Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
/* $NetBSD: wm.c,v 1.2 2011/01/27 17:38:04 phx Exp $ */

/*-
 * Copyright (c) 2007 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Tohru Nishimura.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/param.h>
 
#include <netinet/in.h>
#include <netinet/in_systm.h>
 
#include <lib/libsa/stand.h>
#include <lib/libsa/net.h>

#include <dev/pci/if_wmreg.h>

#include "globals.h"

/*
 * - reverse endian access every CSR.
 * - no vtophys() translation, vaddr_t == paddr_t. 
 * - PIPT writeback cache aware.
 */
#define CSR_READ(l, r)		in32rb((l)->csr+(r))
#define CSR_WRITE(l, r, v) 	out32rb((l)->csr+(r), (v))
#define VTOPHYS(va) 		(uint32_t)(va)
#define DEVTOV(pa) 		(uint32_t)(pa)
#define wbinv(adr, siz)		_wbinv(VTOPHYS(adr), (uint32_t)(siz))
#define inv(adr, siz)		_inv(VTOPHYS(adr), (uint32_t)(siz))
#define DELAY(n)		delay(n)
#define ALLOC(T,A)		(T *)allocaligned(sizeof(T),(A))

struct tdesc {
	uint32_t lo;	/* 31:0 */
	uint32_t hi;	/* 63:32 */
	uint32_t t2;	/* 31:16 command, 15:0 Tx frame length */
	uint32_t t3;	/* 31:16 VTAG, 15:8 opt, 7:0 Tx status */
};
struct rdesc {
	uint32_t lo;	/* 31:0 */
	uint32_t hi;	/* 63:32 */
	uint32_t r2;	/* 31:16 checksum, 15:0 Rx frame length */
	uint32_t r3;	/* 31:16 special, 15:8 errors, 7:0 status */
};
/* T2 command */
#define T2_FLMASK	0xffff		/* 15:0 */
#define T2_DTYP_C	(1U << 20)	/* data descriptor */
#define T2_EOP		(1U << 24)	/* end of packet */
#define T2_IFCS		(1U << 25)	/* insert FCS */
#define T2_RS		(1U << 27)	/* report status */
#define T2_RPS		(1U << 28)	/* report packet sent */
#define T2_DEXT		(1U << 29)	/* descriptor extention */
#define T2_VLE		(1U << 30)	/* VLAN enable */
#define T2_IDE		(1U << 31)	/* interrupt delay enable */
/* T3 status */
#define T3_DD		(1U << 0)	/* 1: Tx has done and vacant */
/* T3 option */
#define T3_IXSM		(1U << 16)	/* generate IP csum */
#define T3_TXSM		(1U << 17)	/* generate TCP/UDP csum */

#define R2_FLMASK	0xffff		/* 15:0 */
/* R3 status */
#define	R3_DD		(1U << 0)	/* 1: Rx frame loaded and available */
#define R3_EOP		(1U << 1)	/* end of packet */
#define R3_IXSM		(1U << 2)	/* ignore checksum indication */
#define R3_VP		(1U << 3)	/* VLAN packet */
#define R3_TCPCS	(1U << 5)	/* TCP csum performed */
#define R3_IPCS		(1U << 6)	/* IP csum performed */
#define R3_PIF		(1U << 7)	/* passed in-exact filter */
/* R3 error status */
#define R3_CE		(1U << 8)	/* CRC error */
#define R3_SE		(1U << 9)	/* symbol error */
#define R3_SEQ		(1U << 10)	/* sequence error */
#define R3_CXE		(1U << 12)	/* carrier extention error */
#define R3_TCPE		(1U << 13)	/* TCP csum error found */
#define R3_IPE		(1U << 14)	/* IP csum error found */
#define R3_RXE		(1U << 15)	/* Rx data error */

