Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/*	$OpenBSD: kb3310.c,v 1.16 2010/10/14 21:23:04 pirofti Exp $	*/
/*
 * Copyright (c) 2010 Otto Moerbeek <otto@drijf.net>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/sensors.h>
#include <sys/timeout.h>

#include <mips64/archtype.h>
#include <machine/apmvar.h>
#include <evbmips/loongson/autoconf.h>
#include <machine/bus.h>
#include <dev/isa/isavar.h>

#include <dev/pci/glxreg.h>

#include <loongson/dev/bonitoreg.h>
#include <loongson/dev/kb3310var.h>

#include "apm.h"
#include "pckbd.h"
#include "hidkbd.h"

#if NPCKBD > 0 || NHIDKBD > 0
#include <dev/ic/pckbcvar.h>
#include <dev/pckbc/pckbdvar.h>
#include <dev/usb/hidkbdvar.h>
#endif

struct cfdriver ykbec_cd = {
	NULL, "ykbec", DV_DULL,
};

#ifdef KB3310_DEBUG
#define DPRINTF(x)	printf x
#else
#define DPRINTF(x)
#endif

#define IO_YKBEC		0x381
#define IO_YKBECSIZE		0x3

static const struct {
	const char *desc;	
	int type;
} ykbec_table[] = {
#define YKBEC_FAN	0
	{ NULL,				SENSOR_FANRPM },
#define YKBEC_ITEMP	1
	{ "Internal temperature",	SENSOR_TEMP },
#define YKBEC_FCAP	2
	{ "Battery full charge capacity", SENSOR_AMPHOUR },
#define YKBEC_BCURRENT	3
	{ "Battery current", 		SENSOR_AMPS },
#define YKBEC_BVOLT	4
	{ "Battery voltage",		SENSOR_VOLTS_DC },
#define YKBEC_BTEMP	5
	{ "Battery temperature",	SENSOR_TEMP },
#define YKBEC_CAP	6
	{ "Battery capacity", 		SENSOR_PERCENT },
#define YKBEC_CHARGING	7
	{ "Battery charging",		SENSOR_INDICATOR },
#define YKBEC_AC	8
	{ "AC-Power",			SENSOR_INDICATOR }
#define YKBEC_NSENSORS	9
};

struct ykbec_softc {
	bus_space_tag_t		sc_iot;
	bus_space_handle_t	sc_ioh;
	struct ksensor		sc_sensor[YKBEC_NSENSORS];
	struct ksensordev	sc_sensordev;
#if NPCKBD > 0 || NHIDKBD > 0
	struct timeout		sc_bell_tmo;
#endif
};

static struct ykbec_softc *ykbec_sc;
static int ykbec_chip_config;

extern void loongson_set_isa_imr(uint);

int	ykbec_match(device_t, cfdata_t, void *);
void	ykbec_attach(device_t, device_t, void *);

const struct cfattach ykbec_ca = {
	sizeof(struct ykbec_softc), ykbec_match, ykbec_attach
};

int	ykbec_apminfo(struct apm_power_info *);
void	ykbec_bell(void *, u_int, u_int, u_int, int);
void	ykbec_bell_stop(void *);
void	ykbec_print_bat_info(struct ykbec_softc *);
u_int	ykbec_read(struct ykbec_softc *, u_int);
u_int	ykbec_read16(struct ykbec_softc *, u_int);
void	ykbec_refresh(void *arg);
void	ykbec_write(struct ykbec_softc *, u_int, u_int);

#if NAPM > 0
struct apm_power_info ykbec_apmdata;
const char *ykbec_batstate[] = {
	"high",
	"low",
	"critical",
	"charging",
	"unknown"
};
#define BATTERY_STRING(x) ((x) < nitems(ykbec_batstate) ? \
	ykbec_batstate[x] : ykbec_batstate[4])
#endif

int
ykbec_match(device_t parent, cfdata_t match, void *aux)
{
	struct isa_attach_args *ia = aux;
	bus_space_handle_t ioh;

	if (sys_platform->system_type != LOONGSON_YEELOONG)
		return (0);

