Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
/*	$NetBSD: booke_pmap.c,v 1.26 2018/09/03 16:29:26 riastradh Exp $	*/
/*-
 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
 *
 * This material is based upon work supported by the Defense Advanced Research
 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
 * Contract No. N66001-09-C-2073.
 * Approved for Public Release, Distribution Unlimited
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#define __PMAP_PRIVATE

#include <sys/cdefs.h>

__KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.26 2018/09/03 16:29:26 riastradh Exp $");

#include <sys/param.h>
#include <sys/kcore.h>
#include <sys/buf.h>
#include <sys/mutex.h>

#include <uvm/uvm.h>

#include <machine/pmap.h>

#if defined(MULTIPROCESSOR)
kmutex_t pmap_tlb_miss_lock;
#endif

PMAP_COUNTER(zeroed_pages, "pages zeroed");
PMAP_COUNTER(copied_pages, "pages copied");

CTASSERT(sizeof(pmap_segtab_t) == NBPG);

void
pmap_procwr(struct proc *p, vaddr_t va, size_t len)
{
	struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
	vsize_t off = va & PAGE_SIZE;

	kpreempt_disable();
	for (const vaddr_t eva = va + len; va < eva; off = 0) {
		const vaddr_t segeva = uimin(va + len, va - off + PAGE_SIZE);
		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
		if (ptep == NULL) {
			va = segeva;
			continue;
		}
		pt_entry_t pt_entry = *ptep;
		if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
			va = segeva;
			continue;
		}
		kpreempt_enable();
		dcache_wb(pte_to_paddr(pt_entry), segeva - va);
		icache_inv(pte_to_paddr(pt_entry), segeva - va);
		kpreempt_disable();
		va = segeva;
	}
	kpreempt_enable();
}

void
pmap_md_page_syncicache(struct vm_page *pg, const kcpuset_t *onproc)
{
	/*
	 * If onproc is empty, we could do a
	 * pmap_page_protect(pg, VM_PROT_NONE) and remove all
	 * mappings of the page and clear its execness.  Then
	 * the next time page is faulted, it will get icache
	 * synched.  But this is easier. :)
	 */
	paddr_t pa = VM_PAGE_TO_PHYS(pg);
	dcache_wb_page(pa);
	icache_inv_page(pa);
}

vaddr_t
pmap_md_direct_map_paddr(paddr_t pa)
{
	return (vaddr_t) pa;
}

bool
pmap_md_direct_mapped_vaddr_p(vaddr_t va)
{
	return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
}

paddr_t
pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
{
	return (paddr_t) va;
}

#ifdef PMAP_MINIMALTLB
static pt_entry_t *
kvtopte(const pmap_segtab_t *stp, vaddr_t va)
{
	pt_entry_t * const ptep = stp->seg_tab[va >> SEGSHIFT];
	if (ptep == NULL)
		return NULL;
	return &ptep[(va & SEGOFSET) >> PAGE_SHIFT];
}

vaddr_t
pmap_kvptefill(vaddr_t sva, vaddr_t eva, pt_entry_t pt_entry)
{
	pmap_segtab_t * const stp = &pmap_kern_segtab;
	KASSERT(sva == trunc_page(sva));
	pt_entry_t *ptep = kvtopte(stp, sva);
	for (; sva < eva; sva += NBPG) {
		*ptep++ = pt_entry ? (sva | pt_entry) : 0;
	}
	return sva;
}
#endif

/*
 *	Bootstrap the system enough to run with virtual memory.
 *	firstaddr is the first unused kseg0 address (not page aligned).
 */
vaddr_t
pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
	phys_ram_seg_t *avail, size_t cnt)
{
	pmap_segtab_t * const stp = &pmap_kern_segtab;

	KASSERT(endkernel == trunc_page(endkernel));

	/* init the lock */
	pmap_tlb_info_init(&pmap_tlb0_info);

#if defined(MULTIPROCESSOR)
	mutex_init(&pmap_tlb_miss_lock, MUTEX_SPIN, IPL_HIGH);
#endif

	/*
	 * Compute the number of pages kmem_arena will have.
	 */
	kmeminit_nkmempages();

	/*
	 * Figure out how many PTE's are necessary to map the kernel.
	 * We also reserve space for kmem_alloc_pageable() for vm_fork().
	 */

