Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
/* $NetBSD: rkpmic.c,v 1.3.2.1 2020/01/21 10:39:58 martin Exp $ */

/*-
 * Copyright (c) 2018 Jared McNeill <jmcneill@invisible.ca>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rkpmic.c,v 1.3.2.1 2020/01/21 10:39:58 martin Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/conf.h>
#include <sys/bus.h>
#include <sys/kmem.h>

#include <dev/clock_subr.h>

#include <dev/i2c/i2cvar.h>

#include <dev/clk/clk_backend.h>

#include <dev/fdt/fdtvar.h>

#define	SECONDS_REG		0x00
#define	MINUTES_REG		0x01
#define	HOURS_REG		0x02
#define	DAYS_REG		0x03
#define	MONTHS_REG		0x04
#define	YEARS_REG		0x05
#define	WEEKS_REG		0x06

#define	RTC_CTRL_REG		0x10
#define	RTC_CTRL_READSEL	__BIT(7)
#define	RTC_CTRL_GET_TIME	__BIT(6)
#define	RTC_CTRL_SET_32_COUNTER	__BIT(5)
#define	RTC_CTRL_TEST_MODE	__BIT(4)
#define	RTC_CTRL_AMPM_MODE	__BIT(3)
#define	RTC_CTRL_AUTO_COMP	__BIT(2)
#define	RTC_CTRL_ROUND_30S	__BIT(1)
#define	RTC_CTRL_STOP_RTC	__BIT(0)

#define	RTC_INT_REG		0x12
#define	RTC_COMP_LSB_REG	0x13
#define	RTC_COMP_MSB_REG	0x14
#define	CHIP_NAME_REG		0x17
#define	CHIP_VER_REG		0x18

#define	CLK32OUT_REG		0x20
#define	CLK32OUT_CLKOUT2_EN	__BIT(0)

#define	DEVCTRL_REG		0x4b
#define	DEVCTRL_DEV_OFF_RST	__BIT(3)

struct rkpmic_ctrl {
	const char *	name;
	uint8_t		enable_reg;
	uint8_t		enable_mask;
	uint8_t		vsel_reg;
	uint8_t		vsel_mask;
	u_int		base;
	u_int		step;	
	u_int		flags;
#define	F_ENABLE_WRITE_MASK	0x00
};

struct rkpmic_config {
	const char *	name;
	const struct rkpmic_ctrl *ctrl;
	u_int		nctrl;

	u_int		poweroff_reg;
	u_int		poweroff_mask;
};

static const struct rkpmic_ctrl rk805_ctrls[] = {
	/* DCDC */
	{ .name = "DCDC_REG1",	.flags = F_ENABLE_WRITE_MASK,
	  .enable_reg = 0x23,	.enable_mask = __BIT(0),
	  .vsel_reg = 0x2f,	.vsel_mask = __BITS(5,0),
	  .base = 712500,	.step = 12500 },
	{ .name = "DCDC_REG2",	.flags = F_ENABLE_WRITE_MASK,
	  .enable_reg = 0x23,	.enable_mask = __BIT(1),
	  .vsel_reg = 0x33,	.vsel_mask = __BITS(5,0),
	  .base = 712500,	.step = 12500 },
	{ .name = "DCDC_REG3",	.flags = F_ENABLE_WRITE_MASK,
	  .enable_reg = 0x23,	.enable_mask = __BIT(2) },
	{ .name = "DCDC_REG4",	.flags = F_ENABLE_WRITE_MASK,
	  .enable_reg = 0x23,	.enable_mask = __BIT(3),
	  .vsel_reg = 0x38,	.vsel_mask = __BITS(3,0),
	  .base = 800000,	.step = 100000 },

