Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
/*	$NetBSD: sljitNativeTILEGX_64.c,v 1.4 2019/01/20 23:14:16 alnsn Exp $	*/

/*
 *    Stack-less Just-In-Time compiler
 *
 *    Copyright 2013-2013 Tilera Corporation(jiwang@tilera.com). All rights reserved.
 *    Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *
 *   1. Redistributions of source code must retain the above copyright notice, this list of
 *      conditions and the following disclaimer.
 *
 *   2. Redistributions in binary form must reproduce the above copyright notice, this list
 *      of conditions and the following disclaimer in the documentation and/or other materials
 *      provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/* TileGX architecture. */
/* Contributed by Tilera Corporation. */
#include "sljitNativeTILEGX-encoder.c"

#define SIMM_8BIT_MAX (0x7f)
#define SIMM_8BIT_MIN (-0x80)
#define SIMM_16BIT_MAX (0x7fff)
#define SIMM_16BIT_MIN (-0x8000)
#define SIMM_17BIT_MAX (0xffff)
#define SIMM_17BIT_MIN (-0x10000)
#define SIMM_32BIT_MAX (0x7fffffff)
#define SIMM_32BIT_MIN (-0x7fffffff - 1)
#define SIMM_48BIT_MAX (0x7fffffff0000L)
#define SIMM_48BIT_MIN (-0x800000000000L)
#define IMM16(imm) ((imm) & 0xffff)

#define UIMM_16BIT_MAX (0xffff)

#define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2)
#define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3)
#define TMP_REG3 (SLJIT_NUMBER_OF_REGISTERS + 4)
#define ADDR_TMP (SLJIT_NUMBER_OF_REGISTERS + 5)
#define PIC_ADDR_REG TMP_REG2

static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 6] = {
	63, 0, 1, 2, 3, 4, 30, 31, 32, 33, 34, 54, 5, 16, 6, 7
};

#define SLJIT_LOCALS_REG_mapped 54
#define TMP_REG1_mapped 5
#define TMP_REG2_mapped 16
#define TMP_REG3_mapped 6
#define ADDR_TMP_mapped 7

/* Flags are keept in volatile registers. */
#define EQUAL_FLAG 8
/* And carry flag as well. */
#define ULESS_FLAG 9
#define UGREATER_FLAG 10
#define LESS_FLAG 11
#define GREATER_FLAG 12
#define OVERFLOW_FLAG 13

#define ZERO 63
#define RA 55
#define TMP_EREG1 14
#define TMP_EREG2 15

#define LOAD_DATA 0x01
#define WORD_DATA 0x00
#define BYTE_DATA 0x02
#define HALF_DATA 0x04
#define INT_DATA 0x06
#define SIGNED_DATA 0x08
#define DOUBLE_DATA 0x10

/* Separates integer and floating point registers */
#define GPR_REG 0xf

#define MEM_MASK 0x1f

#define WRITE_BACK 0x00020
#define ARG_TEST 0x00040
#define ALT_KEEP_CACHE 0x00080
#define CUMULATIVE_OP 0x00100
#define LOGICAL_OP 0x00200
#define IMM_OP 0x00400
#define SRC2_IMM 0x00800

#define UNUSED_DEST 0x01000
#define REG_DEST 0x02000
#define REG1_SOURCE 0x04000
#define REG2_SOURCE 0x08000
#define SLOW_SRC1 0x10000
#define SLOW_SRC2 0x20000
#define SLOW_DEST 0x40000

/* Only these flags are set. UNUSED_DEST is not set when no flags should be set.
 */
#define CHECK_FLAGS(list) (!(flags & UNUSED_DEST) || (op & GET_FLAGS(~(list))))

SLJIT_API_FUNC_ATTRIBUTE const char *sljit_get_platform_name(void)
{
	return "TileGX" SLJIT_CPUINFO;
}

/* Length of an instruction word */
typedef sljit_uw sljit_ins;

struct jit_instr {
	const struct tilegx_opcode* opcode; 
	tilegx_pipeline pipe;
	unsigned long input_registers;
	unsigned long output_registers;
	int operand_value[4];
	int line;
};

