Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
*	$NetBSD: stan.sa,v 1.4 2000/03/13 23:52:32 soren Exp $

*	MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
*	M68000 Hi-Performance Microprocessor Division
*	M68040 Software Package 
*
*	M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
*	All rights reserved.
*
*	THE SOFTWARE is provided on an "AS IS" basis and without warranty.
*	To the maximum extent permitted by applicable law,
*	MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
*	INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
*	PARTICULAR PURPOSE and any warranty against infringement with
*	regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
*	and any accompanying written materials. 
*
*	To the maximum extent permitted by applicable law,
*	IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
*	(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
*	PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
*	OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
*	SOFTWARE.  Motorola assumes no responsibility for the maintenance
*	and support of the SOFTWARE.  
*
*	You are hereby granted a copyright license to use, modify, and
*	distribute the SOFTWARE so long as this entire notice is retained
*	without alteration in any modified and/or redistributed versions,
*	and that such modified versions are clearly identified as such.
*	No licenses are granted by implication, estoppel or otherwise
*	under any patents or trademarks of Motorola, Inc.

*
*	stan.sa 3.3 7/29/91
*
*	The entry point stan computes the tangent of
*	an input argument;
*	stand does the same except for denormalized input.
*
*	Input: Double-extended number X in location pointed to
*		by address register a0.
*
*	Output: The value tan(X) returned in floating-point register Fp0.
*
*	Accuracy and Monotonicity: The returned result is within 3 ulp in
*		64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
*		result is subsequently rounded to double precision. The
*		result is provably monotonic in double precision.
*
*	Speed: The program sTAN takes approximately 170 cycles for
*		input argument X such that |X| < 15Pi, which is the usual
*		situation.
*
*	Algorithm:
*
*	1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
*
*	2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
*		k = N mod 2, so in particular, k = 0 or 1.
*
*	3. If k is odd, go to 5.
*
*	4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a
*		rational function U/V where
*		U = r + r*s*(P1 + s*(P2 + s*P3)), and
*		V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))),  s = r*r.
*		Exit.
*
*	4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by a
*		rational function U/V where
*		U = r + r*s*(P1 + s*(P2 + s*P3)), and
*		V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r,
*		-Cot(r) = -V/U. Exit.
*
*	6. If |X| > 1, go to 8.
*
*	7. (|X|<2**(-40)) Tan(X) = X. Exit.
*
*	8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
*