	/* LDO */
	{ .name = "LDO_REG1",	.flags = F_ENABLE_WRITE_MASK,
	  .enable_reg = 0x27,	.enable_mask = __BIT(0),
	  .vsel_reg = 0x3b,	.vsel_mask = __BITS(4,0),
	  .base = 800000,	.step = 100000 },
	{ .name = "LDO_REG2",	.flags = F_ENABLE_WRITE_MASK,
	  .enable_reg = 0x27,	.enable_mask = __BIT(1),
	  .vsel_reg = 0x3d,	.vsel_mask = __BITS(4,0),
	  .base = 800000,	.step = 100000 },
	{ .name = "LDO_REG3",	.flags = F_ENABLE_WRITE_MASK,
	  .enable_reg = 0x27,	.enable_mask = __BIT(2),
	  .vsel_reg = 0x3f,	.vsel_mask = __BITS(4,0),
	  .base = 800000,	.step = 100000 },
};

static const struct rkpmic_config rk805_config = {
	.name = "RK805",
	.ctrl = rk805_ctrls,
	.nctrl = __arraycount(rk805_ctrls),
};

static const struct rkpmic_ctrl rk808_ctrls[] = {
	/* DCDC */
	{ .name = "DCDC_REG1",
	  .enable_reg = 0x23,	.enable_mask = __BIT(0),
	  .vsel_reg = 0x2f,	.vsel_mask = __BITS(5,0),
	  .base = 712500,	.step = 12500 },
	{ .name = "DCDC_REG2",
	  .enable_reg = 0x23,	.enable_mask = __BIT(1),
	  .vsel_reg = 0x33,	.vsel_mask = __BITS(5,0),
	  .base = 712500,	.step = 12500 },
	{ .name = "DCDC_REG3",
	  .enable_reg = 0x23,	.enable_mask = __BIT(2) },
	{ .name = "DCDC_REG4",
	  .enable_reg = 0x23,	.enable_mask = __BIT(3),
	  .vsel_reg = 0x38,	.vsel_mask = __BITS(3,0),
	  .base = 1800000,	.step = 100000 },

	/* LDO */
	{ .name = "LDO_REG1",
	  .enable_reg = 0x24,	.enable_mask = __BIT(0),
	  .vsel_reg = 0x3b,	.vsel_mask = __BITS(4,0),
	  .base = 1800000,	.step = 100000 },
	{ .name = "LDO_REG2",
	  .enable_reg = 0x24,	.enable_mask = __BIT(1),
	  .vsel_reg = 0x3d,	.vsel_mask = __BITS(4,0),
	  .base = 1800000,	.step = 100000 },
	{ .name = "LDO_REG3",
	  .enable_reg = 0x24,	.enable_mask = __BIT(2),
	  .vsel_reg = 0x3f,	.vsel_mask = __BITS(3,0),
	  .base = 800000,	.step = 100000 },
	{ .name = "LDO_REG4",
	  .enable_reg = 0x24,	.enable_mask = __BIT(3),
	  .vsel_reg = 0x41,	.vsel_mask = __BITS(4,0),
	  .base = 1800000,	.step = 100000 },
	{ .name = "LDO_REG5",
	  .enable_reg = 0x24,	.enable_mask = __BIT(4),
	  .vsel_reg = 0x43,	.vsel_mask = __BITS(4,0),
	  .base = 1800000,	.step = 100000 },
	{ .name = "LDO_REG6",
	  .enable_reg = 0x24,	.enable_mask = __BIT(5),
	  .vsel_reg = 0x45,	.vsel_mask = __BITS(4,0),
	  .base = 800000,	.step = 100000 },
	{ .name = "LDO_REG7",
	  .enable_reg = 0x24,	.enable_mask = __BIT(6),
	  .vsel_reg = 0x47,	.vsel_mask = __BITS(4,0),
	  .base = 800000,	.step = 100000 },
	{ .name = "LDO_REG8",
	  .enable_reg = 0x24,	.enable_mask = __BIT(7),
	  .vsel_reg = 0x49,	.vsel_mask = __BITS(4,0),
	  .base = 1800000,	.step = 100000 },