	if ((ia->ia_iobase != IOBASEUNK && ia->ia_iobase != IO_YKBEC) ||
	    /* (ia->ia_iosize != 0 && ia->ia_iosize != IO_YKBECSIZE) || XXX isa.c */
	    ia->ia_maddr != MADDRUNK || ia->ia_msize != 0 ||
	    ia->ia_irq != IRQUNK || ia->ia_drq != DRQUNK)
		return (0);

	if (bus_space_map(ia->ia_iot, IO_YKBEC, IO_YKBECSIZE, 0, &ioh))
		return (0);

	bus_space_unmap(ia->ia_iot, ioh, IO_YKBECSIZE);

	ia->ia_iobase = IO_YKBEC;
	ia->ia_iosize = IO_YKBECSIZE;

	return (1);
}

void
ykbec_attach(device_t parent, device_t self, void *aux)
{
	struct isa_attach_args *ia = aux;
	struct ykbec_softc *sc = device_private(self);
	int i;

	sc->sc_iot = ia->ia_iot;
	if (bus_space_map(sc->sc_iot, ia->ia_iobase, ia->ia_iosize, 0,
	    &sc->sc_ioh)) {
		aprint_error(": couldn't map I/O space");
		return;
	}

	/* Initialize sensor data. */
	strlcpy(sc->sc_sensordev.xname, device_xname(self),
	    sizeof(sc->sc_sensordev.xname));
	if (sensor_task_register(sc, ykbec_refresh, 5) == NULL) {
		aprint_error(", unable to register update task\n");
		return;
	}

#ifdef DEBUG
	ykbec_print_bat_info(sc);
#endif
	aprint_normal("\n");

	for (i = 0; i < YKBEC_NSENSORS; i++) {
		sc->sc_sensor[i].type = ykbec_table[i].type; 
		if (ykbec_table[i].desc) 
			strlcpy(sc->sc_sensor[i].desc, ykbec_table[i].desc,
			    sizeof(sc->sc_sensor[i].desc));
		sensor_attach(&sc->sc_sensordev, &sc->sc_sensor[i]);
	}

	sensordev_install(&sc->sc_sensordev);

#if NAPM > 0
	/* make sure we have the apm state initialized before apm attaches */
	ykbec_refresh(sc);
	apm_setinfohook(ykbec_apminfo);
#endif
#if NPCKBD > 0 || NHIDKBD > 0
	timeout_set(&sc->sc_bell_tmo, ykbec_bell_stop, sc);
#if NPCKBD > 0
	pckbd_hookup_bell(ykbec_bell, sc);
#endif
#if NHIDKBD > 0
	hidkbd_hookup_bell(ykbec_bell, sc);
#endif
#endif
	ykbec_sc = sc;
}

void
ykbec_write(struct ykbec_softc *mcsc, u_int reg, u_int datum)
{
	struct ykbec_softc *sc = (struct ykbec_softc *)mcsc;
	bus_space_tag_t iot = sc->sc_iot;
	bus_space_handle_t ioh = sc->sc_ioh;

	bus_space_write_1(iot, ioh, 0, (reg >> 8) & 0xff);
	bus_space_write_1(iot, ioh, 1, (reg >> 0) & 0xff);
	bus_space_write_1(iot, ioh, 2, datum);
}

u_int
ykbec_read(struct ykbec_softc *mcsc, u_int reg)
{
	struct ykbec_softc *sc = (struct ykbec_softc *)mcsc;
	bus_space_tag_t iot = sc->sc_iot;
	bus_space_handle_t ioh = sc->sc_ioh;

	bus_space_write_1(iot, ioh, 0, (reg >> 8) & 0xff);
	bus_space_write_1(iot, ioh, 1, (reg >> 0) & 0xff);
	return bus_space_read_1(iot, ioh, 2);
}

u_int
ykbec_read16(struct ykbec_softc *mcsc, u_int reg)
{
	u_int val;

	val = ykbec_read(mcsc, reg);
	return (val << 8) | ykbec_read(mcsc, reg + 1);
}

#define KB3310_FAN_SPEED_DIVIDER	480000

#define ECTEMP_CURRENT_REG		0xf458
#define REG_FAN_SPEED_HIGH		0xfe22
#define REG_FAN_SPEED_LOW		0xfe23

#define REG_DESIGN_CAP_HIGH		0xf77d
#define REG_DESIGN_CAP_LOW		0xf77e
#define REG_FULLCHG_CAP_HIGH		0xf780
#define REG_FULLCHG_CAP_LOW		0xf781

