Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
/*	$NetBSD: iyonix_machdep.c,v 1.2 2019/07/16 14:41:46 skrll Exp $	*/

/*
 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
 * All rights reserved.
 *
 * Based on code written by Jason R. Thorpe and Steve C. Woodford for
 * Wasabi Systems, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed for the NetBSD Project by
 *	Wasabi Systems, Inc.
 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
 *    or promote products derived from this software without specific prior
 *    written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Copyright (c) 1997,1998 Mark Brinicombe.
 * Copyright (c) 1997,1998 Causality Limited.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by Mark Brinicombe
 *	for the NetBSD Project.
 * 4. The name of the company nor the name of the author may be used to
 *    endorse or promote products derived from this software without specific
 *    prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * Machine dependent functions for kernel setup for Iyonix.
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: iyonix_machdep.c,v 1.2 2019/07/16 14:41:46 skrll Exp $");

#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_pmap_debug.h"

#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <sys/ksyms.h>
#include <sys/bus.h>
#include <sys/cpu.h>

#include <uvm/uvm_extern.h>

#include <dev/cons.h>

#include <dev/pci/ppbreg.h>
#include <dev/ic/i8259reg.h>

#include <net/if.h>
#include <net/if_ether.h>

#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>

#include <acorn32/include/bootconfig.h>
#include <arm/locore.h>
#include <arm/undefined.h>

#include <arm/arm32/machdep.h>

#include <arm/xscale/i80321reg.h>
#include <arm/xscale/i80321var.h>

#include <evbarm/iyonix/iyonixreg.h>
#include <evbarm/iyonix/obiovar.h>

#include <dev/wscons/wsconsio.h>
#include <dev/wscons/wsdisplayvar.h>
#include <dev/rasops/rasops.h>
#include <dev/wscons/wsdisplay_vconsvar.h>
#include <dev/wsfont/wsfont.h>

#include "ksyms.h"

#define	KERNEL_TEXT_BASE	KERNEL_BASE
#define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)

struct vcons_screen rascons_console_screen;

struct wsscreen_descr rascons_stdscreen = {
	"std",
	0, 0,	/* will be filled in -- XXX shouldn't, it's global */
	0,
	0, 0,
	WSSCREEN_REVERSE
};

/*
 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
 */
#define KERNEL_VM_SIZE		0x0C000000

struct bootconfig bootconfig;		/* Boot config storage */

char *boot_args;

vaddr_t physical_start;
vaddr_t physical_freestart;
vaddr_t physical_freeend;
vaddr_t physical_end;
u_int free_pages;
vaddr_t pagetables_start;

/*int debug_flags;*/
#ifndef PMAP_STATIC_L1S
int max_processes = 64;			/* Default number */
#endif	/* !PMAP_STATIC_L1S */

/* Physical and virtual addresses for some global pages */
pv_addr_t minidataclean;

paddr_t msgbufphys;

#ifdef PMAP_DEBUG
extern int pmap_debug_level;
#endif

#define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */

#define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
#define	KERNEL_PT_KERNEL_NUM	4

					/* L2 table for mapping i80321 */
#define	KERNEL_PT_IOPXS		(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)

					/* L2 tables for mapping kernel VM */ 
#define KERNEL_PT_VMDATA	(KERNEL_PT_IOPXS + 1)
#define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
#define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)

pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];

char iyonix_macaddr[ETHER_ADDR_LEN];

char boot_consdev[16];

/* Prototypes */

void	iyonix_pic_init(void);
void	iyonix_read_machineid(void);

void	consinit(void);

static void consinit_com(const char *consdev);
static void consinit_genfb(const char *consdev);
static void process_kernel_args(void);
static void parse_iyonix_bootargs(char *args);

#include "com.h"
#if NCOM > 0
#include <dev/ic/comreg.h>
#include <dev/ic/comvar.h>
#endif

#include "genfb.h"

#if (NGENFB == 0) && (NCOM == 0)
# error "No valid console device (com or genfb)"
#elif defined(COMCONSOLE) || (NGENFB == 0)
# define DEFAULT_CONSDEV "com"
#else
# define DEFAULT_CONSDEV "genfb"
#endif

/*
 * Define the default console speed for the machine.
 */
#ifndef CONSPEED
#define CONSPEED B9600
#endif /* ! CONSPEED */

#ifndef CONUNIT
#define	CONUNIT	0
#endif

#ifndef CONMODE
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif

int comcnspeed = CONSPEED;
int comcnmode = CONMODE;
int comcnunit = CONUNIT;

