/* $NetBSD: ralink_eth.c,v 1.19 2019/06/03 06:04:20 msaitoh Exp $ */
/*-
* Copyright (c) 2011 CradlePoint Technology, Inc.
* All rights reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY CRADLEPOINT TECHNOLOGY, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/* ralink_eth.c -- Ralink Ethernet Driver */
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ralink_eth.c,v 1.19 2019/06/03 06:04:20 msaitoh Exp $");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/callout.h>
#include <sys/device.h>
#include <sys/endian.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/intr.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <uvm/uvm_extern.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net/if_vlanvar.h>
#include <net/bpf.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/mii_bitbang.h>
#include <mips/ralink/ralink_var.h>
#include <mips/ralink/ralink_reg.h>
#if 0
#define CPDEBUG /* XXX TMP DEBUG FIXME */
#define RALINK_ETH_DEBUG /* XXX TMP DEBUG FIXME */
#define ENABLE_RALINK_DEBUG_ERROR 1
#define ENABLE_RALINK_DEBUG_MISC 1
#define ENABLE_RALINK_DEBUG_INFO 1
#define ENABLE_RALINK_DEBUG_FORCE 1
#define ENABLE_RALINK_DEBUG_REG 1
#endif
#include <mips/ralink/ralink_debug.h>
/* PDMA RX Descriptor Format */
struct ralink_rx_desc {
uint32_t data_ptr;
uint32_t rxd_info1;
#define RXD_LEN1(x) (((x) >> 0) & 0x3fff)
#define RXD_LAST1 (1 << 14)
#define RXD_LEN0(x) (((x) >> 16) & 0x3fff)
#define RXD_LAST0 (1 << 30)
#define RXD_DDONE (1 << 31)
uint32_t unused;
uint32_t rxd_info2;
#define RXD_FOE(x) (((x) >> 0) & 0x3fff)
#define RXD_FVLD (1 << 14)
#define RXD_INFO(x) (((x) >> 16) & 0xff)
#define RXD_PORT(x) (((x) >> 24) & 0x7)
#define RXD_INFO_CPU (1 << 27)
#define RXD_L4_FAIL (1 << 28)
#define RXD_IP_FAIL (1 << 29)
#define RXD_L4_VLD (1 << 30)
#define RXD_IP_VLD (1 << 31)
};
/* PDMA TX Descriptor Format */
struct ralink_tx_desc {
uint32_t data_ptr0;
uint32_t txd_info1;
#define TXD_LEN1(x) (((x) & 0x3fff) << 0)
#define TXD_LAST1 (1 << 14)
#define TXD_BURST (1 << 15)
#define TXD_LEN0(x) (((x) & 0x3fff) << 16)
#define TXD_LAST0 (1 << 30)
#define TXD_DDONE (1 << 31)
uint32_t data_ptr1;
uint32_t txd_info2;
#define TXD_VIDX(x) (((x) & 0xf) << 0)
#define TXD_VPRI(x) (((x) & 0x7) << 4)
#define TXD_VEN (1 << 7)
#define TXD_SIDX(x) (((x) & 0xf) << 8)
#define TXD_SEN(x) (1 << 13)
#define TXD_QN(x) (((x) & 0x7) << 16)
#define TXD_PN(x) (((x) & 0x7) << 24)
#define TXD_PN_CPU 0
#define TXD_PN_GDMA1 1
#define TXD_PN_GDMA2 2
#define TXD_TCP_EN (1 << 29)
#define TXD_UDP_EN (1 << 30)
#define TXD_IP_EN (1 << 31)
};
/* TODO:
* try to scale number of descriptors swith size of memory
* these numbers may have a significant impact on performance/memory/mbuf usage
*/
#if RTMEMSIZE >= 64
#define RALINK_ETH_NUM_RX_DESC 256
#define RALINK_ETH_NUM_TX_DESC 256
#else
#define RALINK_ETH_NUM_RX_DESC 64
#define RALINK_ETH_NUM_TX_DESC 64
#endif
/* maximum segments per packet */
#define RALINK_ETH_MAX_TX_SEGS 1
/* define a struct for ease of dma memory allocation */
struct ralink_descs {
struct ralink_rx_desc rxdesc[RALINK_ETH_NUM_RX_DESC];
struct ralink_tx_desc txdesc[RALINK_ETH_NUM_TX_DESC];
};
/* Software state for transmit jobs. */
struct ralink_eth_txstate {
struct mbuf *txs_mbuf; /* head of our mbuf chain */
bus_dmamap_t txs_dmamap; /* our DMA map */
int txs_idx; /* the index in txdesc ring that */
/* this state is tracking */
SIMPLEQ_ENTRY(ralink_eth_txstate) txs_q;
};
SIMPLEQ_HEAD(ralink_eth_txsq, ralink_eth_txstate);
/*
* Software state for receive jobs.
*/
struct ralink_eth_rxstate {
struct mbuf *rxs_mbuf; /* head of our mbuf chain */
bus_dmamap_t rxs_dmamap; /* our DMA map */
};
typedef struct ralink_eth_softc {
device_t sc_dev; /* generic device information */
bus_space_tag_t sc_memt; /* bus space tag */
bus_space_handle_t sc_sy_memh; /* handle at SYSCTL_BASE */
bus_space_handle_t sc_fe_memh; /* handle at FRAME_ENGINE_BASE */
bus_space_handle_t sc_sw_memh; /* handle at ETH_SW_BASE */
int sc_sy_size; /* size of Sysctl regs space */
int sc_fe_size; /* size of Frame Engine regs space */
int sc_sw_size; /* size of Ether Switch regs space */
bus_dma_tag_t sc_dmat; /* bus DMA tag */
void *sc_ih; /* interrupt handle */
/* tx/rx dma mapping */
bus_dma_segment_t sc_dseg;
int sc_ndseg;
bus_dmamap_t sc_pdmamap; /* PDMA DMA map */
#define sc_pdma sc_pdmamap->dm_segs[0].ds_addr
struct ralink_descs *sc_descs;
#define sc_rxdesc sc_descs->rxdesc
#define sc_txdesc sc_descs->txdesc
#define RALINK_MIN_BUF 64
char ralink_zero_buf[RALINK_MIN_BUF];
struct ralink_eth_txstate sc_txstate[RALINK_ETH_NUM_TX_DESC];
struct ralink_eth_rxstate sc_rxstate[RALINK_ETH_NUM_RX_DESC];
struct ralink_eth_txsq sc_txfreeq; /* free Tx descsofts */
struct ralink_eth_txsq sc_txdirtyq; /* dirty Tx descsofts */
struct ethercom sc_ethercom; /* ethernet common data */
u_int sc_pending_tx;
/* mii */
struct mii_data sc_mii;
struct callout sc_tick_callout;
struct evcnt sc_evcnt_spurious_intr;
struct evcnt sc_evcnt_rxintr;
struct evcnt sc_evcnt_rxintr_skip_len;
struct evcnt sc_evcnt_rxintr_skip_tag_none;
struct evcnt sc_evcnt_rxintr_skip_tag_inval;
struct evcnt sc_evcnt_rxintr_skip_inact;
struct evcnt sc_evcnt_txintr;
struct evcnt sc_evcnt_input;
struct evcnt sc_evcnt_output;
struct evcnt sc_evcnt_watchdog;
