Sym *symtab;
size_t symcnt;
char *strtab;
size_t strsz;
};
extern paddr_t kernpa_start, kernpa_end;
static struct elfinfo eif;
static const char entrypoint[] = "start_prekern";
static int
elf_check_header(void)
{
if (memcmp((char *)eif.ehdr->e_ident, ELFMAG, SELFMAG) != 0 ||
eif.ehdr->e_ident[EI_CLASS] != ELFCLASS ||
eif.ehdr->e_type != ET_REL) {
return -1;
}
return 0;
}
static vaddr_t
elf_get_entrypoint(void)
{
Elf_Sym *sym;
size_t i;
char *buf;
for (i = 0; i < eif.symcnt; i++) {
sym = &eif.symtab[i];
if (ELF_ST_TYPE(sym->st_info) != STT_FUNC)
continue;
if (sym->st_name == 0)
continue;
if (sym->st_shndx == SHN_UNDEF)
continue; /* Skip external references */
buf = eif.strtab + sym->st_name;
if (!memcmp(buf, entrypoint, sizeof(entrypoint))) {
return (vaddr_t)sym->st_value;
}
}
return 0;
}
static Elf_Shdr *
elf_find_section(char *name)
{
char *buf;
size_t i;
for (i = 0; i < eif.ehdr->e_shnum; i++) {
if (eif.shdr[i].sh_name == 0) {
continue;
}
buf = eif.shstrtab + eif.shdr[i].sh_name;
if (!strcmp(name, buf)) {
return &eif.shdr[i];
}
}
return NULL;
}
static uintptr_t
elf_sym_lookup(size_t symidx)
{
const Elf_Sym *sym;
char *buf, *secname;
Elf_Shdr *sec;
if (symidx == STN_UNDEF) {
return 0;
}
if (symidx >= eif.symcnt) {
fatal("elf_sym_lookup: symbol beyond table");
}
sym = &eif.symtab[symidx];
buf = eif.strtab + sym->st_name;
if (sym->st_shndx == SHN_UNDEF) {
if (!memcmp(buf, "__start_link_set", 16)) {
secname = buf + 8;
sec = elf_find_section(secname);
if (sec == NULL) {
fatal("elf_sym_lookup: unknown start link set");
}
return (uintptr_t)((uint8_t *)eif.ehdr +
sec->sh_offset);
}
if (!memcmp(buf, "__stop_link_set", 15)) {
secname = buf + 7;
sec = elf_find_section(secname);
if (sec == NULL) {
fatal("elf_sym_lookup: unknown stop link set");
}
return (uintptr_t)((uint8_t *)eif.ehdr +
sec->sh_offset + sec->sh_size);
}
fatal("elf_sym_lookup: external symbol");
}
if (sym->st_value == 0) {
fatal("elf_sym_lookup: zero value");
}
return (uintptr_t)sym->st_value;
}
static void
elf_apply_reloc(uintptr_t relocbase, const void *data, bool isrela)
{
Elf64_Addr *where, val;
Elf32_Addr *where32, val32;
Elf64_Addr addr;
Elf64_Addr addend;
uintptr_t rtype, symidx;
const Elf_Rel *rel;
const Elf_Rela *rela;
if (isrela) {
rela = (const Elf_Rela *)data;
where = (Elf64_Addr *)(relocbase + rela->r_offset);
addend = rela->r_addend;
rtype = ELF_R_TYPE(rela->r_info);
symidx = ELF_R_SYM(rela->r_info);
} else {
rel = (const Elf_Rel *)data;
where = (Elf64_Addr *)(relocbase + rel->r_offset);
rtype = ELF_R_TYPE(rel->r_info);
symidx = ELF_R_SYM(rel->r_info);
/* Addend is 32 bit on 32 bit relocs */
switch (rtype) {
case R_X86_64_PC32:
case R_X86_64_32:
case R_X86_64_32S:
addend = *(Elf32_Addr *)where;
break;
default:
addend = *where;
break;
}
}
switch (rtype) {
case R_X86_64_NONE: /* none */
break;
case R_X86_64_64: /* S + A */
addr = elf_sym_lookup(symidx);
val = addr + addend;
*where = val;
break;
case R_X86_64_PC32: /* S + A - P */
case R_X86_64_PLT32:
addr = elf_sym_lookup(symidx);
where32 = (Elf32_Addr *)where;