#define FRAMESIZE	1536

struct local {
	struct tdesc txd[2];
	struct rdesc rxd[2];
	uint8_t rxstore[2][FRAMESIZE];
	unsigned csr, tx, rx;
	unsigned ctl, tctl, rctl;
	unsigned phy, bmsr, anlpar;
	int sromsft;
};

static int read_srom(struct local *, int);
static unsigned mii_read(struct local *, int, int);
static void mii_write(struct local *, int, int, int);
static void mii_initphy(struct local *);
static void mii_dealan(struct local *, unsigned);

int
wm_match(unsigned tag, void *data)
{
	unsigned v;

	v = pcicfgread(tag, PCI_ID_REG);
	switch (v) {
	case PCI_DEVICE(0x8086, 0x107c):
		return 1;
	}
	return 0;
}

void *
wm_init(unsigned tag, void *data)
{
	unsigned val, fdx;
	struct local *l;
	struct tdesc *txd;
	struct rdesc *rxd;
	uint8_t *en;

	l = ALLOC(struct local, 32); /* desc alignment */
	memset(l, 0, sizeof(struct local));
	l->csr = pcicfgread(tag, 0x10); /* use mem space */

	CSR_WRITE(l, WMREG_TCTL, 0);
	CSR_WRITE(l, WMREG_RCTL, 0);

	mii_initphy(l);

	l->sromsft = 6;
	en = data;
	val = read_srom(l, 0); en[0] = val; en[1] = (val >> 8);
	val = read_srom(l, 1); en[2] = val; en[3] = (val >> 8);
	val = read_srom(l, 2); en[4] = val; en[5] = (val >> 8);

	printf("MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
	    en[0], en[1], en[2], en[3], en[4], en[5]);
	DPRINTF(("PHY %d (%04x.%04x)\n", l->phy,
	    mii_read(l, l->phy, 2), mii_read(l, l->phy, 3)));

	mii_dealan(l, 5);

	/* speed and duplexity are found at 82451 internal GPHY reg 17 */
	val = mii_read(l, l->phy, 0x11);
	fdx = !!(val & 0x0200);
	switch (val & 0xc000) {
	case 0x4000: printf("10Mbps"); break;
	case 0x8000: printf("100Mbps"); break;
	case 0xc000: printf("1000Mbps"); break;
	}
	if (fdx)
		printf("-FDX");
	printf("\n");

	txd = &l->txd[0];
	rxd = &l->rxd[0];
	rxd[0].lo = htole32(VTOPHYS(l->rxstore[0]));
	rxd[0].r2 = 0;
	rxd[0].r3 = 0;
	rxd[1].lo = htole32(VTOPHYS(l->rxstore[1]));
	rxd[1].r2 = 0;
	rxd[0].r3 = 0;
	l->tx = l->rx = 0;

	CSR_WRITE(l, WMREG_TDBAH, 0);
	CSR_WRITE(l, WMREG_TDBAL, VTOPHYS(txd));
	CSR_WRITE(l, WMREG_TDLEN, sizeof(l->txd));
	CSR_WRITE(l, WMREG_TDH, 0);
	CSR_WRITE(l, WMREG_TDT, 0);
	CSR_WRITE(l, WMREG_TIDV, 64);
	CSR_WRITE(l, WMREG_TADV, 128);
	CSR_WRITE(l, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
	    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
	CSR_WRITE(l, WMREG_TQSA_LO, 0);
	CSR_WRITE(l, WMREG_TQSA_HI, 0);

	CSR_WRITE(l, WMREG_RDBAH, 0);
	CSR_WRITE(l, WMREG_RDBAL, VTOPHYS(rxd));
	CSR_WRITE(l, WMREG_RDLEN, sizeof(l->rxd));
	CSR_WRITE(l, WMREG_RDH, 0);
	CSR_WRITE(l, WMREG_RDT, 0);
	CSR_WRITE(l, WMREG_RDTR, 0 | RDTR_FPD);
	CSR_WRITE(l, WMREG_RADV, 128);
	CSR_WRITE(l, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
	    RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));

	CSR_WRITE(l, WMREG_VET, 0);
	CSR_WRITE(l, WMREG_IMC, ~0);
	CSR_WRITE(l, WMREG_IMS, 0);

	l->tctl = TCTL_EN | TCTL_PSP | TCTL_CT(15);
	l->rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2;
	CSR_WRITE(l, WMREG_TCTL, l->tctl);
	CSR_WRITE(l, WMREG_RCTL, l->rctl);

	return l;
}

int
wm_send(void *dev, char *buf, unsigned len)
{
	struct local *l = dev;
	volatile struct tdesc *txd;
	unsigned loop;