struct evcnt sc_evcnt_wd_reactivate;
struct evcnt sc_evcnt_wd_tx;
struct evcnt sc_evcnt_wd_spurious;
struct evcnt sc_evcnt_add_rxbuf_hdr_fail;
struct evcnt sc_evcnt_add_rxbuf_mcl_fail;
} ralink_eth_softc_t;
/* alignment so the IP header is aligned */
#define RALINK_ETHER_ALIGN 2
/* device functions */
static int ralink_eth_match(device_t, cfdata_t, void *);
static void ralink_eth_attach(device_t, device_t, void *);
static int ralink_eth_detach(device_t, int);
static int ralink_eth_activate(device_t, enum devact);
/* local driver functions */
static void ralink_eth_hw_init(ralink_eth_softc_t *);
static int ralink_eth_intr(void *);
static void ralink_eth_reset(ralink_eth_softc_t *);
static void ralink_eth_rxintr(ralink_eth_softc_t *);
static void ralink_eth_txintr(ralink_eth_softc_t *);
/* partition functions */
static int ralink_eth_enable(ralink_eth_softc_t *);
static void ralink_eth_disable(ralink_eth_softc_t *);
/* ifnet functions */
static int ralink_eth_init(struct ifnet *);
static void ralink_eth_rxdrain(ralink_eth_softc_t *);
static void ralink_eth_stop(struct ifnet *, int);
static int ralink_eth_add_rxbuf(ralink_eth_softc_t *, int);
static void ralink_eth_start(struct ifnet *);
static void ralink_eth_watchdog(struct ifnet *);
static int ralink_eth_ioctl(struct ifnet *, u_long, void *);
/* mii functions */
#if defined(RT3050) || defined(RT3052)
static void ralink_eth_mdio_enable(ralink_eth_softc_t *, bool);
#endif
static void ralink_eth_mii_statchg(struct ifnet *);
static void ralink_eth_mii_tick(void *);
static int ralink_eth_mii_read(device_t, int, int, uint16_t *);
static int ralink_eth_mii_write(device_t, int, int, uint16_t);
CFATTACH_DECL_NEW(reth, sizeof(struct ralink_eth_softc),
ralink_eth_match, ralink_eth_attach, ralink_eth_detach,
ralink_eth_activate);
static inline uint32_t
sy_read(const ralink_eth_softc_t *sc, const bus_size_t off)
{
return bus_space_read_4(sc->sc_memt, sc->sc_sy_memh, off);
}
static inline void
sy_write(const ralink_eth_softc_t *sc, const bus_size_t off, const uint32_t val)
{
bus_space_write_4(sc->sc_memt, sc->sc_sy_memh, off, val);
}
static inline uint32_t
fe_read(const ralink_eth_softc_t *sc, const bus_size_t off)
{
return bus_space_read_4(sc->sc_memt, sc->sc_fe_memh, off);
}
static inline void
fe_write(const ralink_eth_softc_t *sc, const bus_size_t off, const uint32_t val)
{
bus_space_write_4(sc->sc_memt, sc->sc_fe_memh, off, val);
}
static inline uint32_t
sw_read(const ralink_eth_softc_t *sc, const bus_size_t off)
{
return bus_space_read_4(sc->sc_memt, sc->sc_sw_memh, off);
}
static inline void
sw_write(const ralink_eth_softc_t *sc, const bus_size_t off, const uint32_t val)
{
bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, off, val);
}
/*
* ralink_eth_match
*/
int
ralink_eth_match(device_t parent, cfdata_t cf, void *aux)
{
return 1;
}
/*
* ralink_eth_attach
*/
void
ralink_eth_attach(device_t parent, device_t self, void *aux)
{
ralink_eth_softc_t * const sc = device_private(self);
const struct mainbus_attach_args *ma = aux;
struct mii_data *mii = &sc->sc_mii;
int error;
int i;
aprint_naive(": Ralink Ethernet\n");
aprint_normal(": Ralink Ethernet\n");
evcnt_attach_dynamic(&sc->sc_evcnt_spurious_intr, EVCNT_TYPE_INTR, NULL,
device_xname(self), "spurious intr");
evcnt_attach_dynamic(&sc->sc_evcnt_rxintr, EVCNT_TYPE_INTR, NULL,
device_xname(self), "rxintr");
evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_len,
EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
device_xname(self), "rxintr skip: no room for VLAN header");
evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_tag_none,
EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
device_xname(self), "rxintr skip: no VLAN tag");
evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_tag_inval,
EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
device_xname(self), "rxintr skip: invalid VLAN tag");
evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_inact,
EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
device_xname(self), "rxintr skip: partition inactive");
evcnt_attach_dynamic(&sc->sc_evcnt_txintr, EVCNT_TYPE_INTR, NULL,
device_xname(self), "txintr");
evcnt_attach_dynamic(&sc->sc_evcnt_input, EVCNT_TYPE_INTR, NULL,
device_xname(self), "input");
evcnt_attach_dynamic(&sc->sc_evcnt_output, EVCNT_TYPE_INTR, NULL,
device_xname(self), "output");
evcnt_attach_dynamic(&sc->sc_evcnt_watchdog, EVCNT_TYPE_INTR, NULL,
device_xname(self), "watchdog");
evcnt_attach_dynamic(&sc->sc_evcnt_wd_tx,
EVCNT_TYPE_INTR, &sc->sc_evcnt_watchdog,
device_xname(self), "watchdog TX timeout");
evcnt_attach_dynamic(&sc->sc_evcnt_wd_spurious,
EVCNT_TYPE_INTR, &sc->sc_evcnt_watchdog,
device_xname(self), "watchdog spurious");
evcnt_attach_dynamic(&sc->sc_evcnt_wd_reactivate,
EVCNT_TYPE_INTR, &sc->sc_evcnt_watchdog,
device_xname(self), "watchdog reactivate");
evcnt_attach_dynamic(&sc->sc_evcnt_add_rxbuf_hdr_fail,
EVCNT_TYPE_INTR, NULL,
device_xname(self), "add rxbuf hdr fail");
evcnt_attach_dynamic(&sc->sc_evcnt_add_rxbuf_mcl_fail,
EVCNT_TYPE_INTR, NULL,
device_xname(self), "add rxbuf mcl fail");
/*
* In order to obtain unique initial Ethernet address on a host,
* do some randomisation using the current uptime. It's not meant
* for anything but avoiding hard-coding an address.
