Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
/*	$NetBSD: rf_evenodd.c,v 1.22 2019/02/09 03:34:00 christos Exp $	*/
/*
 * Copyright (c) 1995 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Author: Chang-Ming Wu
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

/*****************************************************************************************
 *
 * rf_evenodd.c -- implements EVENODD array architecture
 *
 ****************************************************************************************/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_evenodd.c,v 1.22 2019/02/09 03:34:00 christos Exp $");

#include "rf_archs.h"

#if RF_INCLUDE_EVENODD > 0

#include <dev/raidframe/raidframevar.h>

#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagffrd.h"
#include "rf_dagffwr.h"
#include "rf_dagdegrd.h"
#include "rf_dagdegwr.h"
#include "rf_dagutils.h"
#include "rf_dagfuncs.h"
#include "rf_etimer.h"
#include "rf_general.h"
#include "rf_evenodd.h"
#include "rf_parityscan.h"
#include "rf_utils.h"
#include "rf_map.h"
#include "rf_pq.h"
#include "rf_mcpair.h"
#include "rf_evenodd_dagfuncs.h"
#include "rf_evenodd_dags.h"
#include "rf_engine.h"

typedef struct RF_EvenOddConfigInfo_s {
	RF_RowCol_t **stripeIdentifier;	/* filled in at config time & used by
					 * IdentifyStripe */
}       RF_EvenOddConfigInfo_t;

int
rf_ConfigureEvenOdd(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
		    RF_Config_t *cfgPtr)
{
	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
	RF_EvenOddConfigInfo_t *info;
	RF_RowCol_t i, j, startdisk;

	info = RF_MallocAndAdd(sizeof(*info), raidPtr->cleanupList);
	layoutPtr->layoutSpecificInfo = (void *) info;

	info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol, raidPtr->numCol, raidPtr->cleanupList);
	startdisk = 0;
	for (i = 0; i < raidPtr->numCol; i++) {
		for (j = 0; j < raidPtr->numCol; j++) {
			info->stripeIdentifier[i][j] = (startdisk + j) % raidPtr->numCol;
		}
		if ((startdisk -= 2) < 0)
			startdisk += raidPtr->numCol;
	}

	/* fill in the remaining layout parameters */
	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
	layoutPtr->numDataCol = raidPtr->numCol - 2;	/* ORIG:
							 * layoutPtr->numDataCol
							 * = raidPtr->numCol-1;  */
#if RF_EO_MATRIX_DIM > 17
	if (raidPtr->numCol <= 17) {
		printf("Number of stripe units in a parity stripe is smaller than 17. Please\n");
		printf("define the macro RF_EO_MATRIX_DIM in file rf_evenodd_dagfuncs.h to \n");
		printf("be 17 to increase performance. \n");
		return (EINVAL);
	}
#elif RF_EO_MATRIX_DIM == 17
	if (raidPtr->numCol > 17) {
		printf("Number of stripe units in a parity stripe is bigger than 17. Please\n");
		printf("define the macro RF_EO_MATRIX_DIM in file rf_evenodd_dagfuncs.h to \n");
		printf("be 257 for encoding and decoding functions to work. \n");
		return (EINVAL);
	}
#endif
	layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
	layoutPtr->numParityCol = 2;
	layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
	raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit;

	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;

	return (0);
}

int
rf_GetDefaultNumFloatingReconBuffersEvenOdd(RF_Raid_t *raidPtr)
{
	return (20);
}

RF_HeadSepLimit_t
rf_GetDefaultHeadSepLimitEvenOdd(RF_Raid_t *raidPtr)
{
	return (10);
}

void
rf_IdentifyStripeEvenOdd(RF_Raid_t *raidPtr, RF_RaidAddr_t addr,
			 RF_RowCol_t **diskids)
{
	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
	RF_EvenOddConfigInfo_t *info = (RF_EvenOddConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;

	*diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
}
/* The layout of stripe unit on the disks are:      c0 c1 c2 c3 c4

 						     0  1  2  E  P
						     5  E  P  3  4
						     P  6  7  8  E
	 					    10 11  E  P  9
						     E  P 12 13 14
						     ....