	/* Get size of buffer cache and set an upper limit */
	buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
	vsize_t bufsz = buf_memcalc();
	buf_setvalimit(bufsz);

	vsize_t kv_nsegtabs = pmap_round_seg(VM_PHYS_SIZE
	    + (ubc_nwins << ubc_winshift)
	    + bufsz
	    + 16 * NCARGS
	    + pager_map_size
	    + maxproc * USPACE
	    + NBPG * nkmempages) >> SEGSHIFT;

	/*
	 * Initialize `FYI' variables.	Note we're relying on
	 * the fact that BSEARCH sorts the vm_physmem[] array
	 * for us.  Must do this before uvm_pageboot_alloc()
	 * can be called.
	 */
	pmap_limits.avail_start = uvm_physseg_get_start(uvm_physseg_get_first()) << PGSHIFT;
	pmap_limits.avail_end = uvm_physseg_get_end(uvm_physseg_get_last()) << PGSHIFT;
	const size_t max_nsegtabs =
	    (pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
		- pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
	if (kv_nsegtabs >= max_nsegtabs) {
		pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
		kv_nsegtabs = max_nsegtabs;
	} else {
		pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
		    + kv_nsegtabs * NBSEG;
	}

	/*
	 * Now actually allocate the kernel PTE array (must be done
	 * after virtual_end is initialized).
	 */
	const vaddr_t kv_segtabs = avail[0].start;
	KASSERT(kv_segtabs == endkernel);
	KASSERT(avail[0].size >= NBPG * kv_nsegtabs);
	printf(" kv_nsegtabs=%#"PRIxVSIZE, kv_nsegtabs);
	printf(" kv_segtabs=%#"PRIxVADDR, kv_segtabs);
	avail[0].start += NBPG * kv_nsegtabs;
	avail[0].size -= NBPG * kv_nsegtabs;
	endkernel += NBPG * kv_nsegtabs;

	/*
	 * Initialize the kernel's two-level page level.  This only wastes
	 * an extra page for the segment table and allows the user/kernel
	 * access to be common.
	 */
	pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
	pt_entry_t *ptep = (void *)kv_segtabs;
	memset(ptep, 0, NBPG * kv_nsegtabs);
	for (size_t i = 0; i < kv_nsegtabs; i++, ptep += NPTEPG) {
		*ptp++ = ptep;
	}

#if PMAP_MINIMALTLB
	const vsize_t dm_nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
	const vaddr_t dm_segtabs = avail[0].start;
	printf(" dm_nsegtabs=%#"PRIxVSIZE, dm_nsegtabs);
	printf(" dm_segtabs=%#"PRIxVADDR, dm_segtabs);
	KASSERT(dm_segtabs == endkernel);
	KASSERT(avail[0].size >= NBPG * dm_nsegtabs);
	avail[0].start += NBPG * dm_nsegtabs;
	avail[0].size -= NBPG * dm_nsegtabs;
	endkernel += NBPG * dm_nsegtabs;

	ptp = stp->seg_tab;
	ptep = (void *)dm_segtabs;
	memset(ptep, 0, NBPG * dm_nsegtabs);
	for (size_t i = 0; i < dm_nsegtabs; i++, ptp++, ptep += NPTEPG) {
		*ptp = ptep;
	}

	/*
	 */
	extern uint32_t _fdata[], _etext[];
	vaddr_t va;

	/* Now make everything before the kernel inaccessible. */
	va = pmap_kvptefill(NBPG, startkernel, 0);

	/* Kernel text is readonly & executable */
	va = pmap_kvptefill(va, round_page((vaddr_t)_etext),
	    PTE_M | PTE_xR | PTE_xX);

	/* Kernel .rdata is readonly */
	va = pmap_kvptefill(va, trunc_page((vaddr_t)_fdata), PTE_M | PTE_xR);

	/* Kernel .data/.bss + page tables are read-write */
	va = pmap_kvptefill(va, round_page(endkernel), PTE_M | PTE_xR | PTE_xW);

	/* message buffer page table pages are read-write */
	(void) pmap_kvptefill(msgbuf_paddr, msgbuf_paddr+round_page(MSGBUFSIZE),
	    PTE_M | PTE_xR | PTE_xW);
#endif

	for (size_t i = 0; i < cnt; i++) {
		printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
		    atop(avail[i].start),
		    atop(avail[i].start + avail[i].size) - 1,
		    atop(avail[i].start),
		    atop(avail[i].start + avail[i].size) - 1,
		    VM_FREELIST_DEFAULT);
		uvm_page_physload(
		    atop(avail[i].start),
		    atop(avail[i].start + avail[i].size) - 1,
		    atop(avail[i].start),
		    atop(avail[i].start + avail[i].size) - 1,
		    VM_FREELIST_DEFAULT);
	}

	pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);