STAN	IDNT	2,1 Motorola 040 Floating Point Software Package

	section	8

	include fpsp.h

BOUNDS1	DC.L $3FD78000,$4004BC7E
TWOBYPI	DC.L $3FE45F30,$6DC9C883

TANQ4	DC.L $3EA0B759,$F50F8688
TANP3	DC.L $BEF2BAA5,$A8924F04

TANQ3	DC.L $BF346F59,$B39BA65F,$00000000,$00000000

TANP2	DC.L $3FF60000,$E073D3FC,$199C4A00,$00000000

TANQ2	DC.L $3FF90000,$D23CD684,$15D95FA1,$00000000

TANP1	DC.L $BFFC0000,$8895A6C5,$FB423BCA,$00000000

TANQ1	DC.L $BFFD0000,$EEF57E0D,$A84BC8CE,$00000000

INVTWOPI DC.L $3FFC0000,$A2F9836E,$4E44152A,$00000000

TWOPI1	DC.L $40010000,$C90FDAA2,$00000000,$00000000
TWOPI2	DC.L $3FDF0000,$85A308D4,$00000000,$00000000

*--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING
*--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT
*--MOST 69 BITS LONG.
	xdef	PITBL
PITBL:
  DC.L  $C0040000,$C90FDAA2,$2168C235,$21800000
  DC.L  $C0040000,$C2C75BCD,$105D7C23,$A0D00000
  DC.L  $C0040000,$BC7EDCF7,$FF523611,$A1E80000
  DC.L  $C0040000,$B6365E22,$EE46F000,$21480000
  DC.L  $C0040000,$AFEDDF4D,$DD3BA9EE,$A1200000
  DC.L  $C0040000,$A9A56078,$CC3063DD,$21FC0000
  DC.L  $C0040000,$A35CE1A3,$BB251DCB,$21100000
  DC.L  $C0040000,$9D1462CE,$AA19D7B9,$A1580000
  DC.L  $C0040000,$96CBE3F9,$990E91A8,$21E00000
  DC.L  $C0040000,$90836524,$88034B96,$20B00000
  DC.L  $C0040000,$8A3AE64F,$76F80584,$A1880000
  DC.L  $C0040000,$83F2677A,$65ECBF73,$21C40000
  DC.L  $C0030000,$FB53D14A,$A9C2F2C2,$20000000
  DC.L  $C0030000,$EEC2D3A0,$87AC669F,$21380000
  DC.L  $C0030000,$E231D5F6,$6595DA7B,$A1300000
  DC.L  $C0030000,$D5A0D84C,$437F4E58,$9FC00000
  DC.L  $C0030000,$C90FDAA2,$2168C235,$21000000
  DC.L  $C0030000,$BC7EDCF7,$FF523611,$A1680000
  DC.L  $C0030000,$AFEDDF4D,$DD3BA9EE,$A0A00000
  DC.L  $C0030000,$A35CE1A3,$BB251DCB,$20900000
  DC.L  $C0030000,$96CBE3F9,$990E91A8,$21600000
  DC.L  $C0030000,$8A3AE64F,$76F80584,$A1080000
  DC.L  $C0020000,$FB53D14A,$A9C2F2C2,$1F800000
  DC.L  $C0020000,$E231D5F6,$6595DA7B,$A0B00000
  DC.L  $C0020000,$C90FDAA2,$2168C235,$20800000
  DC.L  $C0020000,$AFEDDF4D,$DD3BA9EE,$A0200000
  DC.L  $C0020000,$96CBE3F9,$990E91A8,$20E00000
  DC.L  $C0010000,$FB53D14A,$A9C2F2C2,$1F000000
  DC.L  $C0010000,$C90FDAA2,$2168C235,$20000000
  DC.L  $C0010000,$96CBE3F9,$990E91A8,$20600000
  DC.L  $C0000000,$C90FDAA2,$2168C235,$1F800000
  DC.L  $BFFF0000,$C90FDAA2,$2168C235,$1F000000
  DC.L  $00000000,$00000000,$00000000,$00000000
  DC.L  $3FFF0000,$C90FDAA2,$2168C235,$9F000000
  DC.L  $40000000,$C90FDAA2,$2168C235,$9F800000
  DC.L  $40010000,$96CBE3F9,$990E91A8,$A0600000
  DC.L  $40010000,$C90FDAA2,$2168C235,$A0000000
  DC.L  $40010000,$FB53D14A,$A9C2F2C2,$9F000000
  DC.L  $40020000,$96CBE3F9,$990E91A8,$A0E00000
  DC.L  $40020000,$AFEDDF4D,$DD3BA9EE,$20200000
  DC.L  $40020000,$C90FDAA2,$2168C235,$A0800000
  DC.L  $40020000,$E231D5F6,$6595DA7B,$20B00000
  DC.L  $40020000,$FB53D14A,$A9C2F2C2,$9F800000
  DC.L  $40030000,$8A3AE64F,$76F80584,$21080000
  DC.L  $40030000,$96CBE3F9,$990E91A8,$A1600000
  DC.L  $40030000,$A35CE1A3,$BB251DCB,$A0900000
  DC.L  $40030000,$AFEDDF4D,$DD3BA9EE,$20A00000
  DC.L  $40030000,$BC7EDCF7,$FF523611,$21680000
  DC.L  $40030000,$C90FDAA2,$2168C235,$A1000000
  DC.L  $40030000,$D5A0D84C,$437F4E58,$1FC00000
  DC.L  $40030000,$E231D5F6,$6595DA7B,$21300000
  DC.L  $40030000,$EEC2D3A0,$87AC669F,$A1380000
  DC.L  $40030000,$FB53D14A,$A9C2F2C2,$A0000000
  DC.L  $40040000,$83F2677A,$65ECBF73,$A1C40000
  DC.L  $40040000,$8A3AE64F,$76F80584,$21880000
  DC.L  $40040000,$90836524,$88034B96,$A0B00000
  DC.L  $40040000,$96CBE3F9,$990E91A8,$A1E00000
  DC.L  $40040000,$9D1462CE,$AA19D7B9,$21580000
  DC.L  $40040000,$A35CE1A3,$BB251DCB,$A1100000
  DC.L  $40040000,$A9A56078,$CC3063DD,$A1FC0000
  DC.L  $40040000,$AFEDDF4D,$DD3BA9EE,$21200000
  DC.L  $40040000,$B6365E22,$EE46F000,$A1480000
  DC.L  $40040000,$BC7EDCF7,$FF523611,$21E80000
  DC.L  $40040000,$C2C75BCD,$105D7C23,$20D00000
  DC.L  $40040000,$C90FDAA2,$2168C235,$A1800000