  We use the MapSectorRAID5 to map data information because the routine can be shown to map exactly
  the layout of data stripe unit as shown above although we have 2 redundant information now.
  But for E and P, we use rf_MapEEvenOdd and rf_MapParityEvenOdd which are different method from raid-5.
*/


void
rf_MapParityEvenOdd(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
		    RF_RowCol_t *col,
		    RF_SectorNum_t *diskSector, int remap)
{
	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
	RF_StripeNum_t endSUIDofthisStrip = (SUID / raidPtr->Layout.numDataCol + 1) * raidPtr->Layout.numDataCol - 1;

	*col = (endSUIDofthisStrip + 2) % raidPtr->numCol;
	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit +
	    (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
}

void
rf_MapEEvenOdd(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
	       RF_RowCol_t *col, RF_SectorNum_t *diskSector,
	       int remap)
{
	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
	RF_StripeNum_t endSUIDofthisStrip = (SUID / raidPtr->Layout.numDataCol + 1) * raidPtr->Layout.numDataCol - 1;

	*col = (endSUIDofthisStrip + 1) % raidPtr->numCol;
	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit +
	    (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
}

void
rf_EODagSelect(RF_Raid_t *raidPtr, RF_IoType_t type,
	       RF_AccessStripeMap_t *asmap, RF_VoidFuncPtr *createFunc)
{
	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
	unsigned ndfail = asmap->numDataFailed;
	unsigned npfail = asmap->numParityFailed + asmap->numQFailed;
	unsigned ntfail = npfail + ndfail;

	RF_ASSERT(RF_IO_IS_R_OR_W(type));
	if (ntfail > 2) {
		RF_ERRORMSG("more than two disks failed in a single group!  Aborting I/O operation.\n");
		*createFunc = NULL;
		return;
	}
	/* ok, we can do this I/O */
	if (type == RF_IO_TYPE_READ) {
		switch (ndfail) {
		case 0:
			/* fault free read */
			*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;	/* same as raid 5 */
			break;
		case 1:
			/* lost a single data unit */
			/* two cases: (1) parity is not lost. do a normal raid
			 * 5 reconstruct read. (2) parity is lost. do a
			 * reconstruct read using "e". */
			if (ntfail == 2) {	/* also lost redundancy */
				if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY)
					*createFunc = (RF_VoidFuncPtr) rf_EO_110_CreateReadDAG;
				else
					*createFunc = (RF_VoidFuncPtr) rf_EO_101_CreateReadDAG;
			} else {
				/* P and E are ok. But is there a failure in
				 * some unaccessed data unit? */
				if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
					*createFunc = (RF_VoidFuncPtr) rf_EO_200_CreateReadDAG;
				else
					*createFunc = (RF_VoidFuncPtr) rf_EO_100_CreateReadDAG;
			}
			break;
		case 2:
			/* *createFunc = rf_EO_200_CreateReadDAG; */
			*createFunc = NULL;
			break;
		}
		return;
	}
	/* a write */
	switch (ntfail) {
	case 0:		/* fault free */
		if (rf_suppressLocksAndLargeWrites ||
		    (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) ||
			(asmap->parityInfo->next != NULL) || (asmap->qInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) {