	/* SWITCH */
	{ .name = "SWITCH_REG1",
	  .enable_reg = 0x23,	.enable_mask = __BIT(5) },
	{ .name = "SWITCH_REG2",
	  .enable_reg = 0x23,	.enable_mask = __BIT(6) },
};

static const struct rkpmic_config rk808_config = {
	.name = "RK808",
	.ctrl = rk808_ctrls,
	.nctrl = __arraycount(rk808_ctrls),
	.poweroff_reg = DEVCTRL_REG,
	.poweroff_mask = DEVCTRL_DEV_OFF_RST,
};

struct rkpmic_softc;

struct rkpmic_clk {
	struct clk	base;
};

struct rkpmic_softc {
	device_t	sc_dev;
	i2c_tag_t	sc_i2c;
	i2c_addr_t	sc_addr;
	int		sc_phandle;
	struct todr_chip_handle sc_todr;
	struct rkpmic_config *sc_conf;
	struct clk_domain sc_clkdom;
	struct rkpmic_clk sc_clk[2];
};

struct rkreg_softc {
	device_t	sc_dev;
	struct rkpmic_softc *sc_pmic;
	const struct rkpmic_ctrl *sc_ctrl;
};

struct rkreg_attach_args {
	const struct rkpmic_ctrl *reg_ctrl;
	int		reg_phandle;
};

static const struct device_compatible_entry compat_data[] = {
	{ "rockchip,rk805",	(uintptr_t)&rk805_config },
	{ "rockchip,rk808",	(uintptr_t)&rk808_config },
	{ NULL }
};

static uint8_t
rkpmic_read(struct rkpmic_softc *sc, uint8_t reg, int flags)
{
	uint8_t val = 0;
	int error;

	error = iic_smbus_read_byte(sc->sc_i2c, sc->sc_addr, reg, &val, flags);
	if (error != 0)
		device_printf(sc->sc_dev, "error reading reg %#x: %d\n", reg, error);

	return val;
}

static void
rkpmic_write(struct rkpmic_softc *sc, uint8_t reg, uint8_t val, int flags)
{
	int error;

	error = iic_smbus_write_byte(sc->sc_i2c, sc->sc_addr, reg, val, flags);
	if (error != 0)
		device_printf(sc->sc_dev, "error writing reg %#x: %d\n", reg, error);
}

#define	I2C_READ(sc, reg)	rkpmic_read((sc), (reg), I2C_F_POLL)
#define	I2C_WRITE(sc, reg, val)	rkpmic_write((sc), (reg), (val), I2C_F_POLL)
#define	I2C_LOCK(sc)		iic_acquire_bus((sc)->sc_i2c, I2C_F_POLL)
#define	I2C_UNLOCK(sc)		iic_release_bus((sc)->sc_i2c, I2C_F_POLL)

static int
rkpmic_todr_settime(todr_chip_handle_t ch, struct clock_ymdhms *dt)
{
	struct rkpmic_softc * const sc = ch->cookie;
	uint8_t val;

	if (dt->dt_year < 2000 || dt->dt_year >= 2100) {
		device_printf(sc->sc_dev, "year out of range\n");
		return EINVAL;
	}

	if (I2C_LOCK(sc))
		return EBUSY;

	val = I2C_READ(sc, RTC_CTRL_REG);
	I2C_WRITE(sc, RTC_CTRL_REG, val | RTC_CTRL_STOP_RTC);
	I2C_WRITE(sc, SECONDS_REG, bintobcd(dt->dt_sec));
	I2C_WRITE(sc, MINUTES_REG, bintobcd(dt->dt_min));
	I2C_WRITE(sc, HOURS_REG, bintobcd(dt->dt_hour));
	I2C_WRITE(sc, DAYS_REG, bintobcd(dt->dt_day));
	I2C_WRITE(sc, MONTHS_REG, bintobcd(dt->dt_mon));
	I2C_WRITE(sc, YEARS_REG, bintobcd(dt->dt_year % 100));
	I2C_WRITE(sc, WEEKS_REG, bintobcd(dt->dt_wday == 0 ? 7 : dt->dt_wday));
	I2C_WRITE(sc, RTC_CTRL_REG, val);
	I2C_UNLOCK(sc);

	return 0;
}

static int
rkpmic_todr_gettime(todr_chip_handle_t ch, struct clock_ymdhms *dt)
{
	struct rkpmic_softc * const sc = ch->cookie;
	uint8_t val;