*/
#ifdef RALINK_ETH_MACADDR
uint8_t enaddr[ETHER_ADDR_LEN];
ether_aton_r(enaddr, sizeof(enaddr), ___STRING(RALINK_ETH_MACADDR));
#else
uint8_t enaddr[ETHER_ADDR_LEN] = { 0x00, 0x30, 0x44, 0x00, 0x00, 0x00 };
#endif
sc->sc_dev = self;
sc->sc_dmat = ma->ma_dmat;
sc->sc_memt = ma->ma_memt;
sc->sc_sy_size = 0x10000;
sc->sc_fe_size = 0x10000;
sc->sc_sw_size = 0x08000;
/*
* map the registers
*
* we map the Sysctl, Frame Engine and Ether Switch registers
* separately so we can use the defined register offsets sanely
*/
if ((error = bus_space_map(sc->sc_memt, RA_SYSCTL_BASE,
sc->sc_sy_size, 0, &sc->sc_sy_memh)) != 0) {
aprint_error_dev(self, "unable to map Sysctl registers, "
"error=%d\n", error);
goto fail_0a;
}
if ((error = bus_space_map(sc->sc_memt, RA_FRAME_ENGINE_BASE,
sc->sc_fe_size, 0, &sc->sc_fe_memh)) != 0) {
aprint_error_dev(self, "unable to map Frame Engine registers, "
"error=%d\n", error);
goto fail_0b;
}
if ((error = bus_space_map(sc->sc_memt, RA_ETH_SW_BASE,
sc->sc_sw_size, 0, &sc->sc_sw_memh)) != 0) {
aprint_error_dev(self, "unable to map Ether Switch registers, "
"error=%d\n", error);
goto fail_0c;
}
/* Allocate desc structures, and create & load the DMA map for them */
if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct ralink_descs),
PAGE_SIZE, 0, &sc->sc_dseg, 1, &sc->sc_ndseg, 0)) != 0) {
aprint_error_dev(self, "unable to allocate transmit descs, "
"error=%d\n", error);
goto fail_1;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_ndseg,
sizeof(struct ralink_descs), (void **)&sc->sc_descs,
BUS_DMA_COHERENT)) != 0) {
aprint_error_dev(self, "unable to map control data, "
"error=%d\n", error);
goto fail_2;
}
if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct ralink_descs),
1, sizeof(struct ralink_descs), 0, 0, &sc->sc_pdmamap)) != 0) {
aprint_error_dev(self, "unable to create control data DMA map, "
"error=%d\n", error);
goto fail_3;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_pdmamap, sc->sc_descs,
sizeof(struct ralink_descs), NULL, 0)) != 0) {
aprint_error_dev(self, "unable to load control data DMA map, "
"error=%d\n", error);
goto fail_4;
}
/* Create the transmit buffer DMA maps. */
for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
RALINK_ETH_MAX_TX_SEGS, MCLBYTES, 0, 0,
&sc->sc_txstate[i].txs_dmamap)) != 0) {
aprint_error_dev(self,
"unable to create tx DMA map %d, error=%d\n",
i, error);
goto fail_5;
}
}
/* Create the receive buffer DMA maps. */
for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, 0, &sc->sc_rxstate[i].rxs_dmamap)) != 0) {
aprint_error_dev(self,
"unable to create rx DMA map %d, error=%d\n",
i, error);
goto fail_6;
}
sc->sc_rxstate[i].rxs_mbuf = NULL;
}
/* this is a zero buffer used for zero'ing out short packets */
memset(sc->ralink_zero_buf, 0, RALINK_MIN_BUF);
/* setup some address in hardware */
fe_write(sc, RA_FE_GDMA1_MAC_LSB,
(enaddr[5] | (enaddr[4] << 8) |
(enaddr[3] << 16) | (enaddr[2] << 24)));
fe_write(sc, RA_FE_GDMA1_MAC_MSB,
(enaddr[1] | (enaddr[0] << 8)));
/*
* iterate through ports
* slickrock must use specific non-linear sequence
* others are linear
*/
struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
/*
* Initialize our media structures.
* This may probe the PHY, if present.
*/
mii->mii_ifp = ifp;
mii->mii_readreg = ralink_eth_mii_read;
mii->mii_writereg = ralink_eth_mii_write;
mii->mii_statchg = ralink_eth_mii_statchg;
sc->sc_ethercom.ec_mii = mii;
ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
mii_attach(sc->sc_dev, mii, ~0, MII_PHY_ANY, MII_OFFSET_ANY,
MIIF_FORCEANEG | MIIF_DOPAUSE | MIIF_NOISOLATE);
if (LIST_EMPTY(&mii->mii_phys)) {
#if 1
ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_1000_T |
IFM_FDX | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE, 0, NULL);
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_1000_T |
IFM_FDX | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE);
#else
ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
#endif
} else {
/* Ensure we mask ok for the switch multiple phy's */
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
}
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = ralink_eth_init;
ifp->if_start = ralink_eth_start;
ifp->if_ioctl = ralink_eth_ioctl;
ifp->if_stop = ralink_eth_stop;
ifp->if_watchdog = ralink_eth_watchdog;
IFQ_SET_READY(&ifp->if_snd);
/* We can support 802.1Q VLAN-sized frames. */
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
/* We support IPV4 CRC Offload */
ifp->if_capabilities |=
(IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx);
/* Attach the interface. */
if_attach(ifp);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, enaddr);
/* init our mii ticker */
callout_init(&sc->sc_tick_callout, 0);
callout_reset(&sc->sc_tick_callout, hz, ralink_eth_mii_tick, sc);
return;
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall through.
*/
fail_6:
for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
if (sc->sc_rxstate[i].rxs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_rxstate[i].rxs_dmamap);
}
fail_5:
for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
if (sc->sc_txstate[i].txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_txstate[i].txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_pdmamap);
fail_4:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_pdmamap);
fail_3:
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
sizeof(struct ralink_descs));
fail_2:
bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_ndseg);
fail_1:
bus_space_unmap(sc->sc_memt, sc->sc_sw_memh, sc->sc_sw_size);
fail_0c:
bus_space_unmap(sc->sc_memt, sc->sc_fe_memh, sc->sc_fe_size);
fail_0b:
bus_space_unmap(sc->sc_memt, sc->sc_sy_memh, sc->sc_fe_size);
fail_0a:
return;
}
/*
* ralink_eth_activate:
*
* Handle device activation/deactivation requests.
*/
int
ralink_eth_activate(device_t self, enum devact act)
{
ralink_eth_softc_t * const sc = device_private(self);
int error = 0;
int s;
s = splnet();
switch (act) {
case DVACT_DEACTIVATE:
if_deactivate(&sc->sc_ethercom.ec_if);
break;
}
splx(s);
return error;
}
/*
* ralink_eth_partition_enable
*/
static int
ralink_eth_enable(ralink_eth_softc_t *sc)
{
RALINK_DEBUG_FUNC_ENTRY();
if (sc->sc_ih != NULL) {
RALINK_DEBUG(RALINK_DEBUG_MISC, "%s() already active",
__func__);
return EALREADY;
}
sc->sc_pending_tx = 0;
int s = splnet();
ralink_eth_hw_init(sc);
sc->sc_ih = ra_intr_establish(RA_IRQ_FENGINE,
ralink_eth_intr, sc, 1);
splx(s);
