Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
/*	$NetBSD: arn9287.c,v 1.3 2013/10/17 21:24:24 christos Exp $	*/
/*	$OpenBSD: ar9287.c,v 1.17 2012/06/10 21:23:36 kettenis Exp $	*/

/*-
 * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
 * Copyright (c) 2008-2009 Atheros Communications Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

/*
 * Driver for Atheros 802.11a/g/n chipsets.
 * Routines for AR9227 and AR9287 chipsets.
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: arn9287.c,v 1.3 2013/10/17 21:24:24 christos Exp $");

#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/callout.h>
#include <sys/conf.h>
#include <sys/device.h>

#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/intr.h>

#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>

#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>

#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>

#include <dev/ic/athnreg.h>
#include <dev/ic/athnvar.h>

#include <dev/ic/arn5008reg.h>
#include <dev/ic/arn9280reg.h>
#include <dev/ic/arn9287reg.h>

#include <dev/ic/arn5008.h>
#include <dev/ic/arn9280.h>
#include <dev/ic/arn9287.h>

#define Static static

Static void	ar9287_get_pdadcs(struct athn_softc *,
		    struct ieee80211_channel *, int, int, uint8_t, uint8_t *,
		    uint8_t *);
Static const struct ar_spur_chan *
		ar9287_get_spur_chans(struct athn_softc *, int);
Static void	ar9287_init_from_rom(struct athn_softc *,
		    struct ieee80211_channel *, struct ieee80211_channel *);
Static void	ar9287_olpc_get_pdgain(struct athn_softc *,
		    struct ieee80211_channel *, int, int8_t *);
Static void	ar9287_olpc_init(struct athn_softc *);
Static void	ar9287_olpc_temp_compensation(struct athn_softc *);
Static void	ar9287_set_power_calib(struct athn_softc *,
		    struct ieee80211_channel *);
Static void	ar9287_set_txpower(struct athn_softc *,
		    struct ieee80211_channel *, struct ieee80211_channel *);
Static void	ar9287_setup(struct athn_softc *);
Static void	ar9287_swap_rom(struct athn_softc *);

PUBLIC int
ar9287_attach(struct athn_softc *sc)
{

	sc->sc_eep_base = AR9287_EEP_START_LOC;
	sc->sc_eep_size = sizeof(struct ar9287_eeprom);
	sc->sc_def_nf = AR9287_PHY_CCA_MAX_GOOD_VALUE;
	sc->sc_ngpiopins = (sc->sc_flags & ATHN_FLAG_USB) ? 16 : 11;
	sc->sc_led_pin = 8;
	sc->sc_workaround = AR9285_WA_DEFAULT;
	sc->sc_ops.setup = ar9287_setup;
	sc->sc_ops.swap_rom = ar9287_swap_rom;
	sc->sc_ops.init_from_rom = ar9287_init_from_rom;
	sc->sc_ops.set_txpower = ar9287_set_txpower;
	sc->sc_ops.set_synth = ar9280_set_synth;
	sc->sc_ops.spur_mitigate = ar9280_spur_mitigate;
	sc->sc_ops.get_spur_chans = ar9287_get_spur_chans;
	sc->sc_ops.olpc_init = ar9287_olpc_init;
	sc->sc_ops.olpc_temp_compensation = ar9287_olpc_temp_compensation;
	sc->sc_ini = &ar9287_1_1_ini;
	sc->sc_serdes = &ar9280_2_0_serdes;

	return ar5008_attach(sc);
}

Static void
ar9287_setup(struct athn_softc *sc)
{
	const struct ar9287_eeprom *eep = sc->sc_eep;

	/* Determine if open loop power control should be used. */
	if (eep->baseEepHeader.openLoopPwrCntl)
		sc->sc_flags |= ATHN_FLAG_OLPC;

	sc->sc_rx_gain = &ar9287_1_1_rx_gain;
	sc->sc_tx_gain = &ar9287_1_1_tx_gain;
}

Static void
ar9287_swap_rom(struct athn_softc *sc)
{
	struct ar9287_eeprom *eep = sc->sc_eep;
	int i;

	eep->modalHeader.antCtrlCommon =
	    bswap32(eep->modalHeader.antCtrlCommon);

	for (i = 0; i < AR9287_MAX_CHAINS; i++) {
		eep->modalHeader.antCtrlChain[i] =
		    bswap32(eep->modalHeader.antCtrlChain[i]);
	}
	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
		eep->modalHeader.spurChans[i].spurChan =
		    bswap16(eep->modalHeader.spurChans[i].spurChan);
	}
}