#if KGDB
#ifndef KGDB_DEVNAME
#error Must define KGDB_DEVNAME
#endif
const char kgdb_devname[] = KGDB_DEVNAME;

#ifndef KGDB_DEVADDR
#error Must define KGDB_DEVADDR
#endif
unsigned long kgdb_devaddr = KGDB_DEVADDR;

#ifndef KGDB_DEVRATE
#define KGDB_DEVRATE	CONSPEED
#endif
int kgdb_devrate = KGDB_DEVRATE;

#ifndef KGDB_DEVMODE
#define KGDB_DEVMODE	CONMODE
#endif
int kgdb_devmode = KGDB_DEVMODE;
#endif /* KGDB */

/*
 * void cpu_reboot(int howto, char *bootstr)
 *
 * Reboots the system
 *
 * Deal with any syncing, unmounting, dumping and shutdown hooks,
 * then reset the CPU.
 */
void
cpu_reboot(int howto, char *bootstr)
{

	/*
	 * If we are still cold then hit the air brakes
	 * and crash to earth fast
	 */
	if (cold) {
		doshutdownhooks();
		pmf_system_shutdown(boothowto);
		printf("The operating system has halted.\n");
		printf("Please press any key to reboot.\n\n");
		cngetc();
		printf("rebooting...\n");
		goto reset;
	}

	/* Disable console buffering */

	/*
	 * If RB_NOSYNC was not specified sync the discs.
	 * Note: Unless cold is set to 1 here, syslogd will die during the
	 * unmount.  It looks like syslogd is getting woken up only to find
	 * that it cannot page part of the binary in as the filesystem has
	 * been unmounted.
	 */
	if (!(howto & RB_NOSYNC))
		bootsync();

	/* Say NO to interrupts */
	splhigh();

	/* Do a dump if requested. */
	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
		dumpsys();
	
	/* Run any shutdown hooks */
	doshutdownhooks();

	pmf_system_shutdown(boothowto);

	/* Make sure IRQ's are disabled */
	IRQdisable;

	if (howto & RB_HALT) {
		printf("The operating system has halted.\n");
		printf("Please press any key to reboot.\n\n");
		cngetc();
	}

	printf("rebooting...\n\r");
 reset:
	/*
	 * Make really really sure that all interrupts are disabled,
	 * and poke the Internal Bus and Peripheral Bus reset lines.
	 */
	(void) disable_interrupts(I32_bit|F32_bit);
	*(volatile uint32_t *)(IYONIX_80321_VBASE + VERDE_ATU_BASE +
	    ATU_PCSR) = PCSR_RIB | PCSR_RPB;

	/* ...and if that didn't work, just croak. */
	printf("RESET FAILED!\n");
	for (;;);
}

/* Static device mappings. */
static const struct pmap_devmap iyonix_devmap[] = {
    /*
     * Map the on-board devices VA == PA so that we can access them
     * with the MMU on or off.
     */
    {
	IYONIX_OBIO_BASE,
	IYONIX_OBIO_BASE,
	IYONIX_OBIO_SIZE,
	VM_PROT_READ|VM_PROT_WRITE,
	PTE_NOCACHE,
    },

    {
	IYONIX_IOW_VBASE,
	VERDE_OUT_XLATE_IO_WIN0_BASE,
	VERDE_OUT_XLATE_IO_WIN_SIZE,
	VM_PROT_READ|VM_PROT_WRITE,
	PTE_NOCACHE,
   },

   {
	IYONIX_80321_VBASE,
	VERDE_PMMR_BASE,
	VERDE_PMMR_SIZE,
	VM_PROT_READ|VM_PROT_WRITE,
	PTE_NOCACHE,
   },

   {
	IYONIX_FLASH_BASE,
	IYONIX_FLASH_BASE,
	IYONIX_FLASH_SIZE,
	VM_PROT_READ|VM_PROT_WRITE,
	PTE_NOCACHE,
   },

   {
	0,
	0,
	0,
	0,
	0,
    }
};

/* Read out the Machine ID from the flash, and stash it away for later use. */

void
iyonix_read_machineid(void)
{
	volatile uint32_t *flashbase = (uint32_t *)IYONIX_FLASH_BASE;
	volatile uint16_t *flashword = (uint16_t *)IYONIX_FLASH_BASE;
	union {
		uint32_t w[2];
		uint8_t  b[8];
	} machid;