if (sc->sc_ih == NULL) {
RALINK_DEBUG(RALINK_DEBUG_ERROR,
"%s: unable to establish interrupt\n",
device_xname(sc->sc_dev));
return EIO;
}
return 0;
}
/*
* ralink_eth_partition_disable
*/
static void
ralink_eth_disable(ralink_eth_softc_t *sc)
{
RALINK_DEBUG_FUNC_ENTRY();
int s = splnet();
ralink_eth_rxdrain(sc);
ra_intr_disestablish(sc->sc_ih);
sc->sc_ih = NULL;
/* stop the mii ticker */
callout_stop(&sc->sc_tick_callout);
/* quiesce the block */
ralink_eth_reset(sc);
splx(s);
}
/*
* ralink_eth_detach
*/
static int
ralink_eth_detach(device_t self, int flags)
{
RALINK_DEBUG_FUNC_ENTRY();
ralink_eth_softc_t * const sc = device_private(self);
struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
struct ralink_eth_rxstate *rxs;
struct ralink_eth_txstate *txs;
int i;
ralink_eth_disable(sc);
mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
ether_ifdetach(ifp);
if_detach(ifp);
for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
rxs = &sc->sc_rxstate[i];
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
}
for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
txs = &sc->sc_txstate[i];
if (txs->txs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_pdmamap);
bus_dmamap_destroy(sc->sc_dmat, sc->sc_pdmamap);
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
sizeof(struct ralink_descs));
bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_ndseg);
bus_space_unmap(sc->sc_memt, sc->sc_sw_memh, sc->sc_sw_size);
bus_space_unmap(sc->sc_memt, sc->sc_fe_memh, sc->sc_fe_size);
return 0;
}
/*
* ralink_eth_reset
*/
static void
ralink_eth_reset(ralink_eth_softc_t *sc)
{
RALINK_DEBUG_FUNC_ENTRY();
uint32_t r;
/* Reset the frame engine */
r = sy_read(sc, RA_SYSCTL_RST);
r |= RST_FE;
sy_write(sc, RA_SYSCTL_RST, r);
r ^= RST_FE;
sy_write(sc, RA_SYSCTL_RST, r);
/* Wait until the PDMA is quiescent */
for (;;) {
r = fe_read(sc, RA_FE_PDMA_GLOBAL_CFG);
if (r & FE_PDMA_GLOBAL_CFG_RX_DMA_BUSY) {
aprint_normal_dev(sc->sc_dev, "RX DMA BUSY\n");
continue;
}
if (r & FE_PDMA_GLOBAL_CFG_TX_DMA_BUSY) {
aprint_normal_dev(sc->sc_dev, "TX DMA BUSY\n");
continue;
}
break;
}
}
/*
* ralink_eth_hw_init
*/
static void
ralink_eth_hw_init(ralink_eth_softc_t *sc)
{
RALINK_DEBUG_FUNC_ENTRY();
struct ralink_eth_txstate *txs;
uint32_t r;
int i;
/* reset to a known good state */
ralink_eth_reset(sc);
#if defined(RT3050) || defined(RT3052) || defined(MT7628)
/* Bring the switch to a sane default state (from linux driver) */
bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_SGC2,
0x00000000);
bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PFC1,
0x00405555); /* check VLAN tag on port forward */
bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_VLANI0,
0x00002001);
bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PVIDC0,
0x00001002);
bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PVIDC1,
0x00001001);
bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PVIDC2,
0x00001001);
#if defined(MT7628)
bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_VMSC0,
0xffffffff);
bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_POC0,
0x10007f7f);
bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_POC2,
0x00007f7f);
bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_FTC2,
0x0002500c);
#else
bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_VMSC0,
0xffff417e);
bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_POC0,
0x00007f7f);
bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_POC2,
0x00007f3f);
bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_FTC2,
0x00d6500c);
#endif
bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_SWGC,
0x0008a301); /* hashing algorithm=XOR48 */
/* aging interval=300sec */
bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_SOCPC,
0x02404040);
bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_FPORT,
0x3f502b28); /* Change polling Ext PHY Addr=0x0 */
bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_FPA,
0x00000000);
/* do some mii magic TODO: define these registers/bits */
/* lower down PHY 10Mbps mode power */
/* select local register */
ralink_eth_mii_write(sc->sc_dev, 0, 31, 0x8000);
for (i=0; i < 5; i++) {
/* set TX10 waveform coefficient */
ralink_eth_mii_write(sc->sc_dev, i, 26, 0x1601);
/* set TX100/TX10 AD/DA current bias */
ralink_eth_mii_write(sc->sc_dev, i, 29, 0x7058);
/* set TX100 slew rate control */
ralink_eth_mii_write(sc->sc_dev, i, 30, 0x0018);
}
/* PHY IOT */
/* select global register */
ralink_eth_mii_write(sc->sc_dev, 0, 31, 0x0);
/* tune TP_IDL tail and head waveform */
ralink_eth_mii_write(sc->sc_dev, 0, 22, 0x052f);
/* set TX10 signal amplitude threshold to minimum */
ralink_eth_mii_write(sc->sc_dev, 0, 17, 0x0fe0);
/* set squelch amplitude to higher threshold */
ralink_eth_mii_write(sc->sc_dev, 0, 18, 0x40ba);
/* longer TP_IDL tail length */
ralink_eth_mii_write(sc->sc_dev, 0, 14, 0x65);
/* select local register */
ralink_eth_mii_write(sc->sc_dev, 0, 31, 0x8000);
#else
/* GE1 + GigSW */
fe_write(sc, RA_FE_MDIO_CFG1,
MDIO_CFG_PHY_ADDR(0x1f) |
MDIO_CFG_BP_EN |
MDIO_CFG_FORCE_CFG |
MDIO_CFG_SPEED(MDIO_CFG_SPEED_1000M) |
MDIO_CFG_FULL_DUPLEX |
MDIO_CFG_FC_TX |
MDIO_CFG_FC_RX |
MDIO_CFG_TX_CLK_MODE(MDIO_CFG_TX_CLK_MODE_3COM));
#endif
/*
* TODO: QOS - RT3052 has 4 TX queues for QOS,
* forgoing for 1 for simplicity
*/
/*
* Allocate DMA accessible memory for TX/RX descriptor rings
*/
/* Initialize the TX queues. */
SIMPLEQ_INIT(&sc->sc_txfreeq);
SIMPLEQ_INIT(&sc->sc_txdirtyq);
/* Initialize the TX descriptor ring. */
memset(sc->sc_txdesc, 0, sizeof(sc->sc_txdesc));
for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
sc->sc_txdesc[i].txd_info1 = TXD_LAST0 | TXD_DDONE;
/* setup the freeq as well */
txs = &sc->sc_txstate[i];
txs->txs_mbuf = NULL;
txs->txs_idx = i;
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/*
* Flush the TX descriptors
* - TODO: can we just access descriptors via KSEG1
* to avoid the flush?
*/
bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
(int)&sc->sc_txdesc - (int)sc->sc_descs, sizeof(sc->sc_txdesc),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Initialize the RX descriptor ring */
memset(sc->sc_rxdesc, 0, sizeof(sc->sc_rxdesc));
for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
if (ralink_eth_add_rxbuf(sc, i)) {
panic("Can't allocate rx mbuf\n");
}
}
/*
* Flush the RX descriptors
* - TODO: can we just access descriptors via KSEG1
* to avoid the flush?