	if (I2C_LOCK(sc))
		return EBUSY;

	val = I2C_READ(sc, RTC_CTRL_REG);
	I2C_WRITE(sc, RTC_CTRL_REG, val | RTC_CTRL_GET_TIME | RTC_CTRL_READSEL);
	delay(1000000 / 32768); /* wait one cycle for shadow regs to latch */
	I2C_WRITE(sc, RTC_CTRL_REG, val | RTC_CTRL_READSEL);
	dt->dt_sec = bcdtobin(I2C_READ(sc, SECONDS_REG));
	dt->dt_min = bcdtobin(I2C_READ(sc, MINUTES_REG));
	dt->dt_hour = bcdtobin(I2C_READ(sc, HOURS_REG));
	dt->dt_day = bcdtobin(I2C_READ(sc, DAYS_REG));
	dt->dt_mon = bcdtobin(I2C_READ(sc, MONTHS_REG));
	dt->dt_year = 2000 + bcdtobin(I2C_READ(sc, YEARS_REG));
	dt->dt_wday = bcdtobin(I2C_READ(sc, WEEKS_REG));
	if (dt->dt_wday == 7)
		dt->dt_wday = 0;
	I2C_WRITE(sc, RTC_CTRL_REG, val);
	I2C_UNLOCK(sc);

	/*
	 * RK808 has a hw bug which makes the 31st of November a valid day.
	 * If we detect the 31st of November we skip ahead one day.
	 * If the system has been turned off during the crossover the clock
	 * will have lost a day. No easy way to detect this. Oh well.
	 */
	if (dt->dt_mon == 11 && dt->dt_day == 31) {
		dt->dt_day--;
		clock_secs_to_ymdhms(clock_ymdhms_to_secs(dt) + 86400, dt);
		rkpmic_todr_settime(ch, dt);
	}

#if 0	
	device_printf(sc->sc_dev, "%04" PRIu64 "-%02u-%02u (%u) %02u:%02u:%02u\n",
	    dt->dt_year, dt->dt_mon, dt->dt_day, dt->dt_wday,
	    dt->dt_hour, dt->dt_min, dt->dt_sec);
#endif

	return 0;
}

static struct clk *
rkpmic_clk_decode(device_t dev, int cc_phandle, const void *data, size_t len)
{
	struct rkpmic_softc * const sc = device_private(dev);

	if (len != 4)
		return NULL;

	const u_int id = be32dec(data);
	if (id >= __arraycount(sc->sc_clk))
		return NULL;

	return &sc->sc_clk[id].base;
}

static const struct fdtbus_clock_controller_func rkpmic_clk_fdt_funcs = {
	.decode = rkpmic_clk_decode
};

static struct clk *
rkpmic_clk_get(void *priv, const char *name)
{
	struct rkpmic_softc * const sc = priv;
	u_int n;

	for (n = 0; n < __arraycount(sc->sc_clk); n++) {
		if (strcmp(name, sc->sc_clk[n].base.name) == 0)
			return &sc->sc_clk[n].base;
	}

	return NULL;
}

static u_int
rkpmic_clk_get_rate(void *priv, struct clk *clk)
{
	return 32768;
}

static int
rkpmic_clk_enable(void *priv, struct clk *clk)
{
	struct rkpmic_softc * const sc = priv;
	uint8_t val;

	if (clk != &sc->sc_clk[1].base)
		return 0;

	I2C_LOCK(sc);
	val = I2C_READ(sc, CLK32OUT_REG);
	val |= CLK32OUT_CLKOUT2_EN;
	I2C_WRITE(sc, CLK32OUT_REG, val);
	I2C_UNLOCK(sc);

	return 0;
}

static int
rkpmic_clk_disable(void *priv, struct clk *clk)
{
	struct rkpmic_softc * const sc = priv;
	uint8_t val;

	if (clk != &sc->sc_clk[1].base)
		return EIO;