val32 = (Elf32_Addr)(addr + addend - (Elf64_Addr)where);
*where32 = val32;
break;
case R_X86_64_32: /* S + A */
case R_X86_64_32S: /* S + A sign extend */
addr = elf_sym_lookup(symidx);
val32 = (Elf32_Addr)(addr + addend);
where32 = (Elf32_Addr *)where;
*where32 = val32;
break;
case R_X86_64_GLOB_DAT: /* S */
case R_X86_64_JUMP_SLOT:/* XXX need addend + offset */
addr = elf_sym_lookup(symidx);
*where = addr;
break;
case R_X86_64_RELATIVE: /* B + A */
addr = relocbase + addend;
val = addr;
*where = val;
break;
default:
fatal("elf_apply_reloc: unexpected relocation type");
}
}
/* -------------------------------------------------------------------------- */
size_t
elf_get_head_size(vaddr_t headva)
{
Elf_Ehdr *ehdr;
Elf_Shdr *shdr;
size_t size;
ehdr = (Elf_Ehdr *)headva;
shdr = (Elf_Shdr *)((uint8_t *)ehdr + ehdr->e_shoff);
size = (vaddr_t)shdr + (vaddr_t)(ehdr->e_shnum * sizeof(Elf_Shdr)) -
(vaddr_t)ehdr;
return roundup(size, PAGE_SIZE);
}
void
elf_build_head(vaddr_t headva)
{
memset(&eif, 0, sizeof(struct elfinfo));
eif.ehdr = (Elf_Ehdr *)headva;
eif.shdr = (Elf_Shdr *)((uint8_t *)eif.ehdr + eif.ehdr->e_shoff);
if (elf_check_header() == -1) {
fatal("elf_build_head: wrong kernel ELF header");
}
}
void
elf_map_sections(void)
{
const paddr_t basepa = kernpa_start;
const vaddr_t headva = (vaddr_t)eif.ehdr;
Elf_Shdr *shdr;
int segtype;
vaddr_t secva;
paddr_t secpa;
size_t i, secsz, secalign;
for (i = 0; i < eif.ehdr->e_shnum; i++) {
shdr = &eif.shdr[i];
if (!(shdr->sh_flags & SHF_ALLOC)) {
continue;
}
if (shdr->sh_type != SHT_NOBITS &&
shdr->sh_type != SHT_PROGBITS) {
continue;
}
if (shdr->sh_flags & SHF_EXECINSTR) {
segtype = BTSEG_TEXT;
} else if (shdr->sh_flags & SHF_WRITE) {
segtype = BTSEG_DATA;
} else {
segtype = BTSEG_RODATA;
}
secpa = basepa + shdr->sh_offset;
secsz = shdr->sh_size;
secalign = shdr->sh_addralign;
ASSERT(shdr->sh_offset != 0);
ASSERT(secpa % PAGE_SIZE == 0);
ASSERT(secpa + secsz <= kernpa_end);
secva = mm_map_segment(segtype, secpa, secsz, secalign);
/* We want (headva + sh_offset) to be the VA of the section. */
ASSERT(secva > headva);
shdr->sh_offset = secva - headva;
}
}
void
elf_build_boot(vaddr_t bootva, paddr_t bootpa)
{
const paddr_t basepa = kernpa_start;
const vaddr_t headva = (vaddr_t)eif.ehdr;
size_t i, j, offboot;
for (i = 0; i < eif.ehdr->e_shnum; i++) {
if (eif.shdr[i].sh_type != SHT_STRTAB &&
eif.shdr[i].sh_type != SHT_REL &&
eif.shdr[i].sh_type != SHT_RELA &&
eif.shdr[i].sh_type != SHT_SYMTAB) {
continue;
}
if (eif.shdr[i].sh_offset == 0) {
/* hasn't been loaded */
continue;
}
/* Offset of the section within the boot region. */
offboot = basepa + eif.shdr[i].sh_offset - bootpa;
/* We want (headva + sh_offset) to be the VA of the region. */
eif.shdr[i].sh_offset = (bootva + offboot - headva);
}
/* Locate the section names */
j = eif.ehdr->e_shstrndx;
if (j == SHN_UNDEF) {
fatal("elf_build_boot: shstrtab not found");
}
if (j >= eif.ehdr->e_shnum) {
fatal("elf_build_boot: wrong shstrtab index");
}
eif.shstrtab = (char *)((uint8_t *)eif.ehdr + eif.shdr[j].sh_offset);