Static const struct ar_spur_chan *
ar9287_get_spur_chans(struct athn_softc *sc, int is2ghz)
{
	const struct ar9287_eeprom *eep = sc->sc_eep;

	KASSERT(is2ghz);
	return eep->modalHeader.spurChans;
}

Static void
ar9287_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c,
    struct ieee80211_channel *extc)
{
	const struct ar9287_eeprom *eep = sc->sc_eep;
	const struct ar9287_modal_eep_header *modal = &eep->modalHeader;
	uint32_t reg, offset;
	int i;

	AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon);

	for (i = 0; i < AR9287_MAX_CHAINS; i++) {
		offset = i * 0x1000;

		AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0 + offset,
		    modal->antCtrlChain[i]);

		reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0 + offset);
		reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF,
		    modal->iqCalICh[i]);
		reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF,
		    modal->iqCalQCh[i]);
		AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0 + offset, reg);

		reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset);
		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
		    modal->bswMargin[i]);
		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
		    modal->bswAtten[i]);
		AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg);

		reg = AR_READ(sc, AR_PHY_RXGAIN + offset);
		reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN,
		    modal->rxTxMarginCh[i]);
		reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN,
		    modal->txRxAttenCh[i]);
		AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg);
	}

	reg = AR_READ(sc, AR_PHY_SETTLING);
#ifndef IEEE80211_NO_HT
	if (extc != NULL)
		reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40);
	else
#endif
		reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling);
	AR_WRITE(sc, AR_PHY_SETTLING, reg);

	reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
	reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize);
	AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);

	reg  = SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff);
	reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff);
	reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn);
	reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn);
	AR_WRITE(sc, AR_PHY_RF_CTL4, reg);

	reg = AR_READ(sc, AR_PHY_RF_CTL3);
	reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn);
	AR_WRITE(sc, AR_PHY_RF_CTL3, reg);

	reg = AR_READ(sc, AR_PHY_CCA(0));
	reg = RW(reg, AR9280_PHY_CCA_THRESH62, modal->thresh62);
	AR_WRITE(sc, AR_PHY_CCA(0), reg);

	reg = AR_READ(sc, AR_PHY_EXT_CCA0);
	reg = RW(reg, AR_PHY_EXT_CCA0_THRESH62, modal->thresh62);
	AR_WRITE(sc, AR_PHY_EXT_CCA0, reg);

	reg = AR_READ(sc, AR9287_AN_RF2G3_CH0);
	reg = RW(reg, AR9287_AN_RF2G3_DB1, modal->db1);
	reg = RW(reg, AR9287_AN_RF2G3_DB2, modal->db2);
	reg = RW(reg, AR9287_AN_RF2G3_OB_CCK, modal->ob_cck);
	reg = RW(reg, AR9287_AN_RF2G3_OB_PSK, modal->ob_psk);
	reg = RW(reg, AR9287_AN_RF2G3_OB_QAM, modal->ob_qam);
	reg = RW(reg, AR9287_AN_RF2G3_OB_PAL_OFF, modal->ob_pal_off);
	AR_WRITE(sc, AR9287_AN_RF2G3_CH0, reg);
	AR_WRITE_BARRIER(sc);
	DELAY(100);

	reg = AR_READ(sc, AR9287_AN_RF2G3_CH1);
	reg = RW(reg, AR9287_AN_RF2G3_DB1, modal->db1);
	reg = RW(reg, AR9287_AN_RF2G3_DB2, modal->db2);
	reg = RW(reg, AR9287_AN_RF2G3_OB_CCK, modal->ob_cck);
	reg = RW(reg, AR9287_AN_RF2G3_OB_PSK, modal->ob_psk);
	reg = RW(reg, AR9287_AN_RF2G3_OB_QAM, modal->ob_qam);
	reg = RW(reg, AR9287_AN_RF2G3_OB_PAL_OFF, modal->ob_pal_off);
	AR_WRITE(sc, AR9287_AN_RF2G3_CH1, reg);
	AR_WRITE_BARRIER(sc);
	DELAY(100);