#define REG_DESIGN_VOL_HIGH		0xf782
#define REG_DESIGN_VOL_LOW		0xf783
#define REG_CURRENT_HIGH		0xf784
#define REG_CURRENT_LOW			0xf785
#define REG_VOLTAGE_HIGH		0xf786
#define REG_VOLTAGE_LOW			0xf787
#define REG_TEMPERATURE_HIGH		0xf788
#define REG_TEMPERATURE_LOW		0xf789
#define REG_RELATIVE_CAT_HIGH		0xf492
#define REG_RELATIVE_CAT_LOW		0xf493
#define REG_BAT_VENDOR			0xf4c4
#define REG_BAT_CELL_COUNT		0xf4c6

#define REG_BAT_CHARGE			0xf4a2
#define BAT_CHARGE_AC			0x00
#define BAT_CHARGE_DISCHARGE		0x01
#define BAT_CHARGE_CHARGE		0x02

#define REG_POWER_FLAG			0xf440
#define POWER_FLAG_ADAPTER_IN		(1<<0)
#define POWER_FLAG_POWER_ON		(1<<1)
#define POWER_FLAG_ENTER_SUS		(1<<2)

#define REG_BAT_STATUS			0xf4b0
#define BAT_STATUS_BAT_EXISTS		(1<<0)
#define BAT_STATUS_BAT_FULL		(1<<1)
#define BAT_STATUS_BAT_DESTROY		(1<<2)
#define BAT_STATUS_BAT_LOW		(1<<5)

#define REG_CHARGE_STATUS		0xf4b1
#define CHARGE_STATUS_PRECHARGE		(1<<1)
#define CHARGE_STATUS_OVERHEAT		(1<<2)

#define REG_BAT_STATE			0xf482
#define BAT_STATE_DISCHARGING		(1<<0)
#define BAT_STATE_CHARGING		(1<<1)

#define	REG_BEEP_CONTROL		0xf4d0
#define	BEEP_ENABLE			(1<<0)

#define REG_PMUCFG			0xff0c
#define PMUCFG_STOP_MODE		(1<<7)
#define PMUCFG_IDLE_MODE		(1<<6)
#define PMUCFG_LPC_WAKEUP		(1<<5)
#define PMUCFG_RESET_8051		(1<<4)
#define PMUCFG_SCI_WAKEUP		(1<<3)
#define PMUCFG_WDT_WAKEUP		(1<<2)
#define PMUCFG_GPWU_WAKEUP		(1<<1)
#define PMUCFG_IRQ_IDLE			(1<<0)

#define REG_USB0			0xf461
#define REG_USB1			0xf462
#define REG_USB2			0xf463
#define USB_FLAG_ON			1
#define USB_FLAG_OFF			0

#define REG_FAN_CONTROL			0xf4d2
#define	REG_FAN_ON			1
#define REG_FAN_OFF			0

#define YKBEC_SCI_IRQ			0xa

#ifdef DEBUG
void
ykbec_print_bat_info(struct ykbec_softc *sc)
{
	uint bat_status, count, dvolt, dcap;

	printf(": battery ");
	bat_status = ykbec_read(sc, REG_BAT_STATUS);
	if (!ISSET(bat_status, BAT_STATUS_BAT_EXISTS)) {
		printf("absent");
		return;
	}
		
	count = ykbec_read(sc, REG_BAT_CELL_COUNT);
	dvolt = ykbec_read16(sc, REG_DESIGN_VOL_HIGH);
	dcap = ykbec_read16(sc, REG_DESIGN_CAP_HIGH);
	printf("%d cells, design capacity %dmV %dmAh", count, dvolt, dcap);
}
#endif

void
ykbec_refresh(void *arg)
{
	struct ykbec_softc *sc = (struct ykbec_softc *)arg;
	u_int val, bat_charge, bat_status, charge_status, bat_state, power_flag;
	u_int cap_pct, fullcap;
	int current;
#if NAPM > 0
	struct apm_power_info old;
#endif