eif.shstrsz = eif.shdr[j].sh_size;
/* Locate the symbol table */
for (i = 0; i < eif.ehdr->e_shnum; i++) {
if (eif.shdr[i].sh_type == SHT_SYMTAB)
break;
}
if (i == eif.ehdr->e_shnum) {
fatal("elf_build_boot: symtab not found");
}
if (eif.shdr[i].sh_offset == 0) {
fatal("elf_build_boot: symtab not loaded");
}
eif.symtab = (Elf_Sym *)((uint8_t *)eif.ehdr + eif.shdr[i].sh_offset);
eif.symcnt = eif.shdr[i].sh_size / sizeof(Elf_Sym);
/* Also locate the string table */
j = eif.shdr[i].sh_link;
if (j == SHN_UNDEF || j >= eif.ehdr->e_shnum) {
fatal("elf_build_boot: wrong strtab index");
}
if (eif.shdr[j].sh_type != SHT_STRTAB) {
fatal("elf_build_boot: wrong strtab type");
}
if (eif.shdr[j].sh_offset == 0) {
fatal("elf_build_boot: strtab not loaded");
}
eif.strtab = (char *)((uint8_t *)eif.ehdr + eif.shdr[j].sh_offset);
eif.strsz = eif.shdr[j].sh_size;
}
vaddr_t
elf_kernel_reloc(void)
{
const vaddr_t baseva = (vaddr_t)eif.ehdr;
vaddr_t secva, ent;
Elf_Sym *sym;
size_t i, j;
print_state(true, "ELF info created");
/*
* Update all symbol values with the appropriate offset.
*/
for (i = 0; i < eif.ehdr->e_shnum; i++) {
if (eif.shdr[i].sh_type != SHT_NOBITS &&
eif.shdr[i].sh_type != SHT_PROGBITS) {
continue;
}
ASSERT(eif.shdr[i].sh_offset != 0);
secva = baseva + eif.shdr[i].sh_offset;
for (j = 0; j < eif.symcnt; j++) {
sym = &eif.symtab[j];
if (sym->st_shndx != i) {
continue;
}
sym->st_value += (Elf_Addr)secva;
}
}
print_state(true, "Symbol values updated");
/*
* Perform relocations without addend if there are any.
*/
for (i = 0; i < eif.ehdr->e_shnum; i++) {
Elf_Rel *reltab, *rel;
size_t secidx, nrel;
uintptr_t base;
if (eif.shdr[i].sh_type != SHT_REL) {
continue;
}
ASSERT(eif.shdr[i].sh_offset != 0);
reltab = (Elf_Rel *)((uint8_t *)eif.ehdr + eif.shdr[i].sh_offset);
nrel = eif.shdr[i].sh_size / sizeof(Elf_Rel);
secidx = eif.shdr[i].sh_info;
if (secidx >= eif.ehdr->e_shnum) {
fatal("elf_kernel_reloc: wrong REL relocation");
}
base = (uintptr_t)eif.ehdr + eif.shdr[secidx].sh_offset;
for (j = 0; j < nrel; j++) {
rel = &reltab[j];
elf_apply_reloc(base, rel, false);
}
}
print_state(true, "REL relocations applied");
/*
* Perform relocations with addend if there are any.
*/
for (i = 0; i < eif.ehdr->e_shnum; i++) {
Elf_Rela *relatab, *rela;
size_t secidx, nrela;
uintptr_t base;
if (eif.shdr[i].sh_type != SHT_RELA) {
continue;
}
ASSERT(eif.shdr[i].sh_offset != 0);
relatab = (Elf_Rela *)((uint8_t *)eif.ehdr + eif.shdr[i].sh_offset);
nrela = eif.shdr[i].sh_size / sizeof(Elf_Rela);
secidx = eif.shdr[i].sh_info;
if (secidx >= eif.ehdr->e_shnum) {
fatal("elf_kernel_reloc: wrong RELA relocation");
}
base = (uintptr_t)eif.ehdr + eif.shdr[secidx].sh_offset;
for (j = 0; j < nrela; j++) {
rela = &relatab[j];
elf_apply_reloc(base, rela, true);
}
}
print_state(true, "RELA relocations applied");
/*
* Get the entry point.
*/
ent = elf_get_entrypoint();
if (ent == 0) {
fatal("elf_kernel_reloc: entry point not found");
}
print_state(true, "Entry point found");
return ent;
}