			*createFunc = (RF_VoidFuncPtr) rf_EOCreateSmallWriteDAG;
		} else {
			*createFunc = (RF_VoidFuncPtr) rf_EOCreateLargeWriteDAG;
		}
		break;

	case 1:		/* single disk fault */
		if (npfail == 1) {
			RF_ASSERT((asmap->failedPDAs[0]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q));
			if (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q) {	/* q died, treat like
										 * normal mode raid5
										 * write. */
				if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
				    || (asmap->parityInfo->next != NULL) || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
					*createFunc = (RF_VoidFuncPtr) rf_EO_001_CreateSmallWriteDAG;
				else
					*createFunc = (RF_VoidFuncPtr) rf_EO_001_CreateLargeWriteDAG;
			} else {/* parity died, small write only updating Q */
				if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
				    || (asmap->qInfo->next != NULL) || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
					*createFunc = (RF_VoidFuncPtr) rf_EO_010_CreateSmallWriteDAG;
				else
					*createFunc = (RF_VoidFuncPtr) rf_EO_010_CreateLargeWriteDAG;
			}
		} else {	/* data missing. Do a P reconstruct write if
				 * only a single data unit is lost in the
				 * stripe, otherwise a reconstruct write which
				 * employnig both P and E units. */
			if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2) {
				if (asmap->numStripeUnitsAccessed == 1)
					*createFunc = (RF_VoidFuncPtr) rf_EO_200_CreateWriteDAG;
				else
					*createFunc = NULL;	/* No direct support for
								 * this case now, like
								 * that in Raid-5  */
			} else {
				if (asmap->numStripeUnitsAccessed != 1 && asmap->failedPDAs[0]->numSector != layoutPtr->sectorsPerStripeUnit)
					*createFunc = NULL;	/* No direct support for
								 * this case now, like
								 * that in Raid-5  */
				else
					*createFunc = (RF_VoidFuncPtr) rf_EO_100_CreateWriteDAG;
			}
		}
		break;

	case 2:		/* two disk faults */
		switch (npfail) {
		case 2:	/* both p and q dead */
			*createFunc = (RF_VoidFuncPtr) rf_EO_011_CreateWriteDAG;
			break;
		case 1:	/* either p or q and dead data */
			RF_ASSERT(asmap->failedPDAs[0]->type == RF_PDA_TYPE_DATA);
			RF_ASSERT((asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q));
			if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q) {
				if (asmap->numStripeUnitsAccessed != 1 && asmap->failedPDAs[0]->numSector != layoutPtr->sectorsPerStripeUnit)
					*createFunc = NULL;	/* In both PQ and
								 * EvenOdd, no direct
								 * support for this case
								 * now, like that in
								 * Raid-5  */
				else
					*createFunc = (RF_VoidFuncPtr) rf_EO_101_CreateWriteDAG;
			} else {
				if (asmap->numStripeUnitsAccessed != 1 && asmap->failedPDAs[0]->numSector != layoutPtr->sectorsPerStripeUnit)
					*createFunc = NULL;	/* No direct support for
								 * this case, like that
								 * in Raid-5  */
				else
					*createFunc = (RF_VoidFuncPtr) rf_EO_110_CreateWriteDAG;
			}
			break;
		case 0:	/* double data loss */
			/* if(asmap->failedPDAs[0]->numSector +
			 * asmap->failedPDAs[1]->numSector == 2 *
			 * layoutPtr->sectorsPerStripeUnit ) createFunc =
			 * rf_EOCreateLargeWriteDAG; else    							 */
			*createFunc = NULL;	/* currently, in Evenodd, No
						 * support for simultaneous
						 * access of both failed SUs */
			break;
		}
		break;

	default:		/* more than 2 disk faults */
		*createFunc = NULL;
		RF_PANIC();
	}
	return;
}