*/
bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
(int)&sc->sc_rxdesc - (int)sc->sc_descs, sizeof(sc->sc_rxdesc),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Clear the PDMA state */
r = fe_read(sc, RA_FE_PDMA_GLOBAL_CFG);
r &= 0xff;
fe_write(sc, RA_FE_PDMA_GLOBAL_CFG, r);
(void) fe_read(sc, RA_FE_PDMA_GLOBAL_CFG);
#if !defined(MT7628)
/* Setup the PDMA VLAN ID's */
fe_write(sc, RA_FE_VLAN_ID_0001, 0x00010000);
fe_write(sc, RA_FE_VLAN_ID_0203, 0x00030002);
fe_write(sc, RA_FE_VLAN_ID_0405, 0x00050004);
fe_write(sc, RA_FE_VLAN_ID_0607, 0x00070006);
fe_write(sc, RA_FE_VLAN_ID_0809, 0x00090008);
fe_write(sc, RA_FE_VLAN_ID_1011, 0x000b000a);
fe_write(sc, RA_FE_VLAN_ID_1213, 0x000d000c);
fe_write(sc, RA_FE_VLAN_ID_1415, 0x000f000e);
#endif
/* Give the TX and TX rings to the chip. */
fe_write(sc, RA_FE_PDMA_TX0_PTR,
htole32(MIPS_KSEG0_TO_PHYS(&sc->sc_txdesc)));
fe_write(sc, RA_FE_PDMA_TX0_COUNT, htole32(RALINK_ETH_NUM_TX_DESC));
fe_write(sc, RA_FE_PDMA_TX0_CPU_IDX, 0);
#if !defined(MT7628)
fe_write(sc, RA_FE_PDMA_RESET_IDX, PDMA_RST_TX0);
#endif
fe_write(sc, RA_FE_PDMA_RX0_PTR,
htole32(MIPS_KSEG0_TO_PHYS(&sc->sc_rxdesc)));
fe_write(sc, RA_FE_PDMA_RX0_COUNT, htole32(RALINK_ETH_NUM_RX_DESC));
fe_write(sc, RA_FE_PDMA_RX0_CPU_IDX,
htole32(RALINK_ETH_NUM_RX_DESC - 1));
#if !defined(MT7628)
fe_write(sc, RA_FE_PDMA_RESET_IDX, PDMA_RST_RX0);
#endif
fe_write(sc, RA_FE_PDMA_RX0_CPU_IDX,
htole32(RALINK_ETH_NUM_RX_DESC - 1));
/* Start PDMA */
fe_write(sc, RA_FE_PDMA_GLOBAL_CFG,
FE_PDMA_GLOBAL_CFG_TX_WB_DDONE |
FE_PDMA_GLOBAL_CFG_RX_DMA_EN |
FE_PDMA_GLOBAL_CFG_TX_DMA_EN |
FE_PDMA_GLOBAL_CFG_BURST_SZ_4);
/* Setup the clock for the Frame Engine */
#if defined(MT7628)
fe_write(sc, RA_FE_SDM_CON, 0x8100);
#else
fe_write(sc, RA_FE_GLOBAL_CFG,
FE_GLOBAL_CFG_EXT_VLAN(0x8100) |
FE_GLOBAL_CFG_US_CLK(RA_BUS_FREQ / 1000000) |
FE_GLOBAL_CFG_L2_SPACE(0x8));
#endif
/* Turn on all interrupts */
#if defined(MT7628)
fe_write(sc, RA_FE_INT_MASK,
RA_FE_INT_RX_DONE_INT1 |
RA_FE_INT_RX_DONE_INT0 |
RA_FE_INT_TX_DONE_INT3 |
RA_FE_INT_TX_DONE_INT2 |
RA_FE_INT_TX_DONE_INT1 |
RA_FE_INT_TX_DONE_INT0);
#else
fe_write(sc, RA_FE_INT_ENABLE,
FE_INT_RX | FE_INT_TX3 | FE_INT_TX2 | FE_INT_TX1 | FE_INT_TX0);
#endif
/*
* Configure GDMA forwarding
* - default all packets to CPU
* - Turn on auto-CRC
*/
#if 0
fe_write(sc, RA_FE_GDMA1_FWD_CFG,
(FE_GDMA_FWD_CFG_DIS_TX_CRC | FE_GDMA_FWD_CFG_DIS_TX_PAD));
#endif
#if !defined(MT7628)
fe_write(sc, RA_FE_GDMA1_FWD_CFG,
FE_GDMA_FWD_CFG_JUMBO_LEN(MCLBYTES/1024) |
FE_GDMA_FWD_CFG_STRIP_RX_CRC |
FE_GDMA_FWD_CFG_IP4_CRC_EN |
FE_GDMA_FWD_CFG_TCP_CRC_EN |
FE_GDMA_FWD_CFG_UDP_CRC_EN);
#endif
/* CDMA also needs CRCs turned on */
#if !defined(MT7628)
r = fe_read(sc, RA_FE_CDMA_CSG_CFG);
r |= (FE_CDMA_CSG_CFG_IP4_CRC_EN | FE_CDMA_CSG_CFG_UDP_CRC_EN |
FE_CDMA_CSG_CFG_TCP_CRC_EN);
fe_write(sc, RA_FE_CDMA_CSG_CFG, r);
#endif
/* Configure Flow Control Thresholds */
#if defined(MT7628)
sw_write(sc, RA_ETH_SW_FCT0,
RA_ETH_SW_FCT0_FC_RLS_TH(0xc8) |
RA_ETH_SW_FCT0_FC_SET_TH(0xa0) |
RA_ETH_SW_FCT0_DROP_RLS_TH(0x78) |
RA_ETH_SW_FCT0_DROP_SET_TH(0x50));
sw_write(sc, RA_ETH_SW_FCT1,
RA_ETH_SW_FCT1_PORT_TH(0x14));
#elif defined(RT3883)
fe_write(sc, RA_FE_PSE_FQ_CFG,
FE_PSE_FQ_MAX_COUNT(0xff) |
FE_PSE_FQ_FC_RELEASE(0x90) |
FE_PSE_FQ_FC_ASSERT(0x80));
#else
fe_write(sc, RA_FE_PSE_FQ_CFG,
FE_PSE_FQ_MAX_COUNT(0x80) |
FE_PSE_FQ_FC_RELEASE(0x50) |
FE_PSE_FQ_FC_ASSERT(0x40));
#endif
#ifdef RALINK_ETH_DEBUG
#ifdef RA_FE_MDIO_CFG1
printf("FE_MDIO_CFG1: 0x%08x\n", fe_read(sc, RA_FE_MDIO_CFG1));
#endif
#ifdef RA_FE_MDIO_CFG2
printf("FE_MDIO_CFG2: 0x%08x\n", fe_read(sc, RA_FE_MDIO_CFG2));
#endif
printf("FE_PDMA_TX0_PTR: %08x\n", fe_read(sc, RA_FE_PDMA_TX0_PTR));
printf("FE_PDMA_TX0_COUNT: %08x\n",
fe_read(sc, RA_FE_PDMA_TX0_COUNT));
printf("FE_PDMA_TX0_CPU_IDX: %08x\n",
fe_read(sc, RA_FE_PDMA_TX0_CPU_IDX));
printf("FE_PDMA_TX0_DMA_IDX: %08x\n",
fe_read(sc, RA_FE_PDMA_TX0_DMA_IDX));
printf("FE_PDMA_RX0_PTR: %08x\n", fe_read(sc, RA_FE_PDMA_RX0_PTR));
printf("FE_PDMA_RX0_COUNT: %08x\n",
fe_read(sc, RA_FE_PDMA_RX0_COUNT));
printf("FE_PDMA_RX0_CPU_IDX: %08x\n",
fe_read(sc, RA_FE_PDMA_RX0_CPU_IDX));
printf("FE_PDMA_RX0_DMA_IDX: %08x\n",
fe_read(sc, RA_FE_PDMA_RX0_DMA_IDX));
printf("FE_PDMA_GLOBAL_CFG: %08x\n",
fe_read(sc, RA_FE_PDMA_GLOBAL_CFG));
#ifdef RA_FE_GLOBAL_CFG
printf("FE_GLOBAL_CFG: %08x\n", fe_read(sc, RA_FE_GLOBAL_CFG));
#endif
#ifdef RA_FE_GDMA1_FWD_CFG
printf("FE_GDMA1_FWD_CFG: %08x\n",
fe_read(sc, RA_FE_GDMA1_FWD_CFG));
#endif
#ifdef RA_FE_CDMA_CSG_CFG
printf("FE_CDMA_CSG_CFG: %08x\n", fe_read(sc, RA_FE_CDMA_CSG_CFG));
#endif
#ifdef RA_FE_PSE_FQ_CFG
printf("FE_PSE_FQ_CFG: %08x\n", fe_read(sc, RA_FE_PSE_FQ_CFG));
#endif
#endif
/* Force PSE Reset to get everything finalized */
#if defined(MT7628)
#else
fe_write(sc, RA_FE_GLOBAL_RESET, FE_GLOBAL_RESET_PSE);
fe_write(sc, RA_FE_GLOBAL_RESET, 0);
#endif
}
/*
* ralink_eth_init
*/
static int
ralink_eth_init(struct ifnet *ifp)
{
RALINK_DEBUG_FUNC_ENTRY();
ralink_eth_softc_t * const sc = ifp->if_softc;
int error;
error = ralink_eth_enable(sc);
if (!error) {
/* Note that the interface is now running. */
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
}
return error;
}
/*
* ralink_eth_rxdrain
*
* Drain the receive queue.