	/* Enter SecSi Sector Region */
	flashword[0x555] = 0xAA;
	flashword[0x2AA] = 0x55;
	flashword[0x555] = 0x88;

	machid.w[0] = flashbase[0];
	machid.w[1] = flashbase[1];

	iyonix_macaddr[0] = machid.b[6];
	iyonix_macaddr[1] = machid.b[5];
	iyonix_macaddr[2] = machid.b[4];
	iyonix_macaddr[3] = machid.b[3];
	iyonix_macaddr[4] = machid.b[2];
	iyonix_macaddr[5] = machid.b[1];

	/* Exit SecSi Sector Region */
	flashword[0x555] = 0xAA;
	flashword[0x2AA] = 0x55;
	flashword[0x555] = 0x90;
	flashword[0x555] = 0x00;
}

#define IYONIX_PIC_WRITE(a,v) (*((char *)IYONIX_OBIO_BASE + (a)) = (v))

void
iyonix_pic_init(void)
{
	IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW1, ICW1_IC4|ICW1_SELECT);
	IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW2, ICW2_IRL(0));
	IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW3, ICW3_CASCADE(2));
	IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW4, ICW4_8086);
	IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_OCW1, 0x0); /* Unmask */

	IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW1, ICW1_IC4|ICW1_SELECT);
	IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW2, ICW2_IRL(0));
	IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW3, ICW3_CASCADE(1));
	IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW4, ICW4_8086);
	IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_OCW1, 0x0); /* Unmask */

}

/*
 * vaddr_t initarm(...)
 *
 * Initial entry point on startup. This gets called before main() is
 * entered.
 * It should be responsible for setting up everything that must be
 * in place when main is called.
 * This includes
 *   Taking a copy of the boot configuration structure.
 *   Initialising the physical console so characters can be printed.
 *   Setting up page tables for the kernel
 *   Initialising interrupt controllers to a sane default state
 */
vaddr_t
initarm(void *arg)
{
	struct bootconfig *passed_bootconfig = arg;
	extern vaddr_t xscale_cache_clean_addr;
#ifdef DIAGNOSTIC
	extern vsize_t xscale_minidata_clean_size;
#endif
	extern char _end[];
	int loop;
	int loop1;
	u_int l1pagetable;
	paddr_t memstart = 0;
	psize_t memsize = 0;

	/* Calibrate the delay loop. */
	i80321_calibrate_delay();

	/* Ensure bootconfig has valid magic */
	if (passed_bootconfig->magic != BOOTCONFIG_MAGIC)
		printf("Bad bootconfig magic: %x\n", bootconfig.magic);

	bootconfig = *passed_bootconfig;

	/* Fake bootconfig structure for anything that still needs it */
	/* XXX must make the memory description h/w independent */
	bootconfig.dram[0].address = memstart;
	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
	bootconfig.dramblocks = 1;

	/* process arguments - can update boothowto */
	process_kernel_args();

	/*
	 * Since we map the on-board devices VA==PA, and the kernel
	 * is running VA==PA, it's possible for us to initialize
	 * the console now.
	 */
	consinit();

#ifdef VERBOSE_INIT_ARM
	/* Talk to the user */
	printf("\nNetBSD/iyonix booting ...\n");
#endif

	/*
	 * Heads up ... Setup the CPU / MMU / TLB functions
	 */
	if (set_cpufuncs())
		panic("cpu not recognized!");

	/*
	 * We are currently running with the MMU enabled and the
	 * entire address space mapped VA==PA.
	 */

	/*
	 * Fetch the SDRAM start/size from the i80321 SDRAM configuration
	 * registers.
	 */
	i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE,
	    &memstart, &memsize);

#ifdef VERBOSE_INIT_ARM
	printf("initarm: Configuring system ...\n");
#endif

	/*
	 * Set up the variables that define the availability of
	 * physical memory.
	 */
	physical_start = memstart;
	physical_end = physical_start + memsize;

	physical_freestart = physical_start +
	    (((uintptr_t) _end - KERNEL_TEXT_BASE + PGOFSET) & ~PGOFSET);
	physical_freeend = physical_end;

	physmem = (physical_end - physical_start) / PAGE_SIZE;

#ifdef VERBOSE_INIT_ARM
	/* Tell the user about the memory */
	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
	    physical_start, physical_end - 1);
#endif

	/*
	 * The kernel is loaded at the base of physical memory. We allocate
	 * pages upwards from the top of the kernel.
	 *
	 * We need to allocate some fixed page tables to get the kernel
	 * going.  We allocate one page directory and a number of page
	 * tables and store the physical addresses in the kernel_pt_table
	 * array.
	 *
	 * The kernel page directory must be on a 16K boundary.  The page
	 * tables must be on 4K boundaries.  What we do is allocate the
	 * page directory on the first 16K boundary that we encounter, and
	 * the page tables on 4K boundaries otherwise.  Since we allocate
	 * at least 3 L2 page tables, we are guaranteed to encounter at
	 * least one 16K aligned region.
	 */