int
rf_VerifyParityEvenOdd(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
		       RF_PhysDiskAddr_t *parityPDA, int correct_it,
		       RF_RaidAccessFlags_t flags)
{
	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
	RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
	RF_SectorCount_t numsector = parityPDA->numSector;
	int     numbytes = rf_RaidAddressToByte(raidPtr, numsector);
	int     bytesPerStripe = numbytes * layoutPtr->numDataCol;
	RF_DagHeader_t *rd_dag_h, *wr_dag_h;	/* read, write dag */
	RF_DagNode_t *blockNode, *wrBlock;
	RF_AccessStripeMapHeader_t *asm_h;
	RF_AccessStripeMap_t *asmap;
	RF_AllocListElem_t *alloclist;
	RF_PhysDiskAddr_t *pda;
	char   *pbuf, *buf, *end_p, *p;
	char   *redundantbuf2;
	int     redundantTwoErr = 0, redundantOneErr = 0;
	int     parity_cant_correct = RF_FALSE, red2_cant_correct = RF_FALSE,
	        parity_corrected = RF_FALSE, red2_corrected = RF_FALSE;
	int     i, retcode;
	RF_ReconUnitNum_t which_ru;
	RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
	int     stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
	RF_AccTraceEntry_t tracerec;
	RF_MCPair_t *mcpair;

	retcode = RF_PARITY_OKAY;

	mcpair = rf_AllocMCPair();
	rf_MakeAllocList(alloclist);
	buf = RF_MallocAndAdd(
	    numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol),
	    alloclist);
	pbuf = RF_MallocAndAdd(numbytes, alloclist);
	end_p = buf + bytesPerStripe;
	redundantbuf2 = RF_MallocAndAdd(numbytes, alloclist);

	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
	    "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
	blockNode = rd_dag_h->succedents[0];

	/* map the stripe and fill in the PDAs in the dag */
	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP);
	asmap = asm_h->stripeMap;

	for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
		RF_ASSERT(pda);
		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
		RF_ASSERT(pda->numSector != 0);
		if (rf_TryToRedirectPDA(raidPtr, pda, 0))
			goto out;	/* no way to verify parity if disk is
					 * dead.  return w/ good status */
		blockNode->succedents[i]->params[0].p = pda;
		blockNode->succedents[i]->params[2].v = psID;
		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
	}

	RF_ASSERT(!asmap->parityInfo->next);
	rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
	RF_ASSERT(asmap->parityInfo->numSector != 0);
	if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
		goto out;
	blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;

	RF_ASSERT(!asmap->qInfo->next);
	rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->qInfo, 0, 1);
	RF_ASSERT(asmap->qInfo->numSector != 0);
	if (rf_TryToRedirectPDA(raidPtr, asmap->qInfo, 1))
		goto out;
	/* if disk is dead, b/c no reconstruction is implemented right now,
	 * the function "rf_TryToRedirectPDA" always return one, which cause
	 * go to out and return w/ good status   */
	blockNode->succedents[layoutPtr->numDataCol + 1]->params[0].p = asmap->qInfo;

	/* fire off the DAG */
	memset(&tracerec, 0, sizeof(tracerec));
	rd_dag_h->tracerec = &tracerec;

#if RF_DEBUG_VALIDATE_DAG
	if (rf_verifyParityDebug) {
		printf("Parity verify read dag:\n");
		rf_PrintDAGList(rd_dag_h);
	}
#endif
	RF_LOCK_MCPAIR(mcpair);
	mcpair->flag = 0;
	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
	    (void *) mcpair);
	while (!mcpair->flag)
		RF_WAIT_MCPAIR(mcpair);
	RF_UNLOCK_MCPAIR(mcpair);
	if (rd_dag_h->status != rf_enable) {
		RF_ERRORMSG("Unable to verify parity:  can't read the stripe\n");
		retcode = RF_PARITY_COULD_NOT_VERIFY;
		goto out;
	}
	for (p = buf, i = 0; p < end_p; p += numbytes, i++) {
		rf_e_encToBuf(raidPtr, i, p, RF_EO_MATRIX_DIM - 2, redundantbuf2, numsector);
		/* the corresponding columes in EvenOdd encoding Matrix for
		 * these p pointers which point to the databuffer in a full
		 * stripe are sequentially from 0 to layoutPtr->numDataCol-1 */
		rf_bxor(p, pbuf, numbytes);
	}
	RF_ASSERT(i == layoutPtr->numDataCol);