*/
static void
ralink_eth_rxdrain(ralink_eth_softc_t *sc)
{
RALINK_DEBUG_FUNC_ENTRY();
for (int i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
struct ralink_eth_rxstate *rxs = &sc->sc_rxstate[i];
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
}
}
/*
* ralink_eth_stop
*/
static void
ralink_eth_stop(struct ifnet *ifp, int disable)
{
RALINK_DEBUG_FUNC_ENTRY();
ralink_eth_softc_t * const sc = ifp->if_softc;
ralink_eth_disable(sc);
/* Mark the interface down and cancel the watchdog timer. */
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
}
/*
* ralink_eth_add_rxbuf
*/
static int
ralink_eth_add_rxbuf(ralink_eth_softc_t *sc, int idx)
{
RALINK_DEBUG_FUNC_ENTRY();
struct ralink_eth_rxstate * const rxs = &sc->sc_rxstate[idx];
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
printf("MGETHDR failed\n");
sc->sc_evcnt_add_rxbuf_hdr_fail.ev_count++;
return ENOBUFS;
}
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
printf("MCLGET failed\n");
sc->sc_evcnt_add_rxbuf_mcl_fail.ev_count++;
return ENOBUFS;
}
m->m_data = m->m_ext.ext_buf;
rxs->rxs_mbuf = m;
error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, m->m_ext.ext_buf,
m->m_ext.ext_size, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, "
"error=%d\n", idx, error);
panic(__func__); /* XXX */
}
sc->sc_rxdesc[idx].data_ptr = MIPS_KSEG0_TO_PHYS(
rxs->rxs_dmamap->dm_segs[0].ds_addr + RALINK_ETHER_ALIGN);
sc->sc_rxdesc[idx].rxd_info1 = RXD_LAST0;
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
return 0;
}
/*
* ralink_eth_start
*/
static void
ralink_eth_start(struct ifnet *ifp)
{
RALINK_DEBUG_FUNC_ENTRY();
ralink_eth_softc_t * const sc = ifp->if_softc;
struct mbuf *m0, *m = NULL;
struct ralink_eth_txstate *txs;
bus_dmamap_t dmamap;
int tx_cpu_idx;
int error;
int s;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
s = splnet();
tx_cpu_idx = fe_read(sc, RA_FE_PDMA_TX0_CPU_IDX);
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available
* transmit descriptors.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL) {
/* Grab a packet off the queue. */
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
dmamap = txs->txs_dmamap;
if (m0->m_pkthdr.len < RALINK_MIN_BUF) {
int padlen = 64 - m0->m_pkthdr.len;
m_copyback(m0, m0->m_pkthdr.len, padlen,
sc->ralink_zero_buf);
/* TODO : need some checking here */
}
/*
* Do we need to align the buffer
* or does the DMA map load fail?
*/
if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
/* Allocate a new mbuf for re-alignment */
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
aprint_error_dev(sc->sc_dev,
"unable to allocate aligned Tx mbuf\n");
break;
}
MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
aprint_error_dev(sc->sc_dev,
"unable to allocate Tx cluster\n");
m_freem(m);
break;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m,
BUS_DMA_WRITE | BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev,
"unable to load Tx buffer error=%d\n",
error);
m_freem(m);
break;
}
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
/* did we copy the buffer out already? */
if (m != NULL) {
m_freem(m0);
m0 = m;
}
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/* Initialize the transmit descriptor */
sc->sc_txdesc[tx_cpu_idx].data_ptr0 =
MIPS_KSEG0_TO_PHYS(dmamap->dm_segs[0].ds_addr);
sc->sc_txdesc[tx_cpu_idx].txd_info1 =
TXD_LEN0(dmamap->dm_segs[0].ds_len) | TXD_LAST0;
sc->sc_txdesc[tx_cpu_idx].txd_info2 =
TXD_QN(3) | TXD_PN(TXD_PN_GDMA1);
sc->sc_txdesc[tx_cpu_idx].txd_info2 = TXD_QN(3) |
TXD_PN(TXD_PN_GDMA1) | TXD_VEN |
// TXD_VIDX(pt->vlan_id) |
TXD_TCP_EN | TXD_UDP_EN | TXD_IP_EN;
RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n",
tx_cpu_idx, (int)&sc->sc_txdesc[tx_cpu_idx].data_ptr0,
sc->sc_txdesc[tx_cpu_idx].data_ptr0);
RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n",
tx_cpu_idx, (int)&sc->sc_txdesc[tx_cpu_idx].txd_info1,
sc->sc_txdesc[tx_cpu_idx].txd_info1);
RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n",
tx_cpu_idx, (int)&sc->sc_txdesc[tx_cpu_idx].data_ptr1,
sc->sc_txdesc[tx_cpu_idx].data_ptr1);
RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n",
tx_cpu_idx, (int)&sc->sc_txdesc[tx_cpu_idx].txd_info2,
sc->sc_txdesc[tx_cpu_idx].txd_info2);
/* sync the descriptor we're using. */
bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
(int)&sc->sc_txdesc[tx_cpu_idx] - (int)sc->sc_descs,
sizeof(struct ralink_tx_desc),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/*
* Store a pointer to the packet so we can free it later,
* and remember what txdirty will be once the packet is
* done.
*/
txs->txs_mbuf = m0;
sc->sc_pending_tx++;
if (txs->txs_idx != tx_cpu_idx) {
panic("txs_idx doesn't match %d != %d\n",
txs->txs_idx, tx_cpu_idx);
}
SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
/* Pass the packet to any BPF listeners. */
bpf_mtap(ifp, m0, BPF_D_OUT);
/* Set a watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
tx_cpu_idx = (tx_cpu_idx + 1) % RALINK_ETH_NUM_TX_DESC;
/* Write back the tx_cpu_idx */
fe_write(sc, RA_FE_PDMA_TX0_CPU_IDX, tx_cpu_idx);
}
if (txs == NULL) {
/* No more slots left; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
}
splx(s);
}
/*
* ralink_eth_watchdog
*
* Watchdog timer handler.
*/
static void
ralink_eth_watchdog(struct ifnet *ifp)
{
RALINK_DEBUG_FUNC_ENTRY();
ralink_eth_softc_t * const sc = ifp->if_softc;
bool doing_transmit;
sc->sc_evcnt_watchdog.ev_count++;
doing_transmit = !SIMPLEQ_EMPTY(&sc->sc_txdirtyq);
if (doing_transmit) {
RALINK_DEBUG(RALINK_DEBUG_ERROR, "%s: transmit timeout\n",
ifp->if_xname);
ifp->if_oerrors++;
sc->sc_evcnt_wd_tx.ev_count++;
} else {
RALINK_DEBUG(RALINK_DEBUG_ERROR,
"%s: spurious watchog timeout\n", ifp->if_xname);
sc->sc_evcnt_wd_spurious.ev_count++;
return;
}
sc->sc_evcnt_wd_reactivate.ev_count++;
const int s = splnet();
/* deactive the active partitions, retaining the active information */
ralink_eth_disable(sc);
ralink_eth_enable(sc);
splx(s);
/* Try to get more packets going. */
ralink_eth_start(ifp);
}
/*
* ralink_eth_ioctl
*
* Handle control requests from the operator.