	wbinv(buf, len);
	txd = &l->txd[l->tx];
	txd->lo = htole32(VTOPHYS(buf));
	txd->t2 = htole32(T2_EOP|T2_IFCS|T2_RS | (len & T2_FLMASK));
	txd->t3 = 0;
	wbinv(txd, sizeof(struct tdesc));
	CSR_WRITE(l, WMREG_TDT, 0);
	loop = 100;
	do {
		if ((le32toh(txd->t3) & T3_DD) != 0)
			goto done;
		DELAY(10);
		inv(txd, sizeof(struct tdesc));
	} while (--loop > 0);
	printf("xmit failed\n");
	return -1;
  done:
	l->tx ^= 1;
	return len;
}

int
wm_recv(void *dev, char *buf, unsigned maxlen, unsigned timo)
{
	struct local *l = dev;
	volatile struct rdesc *rxd;
	unsigned bound, rxstat, len;
	uint8_t *ptr;

	bound = 1000 * timo;
printf("recving with %u sec. timeout\n", timo);
  again:
	rxd = &l->rxd[l->rx];
	do {
		inv(rxd, sizeof(struct rdesc));
		rxstat = le32toh(rxd->r3);
		if ((rxstat & R3_DD) != 0)
			goto gotone;
		DELAY(1000);	/* 1 milli second */
	} while (--bound > 0);
	errno = 0;
	return -1;
  gotone:
	/* expect this has R3_EOP mark */
	if (rxstat & (R3_CE|R3_SE|R3_SEQ|R3_CXE|R3_RXE)) {
		rxd->r2 = 0;
		rxd->r3 = 0;
		wbinv(rxd, sizeof(struct rdesc));
		CSR_WRITE(l, WMREG_RDT, l->rx);
		l->rx ^= 1;
		goto again;
	}
	len = (rxstat & R2_FLMASK) - 4 /* HASFCS */; 
	if (len > maxlen)
		len = maxlen;
	ptr = l->rxstore[l->rx];
	inv(ptr, len);
	memcpy(buf, ptr, len);
	rxd->r2 = 0;
	rxd->r3 = 0;
	wbinv(rxd, sizeof(struct rdesc));
	CSR_WRITE(l, WMREG_RDT, l->rx);
	l->rx ^= 1;
	return len;
}

/*
 * bare SEEPROM access with bitbang'ing
 */
#define R110	6		/* SEEPROM read op */
#define CS  	(1U << 0)	/* hold chip select */
#define CLK	(1U << 1)	/* clk bit */
#define D1	(1U << 2)	/* bit existence */
#define VV 	(1U << 3)	/* taken 0/1 from SEEPROM */

static int
read_srom(struct local *l, int off)
{
	unsigned data, v, i;

	data = off & 0xff;		/* A5/A7-A0 */
	data |= R110 << l->sromsft;	/* 110 for READ */

	v = CSR_READ(l, WMREG_EECD) & ~(EECD_SK | EECD_DI);
	CSR_WRITE(l, WMREG_EECD, v);
	v |= EECD_CS;			/* hold CS */
	CSR_WRITE(l, WMREG_EECD, v);
	DELAY(2);

	/* instruct R110 op. at off in MSB first order */
	for (i = (1 << (l->sromsft + 2)); i != 0; i >>= 1) {
		if (data & i)
			v |= EECD_DI;
		else
			v &= ~EECD_DI;
		CSR_WRITE(l, WMREG_EECD, v);
		DELAY(2);
		CSR_WRITE(l, WMREG_EECD, v | EECD_SK);
		DELAY(2);
		CSR_WRITE(l, WMREG_EECD, v);
		DELAY(2);
	}
	v &= ~EECD_DI;

	/* read 16bit quantity in MSB first order */
	data = 0;
	for (i = 0; i < 16; i++) {
		CSR_WRITE(l, WMREG_EECD, v | EECD_SK);
		DELAY(2);
		data = (data << 1) | !!(CSR_READ(l, WMREG_EECD) & EECD_DO);
		CSR_WRITE(l, WMREG_EECD, v);
		DELAY(2);
	}
	/* turn off chip select */
	v = CSR_READ(l, WMREG_EECD) & ~EECD_CS;
	CSR_WRITE(l, WMREG_EECD, v);
	DELAY(2);

	return data;
}

#define MREG(v)		((v)<< 16)
#define MPHY(v)		((v)<< 21)

unsigned
mii_read(struct local *l, int phy, int reg)
{
	unsigned data;

	data = (2U << 26) | MPHY(phy) | MREG(reg);
	CSR_WRITE(l, WMREG_MDIC, data);
	do {
		data = CSR_READ(l, WMREG_MDIC);
	} while ((data & (1U << 28)) == 0);
	return data & 0xffff;
}

void
mii_write(struct local *l, int phy, int reg, int val)
{
	unsigned data;

	data = (1U << 26) | MPHY(phy) | MREG(reg) | (val & 0xffff);
	CSR_WRITE(l, WMREG_MDIC, data);
	do {
		data = CSR_READ(l, WMREG_MDIC);
	} while ((data & (1U << 28)) == 0);
}