	reg = AR_READ(sc, AR_PHY_RF_CTL2);
	reg = RW(reg, AR_PHY_TX_END_DATA_START, modal->txFrameToDataStart);
	reg = RW(reg, AR_PHY_TX_END_PA_ON, modal->txFrameToPaOn);
	AR_WRITE(sc, AR_PHY_RF_CTL2, reg);

	reg = AR_READ(sc, AR9287_AN_TOP2);
	reg = RW(reg, AR9287_AN_TOP2_XPABIAS_LVL, modal->xpaBiasLvl);
	AR_WRITE(sc, AR9287_AN_TOP2, reg);
	AR_WRITE_BARRIER(sc);
	DELAY(100);
}

Static void
ar9287_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c,
    int chain, int nxpdgains, uint8_t overlap, uint8_t *boundaries,
    uint8_t *pdadcs)
{
	const struct ar9287_eeprom *eep = sc->sc_eep;
	const struct ar9287_cal_data_per_freq *pierdata;
	const uint8_t *pierfreq;
	struct athn_pier lopier, hipier;
	int16_t delta;
	uint8_t fbin;
	int i, lo, hi, npiers;

	pierfreq = eep->calFreqPier2G;
	pierdata = (const struct ar9287_cal_data_per_freq *)
	    eep->calPierData2G[chain];
	npiers = AR9287_NUM_2G_CAL_PIERS;

	/* Find channel in ROM pier table. */
	fbin = athn_chan2fbin(c);
	athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi);

	lopier.fbin = pierfreq[lo];
	hipier.fbin = pierfreq[hi];
	for (i = 0; i < nxpdgains; i++) {
		lopier.pwr[i] = pierdata[lo].pwrPdg[i];
		lopier.vpd[i] = pierdata[lo].vpdPdg[i];
		hipier.pwr[i] = pierdata[lo].pwrPdg[i];
		hipier.vpd[i] = pierdata[lo].vpdPdg[i];
	}
	ar5008_get_pdadcs(sc, fbin, &lopier, &hipier, nxpdgains,
	    AR9287_PD_GAIN_ICEPTS, overlap, boundaries, pdadcs);

	delta = (eep->baseEepHeader.pwrTableOffset -
	    AR_PWR_TABLE_OFFSET_DB) * 2;	/* In half dB. */
	if (delta != 0) {
		/* Shift the PDADC table to start at the new offset. */
		/* XXX Our padding value differs from Linux. */
		for (i = 0; i < AR_NUM_PDADC_VALUES; i++)
			pdadcs[i] = pdadcs[MIN(i + delta,
			    AR_NUM_PDADC_VALUES - 1)];
	}
}

Static void
ar9287_olpc_get_pdgain(struct athn_softc *sc, struct ieee80211_channel *c,
    int chain, int8_t *pwr)
{
	const struct ar9287_eeprom *eep = sc->sc_eep;
	const struct ar_cal_data_per_freq_olpc *pierdata;
	const uint8_t *pierfreq;
	uint8_t fbin;
	int lo, hi, npiers;

	pierfreq = eep->calFreqPier2G;
	pierdata = (const struct ar_cal_data_per_freq_olpc *)
	    eep->calPierData2G[chain];
	npiers = AR9287_NUM_2G_CAL_PIERS;

	/* Find channel in ROM pier table. */
	fbin = athn_chan2fbin(c);
	athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi);
#if 0
	*pwr = athn_interpolate(fbin,
	    pierfreq[lo], pierdata[lo].pwrPdg[0][0],
	    pierfreq[hi], pierdata[hi].pwrPdg[0][0]);
#else
	*pwr = (pierdata[lo].pwrPdg[0][0] + pierdata[hi].pwrPdg[0][0]) / 2;
#endif
}