	for (i = 0; i < numbytes; i++) {
		if (pbuf[i] != buf[bytesPerStripe + i]) {
			if (!correct_it) {
				RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
				    i, (u_char) buf[bytesPerStripe + i], (u_char) pbuf[i]);
			}
		}
		redundantOneErr = 1;
		break;
	}

	for (i = 0; i < numbytes; i++) {
		if (redundantbuf2[i] != buf[bytesPerStripe + numbytes + i]) {
			if (!correct_it) {
				RF_ERRORMSG3("Parity verify error: byte %d of second redundant information is 0x%x should be 0x%x\n",
				    i, (u_char) buf[bytesPerStripe + numbytes + i], (u_char) redundantbuf2[i]);
			}
			redundantTwoErr = 1;
			break;
		}
	}
	if (redundantOneErr || redundantTwoErr)
		retcode = RF_PARITY_BAD;

	/* correct the first redundant disk, ie parity if it is error    */
	if (redundantOneErr && correct_it) {
		wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
		    "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
		wrBlock = wr_dag_h->succedents[0];
		wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
		wrBlock->succedents[0]->params[2].v = psID;
		wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
		memset(&tracerec, 0, sizeof(tracerec));
		wr_dag_h->tracerec = &tracerec;
#if RF_DEBUG_VALIDATE_DAG
		if (rf_verifyParityDebug) {
			printf("Parity verify write dag:\n");
			rf_PrintDAGList(wr_dag_h);
		}
#endif
		RF_LOCK_MCPAIR(mcpair);
		mcpair->flag = 0;
		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
		    (void *) mcpair);
		while (!mcpair->flag)
			RF_WAIT_MCPAIR(mcpair);
		RF_UNLOCK_MCPAIR(mcpair);
		if (wr_dag_h->status != rf_enable) {
			RF_ERRORMSG("Unable to correct parity in VerifyParity:  can't write the stripe\n");
			parity_cant_correct = RF_TRUE;
		} else {
			parity_corrected = RF_TRUE;
		}
		rf_FreeDAG(wr_dag_h);
	}
	if (redundantTwoErr && correct_it) {
		wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, redundantbuf2, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
		    "Wnred2", alloclist, flags, RF_IO_NORMAL_PRIORITY);
		wrBlock = wr_dag_h->succedents[0];
		wrBlock->succedents[0]->params[0].p = asmap->qInfo;
		wrBlock->succedents[0]->params[2].v = psID;
		wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
		memset(&tracerec, 0, sizeof(tracerec));
		wr_dag_h->tracerec = &tracerec;
#if RF_DEBUG_VALIDATE_DAG
		if (rf_verifyParityDebug) {
			printf("Dag of write new second redundant information in parity verify :\n");
			rf_PrintDAGList(wr_dag_h);
		}
#endif
		RF_LOCK_MCPAIR(mcpair);
		mcpair->flag = 0;
		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
		    (void *) mcpair);
		while (!mcpair->flag)
			RF_WAIT_MCPAIR(mcpair);
		RF_UNLOCK_MCPAIR(mcpair);
		if (wr_dag_h->status != rf_enable) {
			RF_ERRORMSG("Unable to correct second redundant information in VerifyParity:  can't write the stripe\n");
			red2_cant_correct = RF_TRUE;
		} else {
			red2_corrected = RF_TRUE;
		}
		rf_FreeDAG(wr_dag_h);
	}
	if ((redundantOneErr && parity_cant_correct) ||
	    (redundantTwoErr && red2_cant_correct))
		retcode = RF_PARITY_COULD_NOT_CORRECT;
	if ((retcode = RF_PARITY_BAD) && parity_corrected && red2_corrected)
		retcode = RF_PARITY_CORRECTED;


out:
	rf_FreeAccessStripeMap(asm_h);
	rf_FreeAllocList(alloclist);
	rf_FreeDAG(rd_dag_h);
	rf_FreeMCPair(mcpair);
	return (retcode);
}
#endif				/* RF_INCLUDE_EVENODD > 0 */