	/*
	 * Initialize the pools.
	 */
	pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
	    &pool_allocator_nointr, IPL_NONE);
	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
	    &pmap_pv_page_allocator, IPL_NONE);

	tlb_set_asid(0);

	return endkernel;
}

struct vm_page *
pmap_md_alloc_poolpage(int flags)
{
	/*
	 * Any managed page works for us.
	 */
	return uvm_pagealloc(NULL, 0, NULL, flags);
}

vaddr_t
pmap_md_map_poolpage(paddr_t pa, vsize_t size)
{
	const vaddr_t sva = (vaddr_t) pa;
#ifdef PMAP_MINIMALTLB
	const vaddr_t eva = sva + size;
	pmap_kvptefill(sva, eva, PTE_M | PTE_xR | PTE_xW);
#endif
	return sva;
}

void
pmap_md_unmap_poolpage(vaddr_t va, vsize_t size)
{
#ifdef PMAP_MINIMALTLB
	struct pmap * const pm = pmap_kernel();
	const vaddr_t eva = va + size;
	pmap_kvptefill(va, eva, 0);
	for (;va < eva; va += NBPG) {
		pmap_tlb_invalidate_addr(pm, va);
	}
	pmap_update(pm);
#endif
}

void
pmap_zero_page(paddr_t pa)
{
	PMAP_COUNT(zeroed_pages);
	vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
	dcache_zero_page(va);

	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(va))));
	pmap_md_unmap_poolpage(va, NBPG);
}

void
pmap_copy_page(paddr_t src, paddr_t dst)
{
	const size_t line_size = curcpu()->ci_ci.dcache_line_size;
	vaddr_t src_va = pmap_md_map_poolpage(src, NBPG);
	vaddr_t dst_va = pmap_md_map_poolpage(dst, NBPG);
	const vaddr_t end = src_va + PAGE_SIZE;

	PMAP_COUNT(copied_pages);

	while (src_va < end) {
		__asm __volatile(
			"dcbt	%2,%0"	"\n\t"	/* touch next src cacheline */
			"dcba	0,%1"	"\n\t" 	/* don't fetch dst cacheline */
		    :: "b"(src_va), "b"(dst_va), "b"(line_size));
		for (u_int i = 0;
		     i < line_size;
		     src_va += 32, dst_va += 32, i += 32) {
			register_t tmp;
			__asm __volatile(
				"mr	%[tmp],31"	"\n\t"
				"lmw	24,0(%[src])"	"\n\t"
				"stmw	24,0(%[dst])"	"\n\t"
				"mr	31,%[tmp]"	"\n\t"
			    : [tmp] "=&r"(tmp)
			    : [src] "b"(src_va), [dst] "b"(dst_va)
			    : "r24", "r25", "r26", "r27",
			      "r28", "r29", "r30", "memory");
		}
	}
	pmap_md_unmap_poolpage(src_va, NBPG);
	pmap_md_unmap_poolpage(dst_va, NBPG);

	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst))));
}

void
pmap_md_init(void)
{

	/* nothing for now */
}

bool
pmap_md_io_vaddr_p(vaddr_t va)
{
	return va >= pmap_limits.avail_end
	    && !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
}

bool
pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
{
	pmap_t pm = ctx;
        struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);

	if (asid != pai->pai_asid)
		return true;

	const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
	KASSERT(ptep != NULL);
	pt_entry_t xpte = *ptep;
	xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
	xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);

	KASSERTMSG(pte == xpte,
	    "pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
	    pm, va, asid, pte, xpte, *ptep);

	return true;
}

#ifdef MULTIPROCESSOR
void
pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
{
	/* nothing */
}

void
pmap_md_tlb_miss_lock_enter(void)
{

	mutex_spin_enter(&pmap_tlb_miss_lock);
}

void
pmap_md_tlb_miss_lock_exit(void)
{

	mutex_spin_exit(&pmap_tlb_miss_lock);
}
#endif /* MULTIPROCESSOR */