#ifdef VERBOSE_INIT_ARM
	printf("Allocating page tables\n");
#endif

	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;

#ifdef VERBOSE_INIT_ARM
	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
	       physical_freestart, free_pages, free_pages);
#endif

	/* Define a macro to simplify memory allocation */
#define	valloc_pages(var, np)				\
	alloc_pages((var).pv_pa, (np));			\
	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;

#define alloc_pages(var, np)				\
	(var) = physical_freestart;			\
	physical_freestart += ((np) * PAGE_SIZE);	\
	if (physical_freeend < physical_freestart)	\
		panic("initarm: out of memory");	\
	free_pages -= (np);				\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));

	loop1 = 0;
	kernel_l1pt.pv_pa = kernel_l1pt.pv_va = 0;
	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
		/* Are we 16KB aligned for an L1 ? */
		if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
		    && kernel_l1pt.pv_pa == 0) {
			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
		} else {
			valloc_pages(kernel_pt_table[loop1],
			    L2_TABLE_SIZE / PAGE_SIZE);
			++loop1;
		}
	}

	/* This should never be able to happen but better confirm that. */
	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
		panic("initarm: Failed to align the kernel page directory");

	/*
	 * Allocate a page for the system page mapped to V0x00000000
	 * This page will just contain the system vectors and can be
	 * shared by all processes.
	 */
	alloc_pages(systempage.pv_pa, 1);

	/* Allocate stacks for all modes */
	valloc_pages(irqstack, IRQ_STACK_SIZE);
	valloc_pages(abtstack, ABT_STACK_SIZE);
	valloc_pages(undstack, UND_STACK_SIZE);
	valloc_pages(kernelstack, UPAGES);

	/* Allocate enough pages for cleaning the Mini-Data cache. */
	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
	valloc_pages(minidataclean, 1);

#ifdef VERBOSE_INIT_ARM
	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
	    irqstack.pv_va); 
	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
	    abtstack.pv_va); 
	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
	    undstack.pv_va); 
	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
	    kernelstack.pv_va); 
#endif

	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);

	/*
	 * Ok we have allocated physical pages for the primary kernel
	 * page tables
	 */

#ifdef VERBOSE_INIT_ARM
	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif

	/*
	 * Now we start construction of the L1 page table
	 * We start by mapping the L2 page tables into the L1.
	 * This means that we can replace L1 mappings later on if necessary
	 */
	l1pagetable = kernel_l1pt.pv_pa;

	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
	    &kernel_pt_table[KERNEL_PT_SYS]);
	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
	pmap_link_l2pt(l1pagetable, IYONIX_IOPXS_VBASE,
	    &kernel_pt_table[KERNEL_PT_IOPXS]);
	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);

	/* update the top of the kernel VM */
	pmap_curmaxkvaddr =
	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);

#ifdef VERBOSE_INIT_ARM
	printf("Mapping kernel\n");
#endif

	/* Now we fill in the L2 pagetable for the kernel static code/data */
	{
		extern char etext[], _end[];
		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
		u_int logical;

		textsize = (textsize + PGOFSET) & ~PGOFSET;
		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
		
		logical = 0;	/* offset of kernel in RAM */
		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
		    physical_start + logical, textsize,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
		    physical_start + logical, totalsize - textsize,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	}

#ifdef VERBOSE_INIT_ARM
	printf("Constructing L2 page tables\n");
#endif

	/* Map the stack pages */
	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);

	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	}

	/* Map the Mini-Data cache clean area. */
	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
	    minidataclean.pv_pa);

	/* Map the vector page. */
	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

	/* Map the statically mapped devices. */
	pmap_devmap_bootstrap(l1pagetable, iyonix_devmap);

	/*
	 * Give the XScale global cache clean code an appropriately
	 * sized chunk of unmapped VA space starting at 0xff000000
	 * (our device mappings end before this address).
	 */
	xscale_cache_clean_addr = 0xff000000U;

	/*
	 * Now we have the real page tables in place so we can switch to them.
	 * Once this is done we will be running with the REAL kernel page
	 * tables.
	 */

	/* Switch tables */
#ifdef VERBOSE_INIT_ARM
	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
	       physical_freestart, free_pages, free_pages);
	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
#endif
	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
	cpu_setttb(kernel_l1pt.pv_pa, true);
	cpu_tlb_flushID();
	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

	iyonix_read_machineid();