#define MII_BMCR	0x00	/* Basic mode control register (rw) */
#define  BMCR_RESET	0x8000	/* reset */
#define  BMCR_AUTOEN	0x1000	/* autonegotiation enable */
#define  BMCR_ISO	0x0400	/* isolate */
#define  BMCR_STARTNEG	0x0200	/* restart autonegotiation */
#define MII_BMSR	0x01	/* Basic mode status register (ro) */
#define  BMSR_ACOMP	0x0020	/* Autonegotiation complete */
#define  BMSR_LINK	0x0004	/* Link status */
#define MII_ANAR	0x04	/* Autonegotiation advertisement (rw) */
#define  ANAR_FC	0x0400	/* local device supports PAUSE */
#define  ANAR_TX_FD	0x0100	/* local device supports 100bTx FD */
#define  ANAR_TX	0x0080	/* local device supports 100bTx */
#define  ANAR_10_FD	0x0040	/* local device supports 10bT FD */
#define  ANAR_10	0x0020	/* local device supports 10bT */
#define  ANAR_CSMA	0x0001	/* protocol selector CSMA/CD */
#define MII_ANLPAR	0x05	/* Autonegotiation lnk partner abilities (rw) */
#define MII_GTCR	0x09	/* 1000baseT control */
#define  GANA_1000TFDX	0x0200	/* advertise 1000baseT FDX */
#define  GANA_1000THDX	0x0100	/* advertise 1000baseT HDX */
#define MII_GTSR	0x0a	/* 1000baseT status */
#define  GLPA_1000TFDX	0x0800	/* link partner 1000baseT FDX capable */
#define  GLPA_1000THDX	0x0400	/* link partner 1000baseT HDX capable */
#define  GLPA_ASM_DIR	0x0200	/* link partner asym. pause dir. capable */

static void
mii_initphy(struct local *l)
{
	int phy, ctl, sts, bound;

	for (phy = 0; phy < 32; phy++) {
		ctl = mii_read(l, phy, MII_BMCR);
		sts = mii_read(l, phy, MII_BMSR);
		if (ctl != 0xffff && sts != 0xffff)
			goto found;
	}
	printf("MII: no PHY found\n");
	return;
  found:
	ctl = mii_read(l, phy, MII_BMCR);
	mii_write(l, phy, MII_BMCR, ctl | BMCR_RESET);
	bound = 100;
	do {
		DELAY(10);
		ctl = mii_read(l, phy, MII_BMCR);
		if (ctl == 0xffff) {
			printf("MII: PHY %d has died after reset\n", phy);
			return;
		}
	} while (bound-- > 0 && (ctl & BMCR_RESET));
	if (bound == 0) {
		printf("PHY %d reset failed\n", phy);
	}
	ctl &= ~BMCR_ISO;
	mii_write(l, phy, MII_BMCR, ctl);
	sts = mii_read(l, phy, MII_BMSR) |
	    mii_read(l, phy, MII_BMSR); /* read twice */
	l->phy = phy;
	l->bmsr = sts;
}

void
mii_dealan(struct local *l, unsigned timo)
{
	unsigned anar, gtcr, bound;

	anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA;
	anar |= ANAR_FC;
	gtcr = GANA_1000TFDX | GANA_1000THDX;
	mii_write(l, l->phy, MII_ANAR, anar);
	mii_write(l, l->phy, MII_GTCR, gtcr);
	mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
	l->anlpar = 0;
	bound = getsecs() + timo;
	do {
		l->bmsr = mii_read(l, l->phy, MII_BMSR) |
		   mii_read(l, l->phy, MII_BMSR); /* read twice */
		if ((l->bmsr & BMSR_LINK) && (l->bmsr & BMSR_ACOMP)) {
			l->anlpar = mii_read(l, l->phy, MII_ANLPAR);
			break;
		}
		DELAY(10 * 1000);
	} while (getsecs() < bound);
	return;
}