	I2C_LOCK(sc);
	val = I2C_READ(sc, CLK32OUT_REG);
	val &= ~CLK32OUT_CLKOUT2_EN;
	I2C_WRITE(sc, CLK32OUT_REG, val);
	I2C_UNLOCK(sc);

	return 0;
}

static const struct clk_funcs rkpmic_clk_funcs = {
	.get = rkpmic_clk_get,
	.get_rate = rkpmic_clk_get_rate,
	.enable = rkpmic_clk_enable,
	.disable = rkpmic_clk_disable,
};

static void
rkpmic_power_poweroff(device_t dev)
{
	struct rkpmic_softc * const sc = device_private(dev);
	uint8_t val;

	delay(1000000);

	I2C_LOCK(sc);
	val = I2C_READ(sc, sc->sc_conf->poweroff_reg);
	val |= sc->sc_conf->poweroff_mask;
	I2C_WRITE(sc, sc->sc_conf->poweroff_reg, val);
	I2C_UNLOCK(sc);
}

static struct fdtbus_power_controller_func rkpmic_power_funcs = {
	.poweroff = rkpmic_power_poweroff,
};

static int
rkpmic_match(device_t parent, cfdata_t match, void *aux)
{
	struct i2c_attach_args *ia = aux;
	int match_result;

	if (iic_use_direct_match(ia, match, compat_data, &match_result))
		return match_result;

	return 0;
}

static void
rkpmic_attach(device_t parent, device_t self, void *aux)
{
	struct rkpmic_softc * const sc = device_private(self);
	struct i2c_attach_args *ia = aux;
	struct rkreg_attach_args raa;
	const struct device_compatible_entry *entry;
	int child, regulators;
	u_int chipid, n;

	iic_compatible_match(ia, compat_data, &entry);

	sc->sc_dev = self;
	sc->sc_i2c = ia->ia_tag;
	sc->sc_addr = ia->ia_addr;
	sc->sc_phandle = ia->ia_cookie;
	sc->sc_conf = (void *)entry->data;

	memset(&sc->sc_todr, 0, sizeof(sc->sc_todr));
	sc->sc_todr.cookie = sc;
	sc->sc_todr.todr_gettime_ymdhms = rkpmic_todr_gettime;
	sc->sc_todr.todr_settime_ymdhms = rkpmic_todr_settime;

	aprint_naive("\n");
	aprint_normal(": %s Power Management and Real Time Clock IC\n", sc->sc_conf->name);

	I2C_LOCK(sc);
	chipid = I2C_READ(sc, CHIP_NAME_REG) << 8;
	chipid |= I2C_READ(sc, CHIP_VER_REG);
	aprint_debug_dev(self, "Chip ID 0x%04x\n", chipid);
	I2C_WRITE(sc, RTC_CTRL_REG, 0x0);
	I2C_WRITE(sc, RTC_INT_REG, 0);
	I2C_WRITE(sc, RTC_COMP_LSB_REG, 0);
	I2C_WRITE(sc, RTC_COMP_MSB_REG, 0);
	I2C_UNLOCK(sc);

	fdtbus_todr_attach(self, sc->sc_phandle, &sc->sc_todr);

	sc->sc_clkdom.name = device_xname(self);
	sc->sc_clkdom.funcs = &rkpmic_clk_funcs;
	sc->sc_clkdom.priv = sc;

	sc->sc_clk[0].base.domain = &sc->sc_clkdom;
	sc->sc_clk[0].base.name = "xin32k";
	clk_attach(&sc->sc_clk[0].base);

	sc->sc_clk[1].base.domain = &sc->sc_clkdom;
	sc->sc_clk[1].base.name = "clkout2";
	clk_attach(&sc->sc_clk[1].base);

	fdtbus_register_clock_controller(self, sc->sc_phandle,
	    &rkpmic_clk_fdt_funcs);

	if (of_hasprop(sc->sc_phandle, "rockchip,system-power-controller") &&
	    sc->sc_conf->poweroff_mask != 0)
		fdtbus_register_power_controller(self, sc->sc_phandle,
		    &rkpmic_power_funcs);

	regulators = of_find_firstchild_byname(sc->sc_phandle, "regulators");
	if (regulators < 0)
		return;