Static void
ar9287_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c)
{
	const struct ar9287_eeprom *eep = sc->sc_eep;
	uint8_t boundaries[AR_PD_GAINS_IN_MASK];
	uint8_t pdadcs[AR_NUM_PDADC_VALUES];
	uint8_t xpdgains[AR9287_NUM_PD_GAINS];
	int8_t txpower;
	uint8_t overlap;
	uint32_t reg, offset;
	int i, j, nxpdgains;

	if (sc->sc_eep_rev < AR_EEP_MINOR_VER_2) {
		overlap = MS(AR_READ(sc, AR_PHY_TPCRG5),
		    AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
	}
	else
		overlap = eep->modalHeader.pdGainOverlap;

	if (sc->sc_flags & ATHN_FLAG_OLPC) {
		/* XXX not here. */
		sc->sc_pdadc =
		    ((const struct ar_cal_data_per_freq_olpc *)
		     eep->calPierData2G[0])->vpdPdg[0][0];
	}

	nxpdgains = 0;
	memset(xpdgains, 0, sizeof(xpdgains));
	for (i = AR9287_PD_GAINS_IN_MASK - 1; i >= 0; i--) {
		if (nxpdgains >= AR9287_NUM_PD_GAINS)
			break;		/* Can't happen. */
		if (eep->modalHeader.xpdGain & (1 << i))
			xpdgains[nxpdgains++] = i;
	}
	reg = AR_READ(sc, AR_PHY_TPCRG1);
	reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1);
	reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]);
	reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]);
	AR_WRITE(sc, AR_PHY_TPCRG1, reg);
	AR_WRITE_BARRIER(sc);

	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
		if (!(sc->sc_txchainmask & (1 << i)))
			continue;

		offset = i * 0x1000;

		if (sc->sc_flags & ATHN_FLAG_OLPC) {
			ar9287_olpc_get_pdgain(sc, c, i, &txpower);

			reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_0);
			reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
			AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_0, reg);

			reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_1);
			reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
			AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_1, reg);

			/* NB: txpower is in half dB. */
			reg = AR_READ(sc, AR_PHY_CH0_TX_PWRCTRL11 + offset);
			reg = RW(reg, AR_PHY_TX_PWRCTRL_OLPC_PWR, txpower);
			AR_WRITE(sc, AR_PHY_CH0_TX_PWRCTRL11 + offset, reg);

			AR_WRITE_BARRIER(sc);
			continue;	/* That's it for open loop mode. */
		}

		/* Closed loop power control. */
		ar9287_get_pdadcs(sc, c, i, nxpdgains, overlap,
		    boundaries, pdadcs);

		/* Write boundaries. */
		if (i == 0) {
			reg  = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP,
			    overlap);
			reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1,
			    boundaries[0]);
			reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2,
			    boundaries[1]);
			reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3,
			    boundaries[2]);
			reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4,
			    boundaries[3]);
			AR_WRITE(sc, AR_PHY_TPCRG5 + offset, reg);
		}
		/* Write PDADC values. */
		for (j = 0; j < AR_NUM_PDADC_VALUES; j += 4) {
			AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + offset + j,
			    pdadcs[j + 0] <<  0 |
			    pdadcs[j + 1] <<  8 |
			    pdadcs[j + 2] << 16 |
			    pdadcs[j + 3] << 24);
		}
		AR_WRITE_BARRIER(sc);
	}
}

Static void
ar9287_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c,
    struct ieee80211_channel *extc)
{
	const struct ar9287_eeprom *eep = sc->sc_eep;
#ifdef notyet
	const struct ar9287_modal_eep_header *modal = &eep->modalHeader;
#endif
	uint8_t tpow_cck[4], tpow_ofdm[4];
#ifndef IEEE80211_NO_HT
	uint8_t tpow_cck_ext[4], tpow_ofdm_ext[4];
	uint8_t tpow_ht20[8], tpow_ht40[8];
	uint8_t ht40inc;
#endif
	int16_t pwr = 0, power[ATHN_POWER_COUNT];
	int i;

	ar9287_set_power_calib(sc, c);

#ifdef notyet
	/* Compute transmit power reduction due to antenna gain. */
	uint16_t max_ant_gain = MAX(modal->antennaGainCh[0], modal->antennaGainCh[1]);
	/* XXX */
#endif