	val = ykbec_read16(sc, REG_FAN_SPEED_HIGH) & 0xfffff;
	if (val != 0) {
		val = KB3310_FAN_SPEED_DIVIDER / val;
		sc->sc_sensor[YKBEC_FAN].value = val;
		CLR(sc->sc_sensor[YKBEC_FAN].flags, SENSOR_FINVALID);
	} else
		SET(sc->sc_sensor[YKBEC_FAN].flags, SENSOR_FINVALID);

	val = ykbec_read(sc, ECTEMP_CURRENT_REG);
	sc->sc_sensor[YKBEC_ITEMP].value = val * 1000000 + 273150000;

	fullcap = ykbec_read16(sc, REG_FULLCHG_CAP_HIGH);
	sc->sc_sensor[YKBEC_FCAP].value = fullcap * 1000;

	current = ykbec_read16(sc, REG_CURRENT_HIGH);
	/* sign extend short -> int, int -> int64 will be done next statement */
	current |= -(current & 0x8000);
	sc->sc_sensor[YKBEC_BCURRENT].value = -1000 * current;

	sc->sc_sensor[YKBEC_BVOLT].value = ykbec_read16(sc, REG_VOLTAGE_HIGH) *
	    1000;

	val = ykbec_read16(sc, REG_TEMPERATURE_HIGH);
	sc->sc_sensor[YKBEC_BTEMP].value = val * 1000000 + 273150000;

	cap_pct = ykbec_read16(sc, REG_RELATIVE_CAT_HIGH);
	sc->sc_sensor[YKBEC_CAP].value = cap_pct * 1000;

	bat_charge = ykbec_read(sc, REG_BAT_CHARGE);
	bat_status = ykbec_read(sc, REG_BAT_STATUS);
	charge_status = ykbec_read(sc, REG_CHARGE_STATUS);
	bat_state = ykbec_read(sc, REG_BAT_STATE);
	power_flag = ykbec_read(sc, REG_POWER_FLAG);

	sc->sc_sensor[YKBEC_CHARGING].value = !!ISSET(bat_state,
	    BAT_STATE_CHARGING);
	sc->sc_sensor[YKBEC_AC].value = !!ISSET(power_flag,
	    POWER_FLAG_ADAPTER_IN);

	sc->sc_sensor[YKBEC_CAP].status = ISSET(bat_status, BAT_STATUS_BAT_LOW) ?
		SENSOR_S_CRIT : SENSOR_S_OK;

#if NAPM > 0
	bcopy(&ykbec_apmdata, &old, sizeof(old));
	ykbec_apmdata.battery_life = cap_pct;
	ykbec_apmdata.ac_state = ISSET(power_flag, POWER_FLAG_ADAPTER_IN) ?
	    APM_AC_ON : APM_AC_OFF;
	if (!ISSET(bat_status, BAT_STATUS_BAT_EXISTS)) {
		ykbec_apmdata.battery_state = APM_BATTERY_ABSENT;
		ykbec_apmdata.minutes_left = 0;
		ykbec_apmdata.battery_life = 0;
	} else {
		if (ISSET(bat_state, BAT_STATE_CHARGING))
			ykbec_apmdata.battery_state = APM_BATT_CHARGING;
		else if (ISSET(bat_status, BAT_STATUS_BAT_LOW))
			ykbec_apmdata.battery_state = APM_BATT_CRITICAL;
		/* XXX arbitrary */
		else if (cap_pct > 60)
			ykbec_apmdata.battery_state = APM_BATT_HIGH;
		else
			ykbec_apmdata.battery_state = APM_BATT_LOW;

		/* if charging, current is positive */
		if (ISSET(bat_state, BAT_STATE_CHARGING))
			current = 0;
		else
			current = -current;
		/* XXX Yeeloong draw is about 1A */
		if (current <= 0)
			current = 1000;
		/* XXX at 5?%, the Yeeloong shuts down */
		if (cap_pct <= 5)
			cap_pct = 0;
		else
			cap_pct -= 5;
		fullcap = cap_pct * 60 * fullcap / 100;
		ykbec_apmdata.minutes_left = fullcap / current;

	}
	if (old.ac_state != ykbec_apmdata.ac_state) 
		apm_record_event(APM_POWER_CHANGE, "AC power",
			ykbec_apmdata.ac_state ? "restored" : "lost");
	if (old.battery_state != ykbec_apmdata.battery_state) 
		apm_record_event(APM_POWER_CHANGE, "battery",
		    BATTERY_STRING(ykbec_apmdata.battery_state));
#endif
}