*/
static int
ralink_eth_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
RALINK_DEBUG_FUNC_ENTRY();
struct ifdrv * const ifd = (struct ifdrv *) data;
ralink_eth_softc_t * const sc = ifp->if_softc;
int s, error = 0;
RALINK_DEBUG(RALINK_DEBUG_INFO, "ifp: %p cmd: %lu data: %p\n",
ifp, cmd, data);
s = splnet();
switch (cmd) {
case SIOCSDRVSPEC:
switch (ifd->ifd_cmd) {
#if 0
case ETH_SWITCH_CMD_PORT_MODE:
/* len parameter is the mode */
pt->mode = (int) ifd->ifd_len;
ralink_eth_configure_switch(pt->sc_reth);
break;
#endif
default:
error = EINVAL;
}
break;
default:
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING) {
/*
* Multicast list has changed. Set the
* hardware filter accordingly.
*/
RALINK_DEBUG(RALINK_DEBUG_INFO, "TODO!!!");
#if 0
ralink_eth_filter_setup(sc);
#endif
}
error = 0;
}
break;
}
splx(s);
/* Try to get more packets going. */
if (sc->sc_ih != NULL)
ralink_eth_start(ifp);
return error;
}
/*
* ralink_eth_intr
*
*/
static int
ralink_eth_intr(void *arg)
{
RALINK_DEBUG_FUNC_ENTRY();
ralink_eth_softc_t * const sc = arg;
for (u_int n = 0;; n = 1) {
u_int32_t status = fe_read(sc, RA_FE_INT_STATUS);
fe_write(sc, RA_FE_INT_STATUS, ~0);
RALINK_DEBUG(RALINK_DEBUG_REG,"%s() status: 0x%08x\n",
__func__, status);
#if defined(MT7628)
if ((status & (RA_FE_INT_RX_DONE_INT1 | RA_FE_INT_RX_DONE_INT0 |
RA_FE_INT_TX_DONE_INT3 | RA_FE_INT_TX_DONE_INT2 |
RA_FE_INT_TX_DONE_INT1 | RA_FE_INT_TX_DONE_INT0)) == 0) {
if (n == 0)
sc->sc_evcnt_spurious_intr.ev_count++;
return (n != 0);
}
if (status & (RA_FE_INT_RX_DONE_INT1 | RA_FE_INT_RX_DONE_INT0))
ralink_eth_rxintr(sc);
if (status & (RA_FE_INT_TX_DONE_INT3 | RA_FE_INT_TX_DONE_INT2 |
RA_FE_INT_TX_DONE_INT1 | RA_FE_INT_TX_DONE_INT0))
ralink_eth_txintr(sc);
#else
if ((status & (FE_INT_RX | FE_INT_TX0)) == 0) {
if (n == 0)
sc->sc_evcnt_spurious_intr.ev_count++;
return (n != 0);
}
if (status & FE_INT_RX)
ralink_eth_rxintr(sc);
if (status & FE_INT_TX0)
ralink_eth_txintr(sc);
#endif
}
/* Try to get more packets going. */
if_schedule_deferred_start(&sc->sc_ethercom.ec_if);
return 1;
}
/*
* ralink_eth_rxintr
*/
static void
ralink_eth_rxintr(ralink_eth_softc_t *sc)
{
RALINK_DEBUG_FUNC_ENTRY();
struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
struct ralink_eth_rxstate *rxs;
struct mbuf *m;
int len;
int rx_cpu_idx;
KASSERT(curcpu()->ci_cpl >= IPL_NET);
sc->sc_evcnt_rxintr.ev_count++;
rx_cpu_idx = fe_read(sc, RA_FE_PDMA_RX0_CPU_IDX);
for (;;) {
rx_cpu_idx = (rx_cpu_idx + 1) % RALINK_ETH_NUM_RX_DESC;
rxs = &sc->sc_rxstate[rx_cpu_idx];
bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
(int)&sc->sc_rxdesc[rx_cpu_idx] - (int)sc->sc_descs,
sizeof(struct ralink_rx_desc),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n",
rx_cpu_idx, (int)&sc->sc_rxdesc[rx_cpu_idx].data_ptr,
sc->sc_rxdesc[rx_cpu_idx].data_ptr);
RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n",
rx_cpu_idx, (int)&sc->sc_rxdesc[rx_cpu_idx].rxd_info1,
sc->sc_rxdesc[rx_cpu_idx].rxd_info1);
RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n",
rx_cpu_idx, (int)&sc->sc_rxdesc[rx_cpu_idx].unused,
sc->sc_rxdesc[rx_cpu_idx].unused);
RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n",
rx_cpu_idx, (int)&sc->sc_rxdesc[rx_cpu_idx].rxd_info2,
sc->sc_rxdesc[rx_cpu_idx].rxd_info2);
if (!(sc->sc_rxdesc[rx_cpu_idx].rxd_info1 & RXD_DDONE))
break;
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
/*
* No errors; receive the packet.
* Note the chip includes the CRC with every packet.
*/
len = RXD_LEN0(sc->sc_rxdesc[rx_cpu_idx].rxd_info1);
RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) packet rx %d bytes\n",
rx_cpu_idx, len);
/*
* Allocate a new mbuf cluster. If that fails, we are
* out of memory, and must drop the packet and recycle
* the buffer that's already attached to this descriptor.
*/
m = rxs->rxs_mbuf;
if (ralink_eth_add_rxbuf(sc, rx_cpu_idx) != 0)
break;
m->m_data += RALINK_ETHER_ALIGN;
m->m_pkthdr.len = m->m_len = len;
#ifdef RALINK_ETH_DEBUG
{
struct ether_header *eh = mtod(m, struct ether_header *);
printf("rx: eth_dst: %s ", ether_sprintf(eh->ether_dhost));
printf("rx: eth_src: %s type: 0x%04x \n",
ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
printf("0x14: %08x\n", *(volatile unsigned int *)(0xb0110014));
printf("0x98: %08x\n", *(volatile unsigned int *)(0xb0110098));
unsigned char * s = mtod(m, unsigned char *);
for (int j = 0; j < 32; j++)
printf("%02x%c", *(s + j),
(j == 15 || j == 31) ? '\n' : ' ');
}
#endif
/*
* claim the buffer here since we can't do it at
* allocation time due to the SW partitions
*/
MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
/* push it up the inteface */
m_set_rcvif(m, ifp);
#ifdef RALINK_ETH_DEBUG
{
struct ether_header *eh = mtod(m, struct ether_header *);
printf("rx: eth_dst: %s ", ether_sprintf(eh->ether_dhost));
printf("rx: eth_src: %s type: 0x%04x\n",
ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
printf("0x14: %08x\n", *(volatile unsigned int *)(0xb0110014));
printf("0x98: %08x\n", *(volatile unsigned int *)(0xb0110098));
unsigned char * s = mtod(m, unsigned char *);
for (int j = 0; j < 32; j++)
printf("%02x%c", *(s + j),
(j == 15 || j == 31) ? '\n' : ' ');
}
#endif
/*
* XXX: M_CSUM_TCPv4 and M_CSUM_UDPv4 do not currently work when
* using PF's ROUTETO option for load balancing.