	/*
	 * Moved from cpu_startup() as data_abort_handler() references
	 * this during uvm init
	 */
	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);

#ifdef VERBOSE_INIT_ARM
	printf("done!\n");
#endif

#ifdef VERBOSE_INIT_ARM
	printf("bootstrap done.\n");
#endif

	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);

	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */
#ifdef VERBOSE_INIT_ARM
	printf("init subsystems: stacks ");
#endif

	set_stackptr(PSR_IRQ32_MODE,
	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_ABT32_MODE,
	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_UND32_MODE,
	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);

	/*
	 * Well we should set a data abort handler.
	 * Once things get going this will change as we will need a proper
	 * handler.
	 * Until then we will use a handler that just panics but tells us
	 * why.
	 * Initialisation of the vectors will just panic on a data abort.
	 * This just fills in a slightly better one.
	 */
#ifdef VERBOSE_INIT_ARM
	printf("vectors ");
#endif
	data_abort_handler_address = (u_int)data_abort_handler;
	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
	undefined_handler_address = (u_int)undefinedinstruction_bounce;

	/* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
	printf("undefined ");
#endif
	undefined_init();

	/* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
	printf("page ");
#endif
	uvm_md_init();
	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
	    atop(physical_freestart), atop(physical_freeend),
	    VM_FREELIST_DEFAULT);

	/* Boot strap pmap telling it where managed kernel virtual memory is */
#ifdef VERBOSE_INIT_ARM
	printf("pmap ");
#endif
	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);

	/* Setup the IRQ system */
#ifdef VERBOSE_INIT_ARM
	printf("irq ");
#endif
	i80321_intr_init();

#ifdef VERBOSE_INIT_ARM
	printf("done.\n");
#endif

#ifdef DDB
	db_machine_init();
	if (boothowto & RB_KDB)
		Debugger();
#endif

	iyonix_pic_init();

	printf("args: %s\n", bootconfig.args);
	printf("howto: %x\n", boothowto);

	/* We return the new stack pointer address */
	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
}

void
consinit(void)
{
	static int consinit_called;

	if (consinit_called != 0)
		return;

	consinit_called = 1;

	/* We let consinit_<foo> worry about device numbers */
	if (strncmp(boot_consdev, "genfb", 5) &&
	    strncmp(boot_consdev, "com", 3))
	        strcpy(boot_consdev, DEFAULT_CONSDEV);

	if (!strncmp(boot_consdev, "com", 3)) 
		consinit_com(boot_consdev);
	else
		consinit_genfb(boot_consdev);
}

static void
consinit_com(const char *consdev)
{
	static const bus_addr_t comcnaddrs[] = {
		IYONIX_UART1,		/* com0 */
	};
	/*
	 * Console devices are mapped VA==PA.  Our devmap reflects
	 * this, so register it now so drivers can map the console
	 * device.
	 */
	pmap_devmap_register(iyonix_devmap);

	/* When we support more than the first serial port as console,
	 * we should check consdev for a number.
	 */
#if NCOM > 0
	if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
	    COM_FREQ, COM_TYPE_NORMAL, comcnmode))
	{
		panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
	}
#else
	panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
#endif

#if KGDB
#if NCOM > 0
	if (strcmp(kgdb_devname, "com") == 0) {
		com_kgdb_attach(&obio_bs_tag, kgdb_devaddr, kgdb_devrate,
		    COM_FREQ, COM_TYPE_NORMAL, kgdb_devmode);
	}
#endif	/* NCOM > 0 */
#endif	/* KGDB */
}

static void
consinit_genfb(const char *consdev)
{
	/* NOTYET */
}

static void
process_kernel_args(void)
{
	char *args;

	/* Ok now we will check the arguments for interesting parameters. */
	args = bootconfig.args;

#ifdef BOOTHOWTO
	boothowto = BOOTHOWTO;
#else
	boothowto = 0;
#endif

	/* Only arguments itself are passed from the bootloader */
	while (*args == ' ')
		++args;

	boot_args = args;
	parse_mi_bootargs(boot_args);
	parse_iyonix_bootargs(boot_args);
}

static void
parse_iyonix_bootargs(char *args)
{
	char *ptr;

	if (get_bootconf_option(args, "consdev", BOOTOPT_TYPE_STRING, &ptr))
	{
		/* ptr may have trailing clutter */
		strlcpy(boot_consdev, ptr, sizeof(boot_consdev));
		if ( (ptr = strchr(boot_consdev, ' ')) )
			*ptr = 0;
	}
}