	for (n = 0; n < sc->sc_conf->nctrl; n++) {
		child = of_find_firstchild_byname(regulators, sc->sc_conf->ctrl[n].name);
		if (child < 0)
			continue;
		raa.reg_ctrl = &sc->sc_conf->ctrl[n];
		raa.reg_phandle = child;
		config_found(self, &raa, NULL);
	}
}

static int
rkreg_acquire(device_t dev)
{
	return 0;
}

static void
rkreg_release(device_t dev)
{
}

static int
rkreg_enable(device_t dev, bool enable)
{
	struct rkreg_softc * const sc = device_private(dev);
	const struct rkpmic_ctrl *c = sc->sc_ctrl;
	uint8_t val;

	if (!c->enable_mask)
		return EINVAL;

	I2C_LOCK(sc->sc_pmic);
	if (c->flags & F_ENABLE_WRITE_MASK)
		val |= c->enable_mask << 4;
	else
		val = I2C_READ(sc->sc_pmic, c->enable_reg);
	if (enable)
		val |= c->enable_mask;
	else
		val &= ~c->enable_mask;
	I2C_WRITE(sc->sc_pmic, c->enable_reg, val);
	I2C_UNLOCK(sc->sc_pmic);

	return 0;
}

static int
rkreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
{
	struct rkreg_softc * const sc = device_private(dev);
	const struct rkpmic_ctrl *c = sc->sc_ctrl;
	uint8_t val;
	u_int vsel;

	if (!c->vsel_mask)
		return EINVAL;

	if (min_uvol < c->base)
		return ERANGE;

	vsel = (min_uvol - c->base) / c->step;
	if (vsel > __SHIFTOUT_MASK(c->vsel_mask))
		return ERANGE;

	I2C_LOCK(sc->sc_pmic);
	val = I2C_READ(sc->sc_pmic, c->vsel_reg);
	val &= ~c->vsel_mask;
	val |= __SHIFTIN(vsel, c->vsel_mask);
	I2C_WRITE(sc->sc_pmic, c->vsel_reg, val);
	I2C_UNLOCK(sc->sc_pmic);

	return 0;
}

static int
rkreg_get_voltage(device_t dev, u_int *puvol)
{
	struct rkreg_softc * const sc = device_private(dev);
	const struct rkpmic_ctrl *c = sc->sc_ctrl;
	uint8_t val;

	if (!c->vsel_mask)
		return EINVAL;

	I2C_LOCK(sc->sc_pmic);
	val = I2C_READ(sc->sc_pmic, c->vsel_reg);
	I2C_UNLOCK(sc->sc_pmic);

	*puvol = __SHIFTOUT(val, c->vsel_mask) * c->step + c->base;

	return 0;
}

static struct fdtbus_regulator_controller_func rkreg_funcs = {
	.acquire = rkreg_acquire,
	.release = rkreg_release,
	.enable = rkreg_enable,
	.set_voltage = rkreg_set_voltage,
	.get_voltage = rkreg_get_voltage,
};

static int
rkreg_match(device_t parent, cfdata_t match, void *aux)
{
	return 1;
}

static void
rkreg_attach(device_t parent, device_t self, void *aux)
{
	struct rkreg_softc * const sc = device_private(self);
	struct rkreg_attach_args *raa = aux;
	const int phandle = raa->reg_phandle;
	const char *name;

	sc->sc_dev = self;
	sc->sc_pmic = device_private(parent);
	sc->sc_ctrl = raa->reg_ctrl;

	fdtbus_register_regulator_controller(self, phandle,
	    &rkreg_funcs);

	aprint_naive("\n");
	name = fdtbus_get_string(phandle, "regulator-name");
	if (!name)
		name = fdtbus_get_string(phandle, "name");
	aprint_normal(": %s\n", name);
}

CFATTACH_DECL_NEW(rkpmic, sizeof(struct rkpmic_softc),
    rkpmic_match, rkpmic_attach, NULL, NULL);

CFATTACH_DECL_NEW(rkreg, sizeof(struct rkreg_softc),
    rkreg_match, rkreg_attach, NULL, NULL);