INARG	equ	FP_SCR4

TWOTO63 equ     L_SCR1
ENDFLAG	equ	L_SCR2
N       equ     L_SCR3

	xref	t_frcinx
	xref	t_extdnrm

	xdef	stand
stand:
*--TAN(X) = X FOR DENORMALIZED X

	bra		t_extdnrm

	xdef	stan
stan:
	FMOVE.X		(a0),FP0	...LOAD INPUT

	MOVE.L		(A0),D0
	MOVE.W		4(A0),D0
	ANDI.L		#$7FFFFFFF,D0

	CMPI.L		#$3FD78000,D0		...|X| >= 2**(-40)?
	BGE.B		TANOK1
	BRA.W		TANSM
TANOK1:
	CMPI.L		#$4004BC7E,D0		...|X| < 15 PI?
	BLT.B		TANMAIN
	BRA.W		REDUCEX


TANMAIN:
*--THIS IS THE USUAL CASE, |X| <= 15 PI.
*--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
	FMOVE.X		FP0,FP1
	FMUL.D		TWOBYPI,FP1	...X*2/PI

*--HIDE THE NEXT TWO INSTRUCTIONS
	lea.l		PITBL+$200,a1 ...TABLE OF N*PI/2, N = -32,...,32

*--FP1 IS NOW READY
	FMOVE.L		FP1,D0		...CONVERT TO INTEGER

	ASL.L		#4,D0
	ADDA.L		D0,a1		...ADDRESS N*PIBY2 IN Y1, Y2

	FSUB.X		(a1)+,FP0	...X-Y1
*--HIDE THE NEXT ONE

	FSUB.S		(a1),FP0	...FP0 IS R = (X-Y1)-Y2

	ROR.L		#5,D0
	ANDI.L		#$80000000,D0	...D0 WAS ODD IFF D0 < 0

TANCONT:

	TST.L		D0
	BLT.W		NODD

	FMOVE.X		FP0,FP1
	FMUL.X		FP1,FP1	 	...S = R*R

	FMOVE.D		TANQ4,FP3
	FMOVE.D		TANP3,FP2

	FMUL.X		FP1,FP3	 	...SQ4
	FMUL.X		FP1,FP2	 	...SP3

	FADD.D		TANQ3,FP3	...Q3+SQ4
	FADD.X		TANP2,FP2	...P2+SP3

	FMUL.X		FP1,FP3	 	...S(Q3+SQ4)
	FMUL.X		FP1,FP2	 	...S(P2+SP3)

	FADD.X		TANQ2,FP3	...Q2+S(Q3+SQ4)
	FADD.X		TANP1,FP2	...P1+S(P2+SP3)

	FMUL.X		FP1,FP3	 	...S(Q2+S(Q3+SQ4))
	FMUL.X		FP1,FP2	 	...S(P1+S(P2+SP3))

	FADD.X		TANQ1,FP3	...Q1+S(Q2+S(Q3+SQ4))
	FMUL.X		FP0,FP2	 	...RS(P1+S(P2+SP3))

	FMUL.X		FP3,FP1	 	...S(Q1+S(Q2+S(Q3+SQ4)))
	

	FADD.X		FP2,FP0	 	...R+RS(P1+S(P2+SP3))
	

	FADD.S		#:3F800000,FP1	...1+S(Q1+...)