	/*
	 * Reduce scaled power by number of active chains to get per-chain
	 * transmit power level.
	 */
	if (sc->sc_ntxchains == 2)
		pwr -= AR_PWR_DECREASE_FOR_2_CHAIN;
	if (pwr < 0)
		pwr = 0;

	/* Get CCK target powers. */
	ar5008_get_lg_tpow(sc, c, AR_CTL_11B, eep->calTargetPowerCck,
	    AR9287_NUM_2G_CCK_TARGET_POWERS, tpow_cck);

	/* Get OFDM target powers. */
	ar5008_get_lg_tpow(sc, c, AR_CTL_11G, eep->calTargetPower2G,
	    AR9287_NUM_2G_20_TARGET_POWERS, tpow_ofdm);

#ifndef IEEE80211_NO_HT
	/* Get HT-20 target powers. */
	ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT20, eep->calTargetPower2GHT20,
	    AR9287_NUM_2G_20_TARGET_POWERS, tpow_ht20);

	if (extc != NULL) {
		/* Get HT-40 target powers. */
		ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT40,
		    eep->calTargetPower2GHT40, AR9287_NUM_2G_40_TARGET_POWERS,
		    tpow_ht40);

		/* Get secondary channel CCK target powers. */
		ar5008_get_lg_tpow(sc, extc, AR_CTL_11B,
		    eep->calTargetPowerCck, AR9287_NUM_2G_CCK_TARGET_POWERS,
		    tpow_cck_ext);

		/* Get secondary channel OFDM target powers. */
		ar5008_get_lg_tpow(sc, extc, AR_CTL_11G,
		    eep->calTargetPower2G, AR9287_NUM_2G_20_TARGET_POWERS,
		    tpow_ofdm_ext);
	}
#endif

	memset(power, 0, sizeof(power));
	/* Shuffle target powers accross transmit rates. */
	power[ATHN_POWER_OFDM6   ] =
	power[ATHN_POWER_OFDM9   ] =
	power[ATHN_POWER_OFDM12  ] =
	power[ATHN_POWER_OFDM18  ] =
	power[ATHN_POWER_OFDM24  ] = tpow_ofdm[0];
	power[ATHN_POWER_OFDM36  ] = tpow_ofdm[1];
	power[ATHN_POWER_OFDM48  ] = tpow_ofdm[2];
	power[ATHN_POWER_OFDM54  ] = tpow_ofdm[3];
	power[ATHN_POWER_XR      ] = tpow_ofdm[0];
	power[ATHN_POWER_CCK1_LP ] = tpow_cck[0];
	power[ATHN_POWER_CCK2_LP ] =
	power[ATHN_POWER_CCK2_SP ] = tpow_cck[1];
	power[ATHN_POWER_CCK55_LP] =
	power[ATHN_POWER_CCK55_SP] = tpow_cck[2];
	power[ATHN_POWER_CCK11_LP] =
	power[ATHN_POWER_CCK11_SP] = tpow_cck[3];
#ifndef IEEE80211_NO_HT
	for (i = 0; i < nitems(tpow_ht20); i++)
		power[ATHN_POWER_HT20(i)] = tpow_ht20[i];
	if (extc != NULL) {
		/* Correct PAR difference between HT40 and HT20/Legacy. */
		if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2)
			ht40inc = modal->ht40PowerIncForPdadc;
		else
			ht40inc = AR_HT40_POWER_INC_FOR_PDADC;
		for (i = 0; i < nitems(tpow_ht40); i++)
			power[ATHN_POWER_HT40(i)] = tpow_ht40[i] + ht40inc;
		power[ATHN_POWER_OFDM_DUP] = tpow_ht40[0];
		power[ATHN_POWER_CCK_DUP ] = tpow_ht40[0];
		power[ATHN_POWER_OFDM_EXT] = tpow_ofdm_ext[0];
		if (IEEE80211_IS_CHAN_2GHZ(c))
			power[ATHN_POWER_CCK_EXT] = tpow_cck_ext[0];
	}
#endif

	for (i = 0; i < ATHN_POWER_COUNT; i++) {
		power[i] -= AR_PWR_TABLE_OFFSET_DB * 2;	/* In half dB. */
		if (power[i] > AR_MAX_RATE_POWER)
			power[i] = AR_MAX_RATE_POWER;
	}
	/* Commit transmit power values to hardware. */
	ar5008_write_txpower(sc, power);
}