#if NAPM > 0
int
ykbec_apminfo(struct apm_power_info *info)
{
	 bcopy(&ykbec_apmdata, info, sizeof(struct apm_power_info));
	 return 0;
}

int
ykbec_suspend()
{
	struct ykbec_softc *sc = ykbec_sc;
	int ctrl;

	/*
	 * Set up wakeup sources: currently only the internal keyboard.
	 */
	loongson_set_isa_imr(1 << 1);

	/* USB */
	DPRINTF(("USB\n"));
	ykbec_write(sc, REG_USB0, USB_FLAG_OFF); 
	ykbec_write(sc, REG_USB1, USB_FLAG_OFF); 
	ykbec_write(sc, REG_USB2, USB_FLAG_OFF); 

	/* EC */
	DPRINTF(("REG_PMUCFG\n"));
	ctrl = PMUCFG_SCI_WAKEUP | PMUCFG_WDT_WAKEUP | PMUCFG_GPWU_WAKEUP |
	    PMUCFG_LPC_WAKEUP | PMUCFG_STOP_MODE | PMUCFG_RESET_8051;
	ykbec_write(sc, REG_PMUCFG, ctrl);

	/* FAN */
	DPRINTF(("FAN\n"));
	ykbec_write(sc, REG_FAN_CONTROL, REG_FAN_OFF);

	/* CPU */
	DPRINTF(("CPU\n"));
	ykbec_chip_config = REGVAL(LOONGSON_CHIP_CONFIG0);
	enableintr();
	REGVAL(LOONGSON_CHIP_CONFIG0) = ykbec_chip_config & ~0x7;
	(void)REGVAL(LOONGSON_CHIP_CONFIG0);

	/*
	 * When a resume interrupt fires, we will enter the interrupt
	 * dispatcher, which will do nothing because we are at splhigh,
	 * and execution flow will return here and continue.
	 */
	(void)disableintr();

	return 0;
}

int
ykbec_resume()
{
	struct ykbec_softc *sc = ykbec_sc;

	/* CPU */
	DPRINTF(("CPU\n"));
	REGVAL(LOONGSON_CHIP_CONFIG0) = ykbec_chip_config;
	(void)REGVAL(LOONGSON_CHIP_CONFIG0);

	/* FAN */
	DPRINTF(("FAN\n"));
	ykbec_write(sc, REG_FAN_CONTROL, REG_FAN_ON);

	/* USB */
	DPRINTF(("USB\n"));
	ykbec_write(sc, REG_USB0, USB_FLAG_ON); 
	ykbec_write(sc, REG_USB1, USB_FLAG_ON); 
	ykbec_write(sc, REG_USB2, USB_FLAG_ON); 

	ykbec_refresh(sc);

	return 0;
}
#endif

#if NPCKBD > 0 || NHIDKBD > 0
void
ykbec_bell(void *arg, u_int pitch, u_int period, u_int volume, int poll)
{
	struct ykbec_softc *sc = (struct ykbec_softc *)arg;
	int bctrl;
	int s;

	s = spltty();
	bctrl = ykbec_read(sc, REG_BEEP_CONTROL);
	if (volume == 0 || timeout_pending(&sc->sc_bell_tmo)) {
		timeout_del(&sc->sc_bell_tmo);
		/* inline ykbec_bell_stop(arg); */
		ykbec_write(sc, REG_BEEP_CONTROL, bctrl & ~BEEP_ENABLE);
	}

	if (volume != 0) {
		ykbec_write(sc, REG_BEEP_CONTROL, bctrl | BEEP_ENABLE);
		if (poll) {
			delay(period * 1000);
			ykbec_write(sc, REG_BEEP_CONTROL, bctrl & ~BEEP_ENABLE);
		} else {
			timeout_add_msec(&sc->sc_bell_tmo, period);
		}
	}
	splx(s);
}

void
ykbec_bell_stop(void *arg)
{
	struct ykbec_softc *sc = (struct ykbec_softc *)arg;
	int s;

	s = spltty();
	ykbec_write(sc, REG_BEEP_CONTROL,
	    ykbec_read(sc, REG_BEEP_CONTROL) & ~BEEP_ENABLE);
	splx(s);
}
#endif