	FMOVE.L		d1,fpcr		;restore users exceptions
	FDIV.X		FP1,FP0		;last inst - possible exception set

	bra		t_frcinx

NODD:
	FMOVE.X		FP0,FP1
	FMUL.X		FP0,FP0	 	...S = R*R

	FMOVE.D		TANQ4,FP3
	FMOVE.D		TANP3,FP2

	FMUL.X		FP0,FP3	 	...SQ4
	FMUL.X		FP0,FP2	 	...SP3

	FADD.D		TANQ3,FP3	...Q3+SQ4
	FADD.X		TANP2,FP2	...P2+SP3

	FMUL.X		FP0,FP3	 	...S(Q3+SQ4)
	FMUL.X		FP0,FP2	 	...S(P2+SP3)

	FADD.X		TANQ2,FP3	...Q2+S(Q3+SQ4)
	FADD.X		TANP1,FP2	...P1+S(P2+SP3)

	FMUL.X		FP0,FP3	 	...S(Q2+S(Q3+SQ4))
	FMUL.X		FP0,FP2	 	...S(P1+S(P2+SP3))

	FADD.X		TANQ1,FP3	...Q1+S(Q2+S(Q3+SQ4))
	FMUL.X		FP1,FP2	 	...RS(P1+S(P2+SP3))

	FMUL.X		FP3,FP0	 	...S(Q1+S(Q2+S(Q3+SQ4)))
	

	FADD.X		FP2,FP1	 	...R+RS(P1+S(P2+SP3))
	FADD.S		#:3F800000,FP0	...1+S(Q1+...)
	

	FMOVE.X		FP1,-(sp)
	EORI.L		#$80000000,(sp)

	FMOVE.L		d1,fpcr	 	;restore users exceptions
	FDIV.X		(sp)+,FP0	;last inst - possible exception set

	bra		t_frcinx

TANBORS:
*--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
*--IF |X| < 2**(-40), RETURN X OR 1.
	CMPI.L		#$3FFF8000,D0
	BGT.B		REDUCEX

TANSM:

	FMOVE.X		FP0,-(sp)
	FMOVE.L		d1,fpcr		 ;restore users exceptions
	FMOVE.X		(sp)+,FP0	;last inst - posibble exception set

	bra		t_frcinx


REDUCEX:
*--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
*--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
*--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.

	FMOVEM.X	FP2-FP5,-(A7)	...save FP2 through FP5
	MOVE.L		D2,-(A7)
        FMOVE.S         #:00000000,FP1

*--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
*--there is a danger of unwanted overflow in first LOOP iteration.  In this
*--case, reduce argument by one remainder step to make subsequent reduction
*--safe.
	cmpi.l	#$7ffeffff,d0		;is argument dangerously large?
	bne.b	LOOP
	move.l	#$7ffe0000,FP_SCR2(a6)	;yes
*					;create 2**16383*PI/2
	move.l	#$c90fdaa2,FP_SCR2+4(a6)
	clr.l	FP_SCR2+8(a6)
	ftst.x	fp0			;test sign of argument
	move.l	#$7fdc0000,FP_SCR3(a6)	;create low half of 2**16383*
*					;PI/2 at FP_SCR3
	move.l	#$85a308d3,FP_SCR3+4(a6)
	clr.l   FP_SCR3+8(a6)
	fblt.w	red_neg
	or.w	#$8000,FP_SCR2(a6)	;positive arg
	or.w	#$8000,FP_SCR3(a6)
red_neg:
	fadd.x  FP_SCR2(a6),fp0		;high part of reduction is exact
	fmove.x  fp0,fp1		;save high result in fp1
	fadd.x  FP_SCR3(a6),fp0		;low part of reduction
	fsub.x  fp0,fp1			;determine low component of result
	fadd.x  FP_SCR3(a6),fp1		;fp0/fp1 are reduced argument.

*--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
*--integer quotient will be stored in N
*--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1)

LOOP:
	FMOVE.X		FP0,INARG(a6)	...+-2**K * F, 1 <= F < 2
	MOVE.W		INARG(a6),D0
        MOVE.L          D0,A1		...save a copy of D0
	ANDI.L		#$00007FFF,D0
	SUBI.L		#$00003FFF,D0	...D0 IS K
	CMPI.L		#28,D0
	BLE.B		LASTLOOP
CONTLOOP:
	SUBI.L		#27,D0	 ...D0 IS L := K-27
	CLR.L		ENDFLAG(a6)
	BRA.B		WORK
LASTLOOP:
	CLR.L		D0		...D0 IS L := 0
	MOVE.L		#1,ENDFLAG(a6)

WORK:
*--FIND THE REMAINDER OF (R,r) W.R.T.	2**L * (PI/2). L IS SO CHOSEN
*--THAT	INT( X * (2/PI) / 2**(L) ) < 2**29.