*/
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
/* Pass it on. */
sc->sc_evcnt_input.ev_count++;
if_percpuq_enqueue(ifp->if_percpuq, m);
fe_write(sc, RA_FE_PDMA_RX0_CPU_IDX, rx_cpu_idx);
}
}
/*
* ralink_eth_txintr
*/
static void
ralink_eth_txintr(ralink_eth_softc_t *sc)
{
RALINK_DEBUG_FUNC_ENTRY();
struct ralink_eth_txstate *txs;
KASSERT(curcpu()->ci_cpl >= IPL_NET);
sc->sc_evcnt_txintr.ev_count++;
/*
* Go through our Tx list and free mbufs for those
* frames that have been transmitted.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
(int)&sc->sc_txdesc[txs->txs_idx] - (int)sc->sc_descs,
sizeof(struct ralink_tx_desc),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n",
txs->txs_idx, (int)&sc->sc_txdesc[txs->txs_idx].data_ptr0,
sc->sc_txdesc[txs->txs_idx].data_ptr0);
RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n",
txs->txs_idx, (int)&sc->sc_txdesc[txs->txs_idx].txd_info1,
sc->sc_txdesc[txs->txs_idx].txd_info1);
RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n",
txs->txs_idx, (int)&sc->sc_txdesc[txs->txs_idx].data_ptr1,
sc->sc_txdesc[txs->txs_idx].data_ptr1);
RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n",
txs->txs_idx, (int)&sc->sc_txdesc[txs->txs_idx].txd_info2,
sc->sc_txdesc[txs->txs_idx].txd_info2);
/* we're finished if the current tx isn't done */
if (!(sc->sc_txdesc[txs->txs_idx].txd_info1 & TXD_DDONE))
break;
RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) transmitted\n",
txs->txs_idx);
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_opackets++;
sc->sc_evcnt_output.ev_count++;
if (--sc->sc_pending_tx == 0)
ifp->if_timer = 0;
}
}
/*
* ralink_eth_mdio_enable
*/
#if defined(RT3050) || defined(RT3052)
static void
ralink_eth_mdio_enable(ralink_eth_softc_t *sc, bool enable)
{
uint32_t data = sy_read(sc, RA_SYSCTL_GPIOMODE);
if (enable)
data &= ~GPIOMODE_MDIO;
else
data |= GPIOMODE_MDIO;
sy_write(sc, RA_SYSCTL_GPIOMODE, data);
}
#else
#define ralink_eth_mdio_enable(sc, enable)
#endif
/*
* ralink_eth_mii_statchg
*/
static void
ralink_eth_mii_statchg(struct ifnet *ifp)
{
#if 0
ralink_eth_softc_t * const sc = ifp->if_softc;
#endif
}
/*
* ralink_eth_mii_tick
*
* One second timer, used to tick the MIIs.
*/
static void
ralink_eth_mii_tick(void *arg)
{
ralink_eth_softc_t * const sc = arg;
const int s = splnet();
mii_tick(&sc->sc_mii);
splx(s);
callout_reset(&sc->sc_tick_callout, hz, ralink_eth_mii_tick, sc);
}
/*
* ralink_eth_mii_read
*/
static int
ralink_eth_mii_read(device_t self, int phy_addr, int phy_reg, uint16_t *val)
{
ralink_eth_softc_t *sc = device_private(self);
KASSERT(sc != NULL);
#if 0
printf("%s() phy_addr: %d phy_reg: %d\n", __func__, phy_addr, phy_reg);
#endif
#if defined(RT3050) || defined(RT3052) || defined(MT7628)
if (phy_addr > 5)
return -1;
#endif
/* We enable mdio gpio purpose register, and disable it when exit. */
ralink_eth_mdio_enable(sc, true);
/*
* make sure previous read operation is complete
* TODO: timeout (linux uses jiffies to measure 5 seconds)
*/
for (;;) {
/* rd_rdy: read operation is complete */
#if defined(RT3050) || defined(RT3052) || defined(MT7628)
if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_RD_DONE) == 0)
break;
#else
if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0)
break;
#endif
}
#if defined(RT3050) || defined(RT3052) || defined(MT7628)
sw_write(sc, RA_ETH_SW_PCTL0,
PCTL0_RD_CMD | PCTL0_REG(phy_reg) | PCTL0_ADDR(phy_addr));
#else
fe_write(sc, RA_FE_MDIO_ACCESS,
MDIO_ACCESS_PHY_ADDR(phy_addr) | MDIO_ACCESS_REG(phy_reg));
fe_write(sc, RA_FE_MDIO_ACCESS,
MDIO_ACCESS_PHY_ADDR(phy_addr) | MDIO_ACCESS_REG(phy_reg) |
MDIO_ACCESS_TRG);
#endif
/*
* make sure read operation is complete
* TODO: timeout (linux uses jiffies to measure 5 seconds)
*/
for (;;) {
#if defined(RT3050) || defined(RT3052) || defined(MT7628)
if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_RD_DONE) != 0) {
*val = PCTL1_RD_VAL(
sw_read(sc, RA_ETH_SW_PCTL1));
ralink_eth_mdio_enable(sc, false);
return 0;
}
#else
if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0) {
*val = MDIO_ACCESS_DATA(
fe_read(sc, RA_FE_MDIO_ACCESS));
ralink_eth_mdio_enable(sc, false);
return 0;
}
#endif
}
}
/*
* ralink_eth_mii_write
*/
static int
ralink_eth_mii_write(device_t self, int phy_addr, int phy_reg, uint16_t val)
{
ralink_eth_softc_t *sc = device_private(self);
KASSERT(sc != NULL);
#if 0
printf("%s() phy_addr: %d phy_reg: %d val: 0x%04x\n",
__func__, phy_addr, phy_reg, val);
#endif
ralink_eth_mdio_enable(sc, true);
/*
* make sure previous write operation is complete
* TODO: timeout (linux uses jiffies to measure 5 seconds)
*/
for (;;) {
#if defined(RT3050) || defined(RT3052) || defined(MT7628)
if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_RD_DONE) == 0)
break;
#else
if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0)
break;
#endif
}
#if defined(RT3050) || defined(RT3052) || defined(MT7628)
sw_write(sc, RA_ETH_SW_PCTL0,
PCTL0_WR_CMD | PCTL0_WR_VAL(val) | PCTL0_REG(phy_reg) |
PCTL0_ADDR(phy_addr));
#else
fe_write(sc, RA_FE_MDIO_ACCESS,
MDIO_ACCESS_WR | MDIO_ACCESS_PHY_ADDR(phy_addr) |
MDIO_ACCESS_REG(phy_reg) | MDIO_ACCESS_DATA(val));
fe_write(sc, RA_FE_MDIO_ACCESS,
MDIO_ACCESS_WR | MDIO_ACCESS_PHY_ADDR(phy_addr) |
MDIO_ACCESS_REG(phy_reg) | MDIO_ACCESS_DATA(val) |
MDIO_ACCESS_TRG);
#endif
/* make sure write operation is complete */
for (;;) {
#if defined(RT3050) || defined(RT3052) || defined(MT7628)
if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_WR_DONE) != 0) {
ralink_eth_mdio_enable(sc, false);
return 0;
}
#else
if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0) {
ralink_eth_mdio_enable(sc, false);
return 0;
}
#endif
}
}