Static void
ar9287_olpc_init(struct athn_softc *sc)
{
	uint32_t reg;

	AR_SETBITS(sc, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);

	reg = AR_READ(sc, AR9287_AN_TXPC0);
	reg = RW(reg, AR9287_AN_TXPC0_TXPCMODE,
	    AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
	AR_WRITE(sc, AR9287_AN_TXPC0, reg);
	AR_WRITE_BARRIER(sc);
	DELAY(100);
}

Static void
ar9287_olpc_temp_compensation(struct athn_softc *sc)
{
	const struct ar9287_eeprom *eep = sc->sc_eep;
	int8_t pdadc, slope, tcomp;
	uint32_t reg;

	reg = AR_READ(sc, AR_PHY_TX_PWRCTRL4);
	pdadc = MS(reg, AR_PHY_TX_PWRCTRL_PD_AVG_OUT);
	DPRINTFN(DBG_RF, sc, "PD Avg Out=%d\n", pdadc);

	if (sc->sc_pdadc == 0 || pdadc == 0)
		return;	/* No frames transmitted yet. */

	/* Compute Tx gain temperature compensation. */
	if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2)
		slope = eep->baseEepHeader.tempSensSlope;
	else
		slope = 0;
	if (slope != 0)	/* Prevents division by zero. */
		tcomp = ((pdadc - sc->sc_pdadc) * 4) / slope;
	else
		tcomp = 0;
	DPRINTFN(DBG_RF, sc, "OLPC temp compensation=%d\n", tcomp);

	/* Write compensation value for both Tx chains. */
	reg = AR_READ(sc, AR_PHY_CH0_TX_PWRCTRL11);
	reg = RW(reg, AR_PHY_TX_PWRCTRL_OLPC_TEMP_COMP, tcomp);
	AR_WRITE(sc, AR_PHY_CH0_TX_PWRCTRL11, reg);

	reg = AR_READ(sc, AR_PHY_CH1_TX_PWRCTRL11);
	reg = RW(reg, AR_PHY_TX_PWRCTRL_OLPC_TEMP_COMP, tcomp);
	AR_WRITE(sc, AR_PHY_CH1_TX_PWRCTRL11, reg);
	AR_WRITE_BARRIER(sc);
}

PUBLIC void
ar9287_1_3_enable_async_fifo(struct athn_softc *sc)
{

	/* Enable ASYNC FIFO. */
	AR_SETBITS(sc, AR_MAC_PCU_ASYNC_FIFO_REG3,
	    AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
	AR_SETBITS(sc, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
	AR_CLRBITS(sc, AR_MAC_PCU_ASYNC_FIFO_REG3,
	    AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
	AR_SETBITS(sc, AR_MAC_PCU_ASYNC_FIFO_REG3,
	    AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
	AR_WRITE_BARRIER(sc);
}

PUBLIC void
ar9287_1_3_setup_async_fifo(struct athn_softc *sc)
{
	uint32_t reg;

	/*
	 * MAC runs at 117MHz (instead of 88/44MHz) when ASYNC FIFO is
	 * enabled, so the following counters have to be changed.
	 */
	AR_WRITE(sc, AR_D_GBL_IFS_SIFS, AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
	AR_WRITE(sc, AR_D_GBL_IFS_SLOT, AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
	AR_WRITE(sc, AR_D_GBL_IFS_EIFS, AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);

	AR_WRITE(sc, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
	AR_WRITE(sc, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);

	AR_SETBITS(sc, AR_MAC_PCU_LOGIC_ANALYZER,
	    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);

	reg = AR_READ(sc, AR_AHB_MODE);
	reg = RW(reg, AR_AHB_CUSTOM_BURST, AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
	AR_WRITE(sc, AR_AHB_MODE, reg);

	AR_SETBITS(sc, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
	AR_WRITE_BARRIER(sc);
}