*--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
*--2**L * (PIby2_1), 2**L * (PIby2_2)

	MOVE.L		#$00003FFE,D2	...BIASED EXPO OF 2/PI
	SUB.L		D0,D2		...BIASED EXPO OF 2**(-L)*(2/PI)

	MOVE.L		#$A2F9836E,FP_SCR1+4(a6)
	MOVE.L		#$4E44152A,FP_SCR1+8(a6)
	MOVE.W		D2,FP_SCR1(a6)	...FP_SCR1 is 2**(-L)*(2/PI)

	FMOVE.X		FP0,FP2
	FMUL.X		FP_SCR1(a6),FP2
*--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
*--FLOATING POINT FORMAT, THE TWO FMOVE'S	FMOVE.L FP <--> N
*--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
*--(SIGN(INARG)*2**63	+	FP2) - SIGN(INARG)*2**63 WILL GIVE
*--US THE DESIRED VALUE IN FLOATING POINT.

*--HIDE SIX CYCLES OF INSTRUCTION
        MOVE.L		A1,D2
        SWAP		D2
	ANDI.L		#$80000000,D2
	ORI.L		#$5F000000,D2	...D2 IS SIGN(INARG)*2**63 IN SGL
	MOVE.L		D2,TWOTO63(a6)

	MOVE.L		D0,D2
	ADDI.L		#$00003FFF,D2	...BIASED EXPO OF 2**L * (PI/2)

*--FP2 IS READY
	FADD.S		TWOTO63(a6),FP2	...THE FRACTIONAL PART OF FP1 IS ROUNDED

*--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1  and  2**(L)*Piby2_2
        MOVE.W		D2,FP_SCR2(a6)
	CLR.W           FP_SCR2+2(a6)
	MOVE.L		#$C90FDAA2,FP_SCR2+4(a6)
	CLR.L		FP_SCR2+8(a6)		...FP_SCR2 is  2**(L) * Piby2_1	

*--FP2 IS READY
	FSUB.S		TWOTO63(a6),FP2		...FP2 is N

	ADDI.L		#$00003FDD,D0
        MOVE.W		D0,FP_SCR3(a6)
	CLR.W           FP_SCR3+2(a6)
	MOVE.L		#$85A308D3,FP_SCR3+4(a6)
	CLR.L		FP_SCR3+8(a6)		...FP_SCR3 is 2**(L) * Piby2_2

	MOVE.L		ENDFLAG(a6),D0

*--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
*--P2 = 2**(L) * Piby2_2
	FMOVE.X		FP2,FP4
	FMul.X		FP_SCR2(a6),FP4		...W = N*P1
	FMove.X		FP2,FP5
	FMul.X		FP_SCR3(a6),FP5		...w = N*P2
	FMove.X		FP4,FP3
*--we want P+p = W+w  but  |p| <= half ulp of P
*--Then, we need to compute  A := R-P   and  a := r-p
	FAdd.X		FP5,FP3			...FP3 is P
	FSub.X		FP3,FP4			...W-P

	FSub.X		FP3,FP0			...FP0 is A := R - P
        FAdd.X		FP5,FP4			...FP4 is p = (W-P)+w

	FMove.X		FP0,FP3			...FP3 A
	FSub.X		FP4,FP1			...FP1 is a := r - p

*--Now we need to normalize (A,a) to  "new (R,r)" where R+r = A+a but
*--|r| <= half ulp of R.
	FAdd.X		FP1,FP0			...FP0 is R := A+a
*--No need to calculate r if this is the last loop
	TST.L		D0
	BGT.W		RESTORE

*--Need to calculate r
	FSub.X		FP0,FP3			...A-R
	FAdd.X		FP3,FP1			...FP1 is r := (A-R)+a
	BRA.W		LOOP

RESTORE:
        FMOVE.L		FP2,N(a6)
	MOVE.L		(A7)+,D2
	FMOVEM.X	(A7)+,FP2-FP5

	
	MOVE.L		N(a6),D0
        ROR.L		#1,D0


	BRA.W		TANCONT

	end