/* Opcode Helper Macros */
#define TILEGX_X_MODE 0

#define X_MODE create_Mode(TILEGX_X_MODE)

#define FNOP_X0 \
	create_Opcode_X0(RRR_0_OPCODE_X0) | \
	create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
	create_UnaryOpcodeExtension_X0(FNOP_UNARY_OPCODE_X0)

#define FNOP_X1 \
	create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
	create_UnaryOpcodeExtension_X1(FNOP_UNARY_OPCODE_X1)

#define NOP \
	create_Mode(TILEGX_X_MODE) | FNOP_X0 | FNOP_X1

#define ANOP_X0 \
	create_Opcode_X0(RRR_0_OPCODE_X0) | \
	create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
	create_UnaryOpcodeExtension_X0(NOP_UNARY_OPCODE_X0)

#define BPT create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
	create_UnaryOpcodeExtension_X1(ILL_UNARY_OPCODE_X1) | \
	create_Dest_X1(0x1C) | create_SrcA_X1(0x25) | ANOP_X0

#define ADD_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(ADD_RRR_0_OPCODE_X1) | FNOP_X0

#define ADDI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
	create_Imm8OpcodeExtension_X1(ADDI_IMM8_OPCODE_X1) | FNOP_X0

#define SUB_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(SUB_RRR_0_OPCODE_X1) | FNOP_X0

#define NOR_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(NOR_RRR_0_OPCODE_X1) | FNOP_X0

#define OR_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(OR_RRR_0_OPCODE_X1) | FNOP_X0

#define AND_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(AND_RRR_0_OPCODE_X1) | FNOP_X0

#define XOR_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(XOR_RRR_0_OPCODE_X1) | FNOP_X0

#define CMOVNEZ_X0 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
	create_RRROpcodeExtension_X0(CMOVNEZ_RRR_0_OPCODE_X0) | FNOP_X1

#define CMOVEQZ_X0 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
	create_RRROpcodeExtension_X0(CMOVEQZ_RRR_0_OPCODE_X0) | FNOP_X1

#define ADDLI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(ADDLI_OPCODE_X1) | FNOP_X0

#define V4INT_L_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(V4INT_L_RRR_0_OPCODE_X1) | FNOP_X0

#define BFEXTU_X0 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
	create_BFOpcodeExtension_X0(BFEXTU_BF_OPCODE_X0) | FNOP_X1

#define BFEXTS_X0 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
	create_BFOpcodeExtension_X0(BFEXTS_BF_OPCODE_X0) | FNOP_X1

#define SHL16INSLI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHL16INSLI_OPCODE_X1) | FNOP_X0

#define ST_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(ST_RRR_0_OPCODE_X1) | create_Dest_X1(0x0) | FNOP_X0

#define LD_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
	create_UnaryOpcodeExtension_X1(LD_UNARY_OPCODE_X1) | FNOP_X0

#define JR_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
	create_UnaryOpcodeExtension_X1(JR_UNARY_OPCODE_X1) | FNOP_X0

#define JALR_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
	create_UnaryOpcodeExtension_X1(JALR_UNARY_OPCODE_X1) | FNOP_X0

#define CLZ_X0 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
	create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
	create_UnaryOpcodeExtension_X0(CNTLZ_UNARY_OPCODE_X0) | FNOP_X1

#define CMPLTUI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
	create_Imm8OpcodeExtension_X1(CMPLTUI_IMM8_OPCODE_X1) | FNOP_X0

#define CMPLTU_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(CMPLTU_RRR_0_OPCODE_X1) | FNOP_X0

#define CMPLTS_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(CMPLTS_RRR_0_OPCODE_X1) | FNOP_X0

#define XORI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
	create_Imm8OpcodeExtension_X1(XORI_IMM8_OPCODE_X1) | FNOP_X0

#define ORI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
	create_Imm8OpcodeExtension_X1(ORI_IMM8_OPCODE_X1) | FNOP_X0

#define ANDI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
	create_Imm8OpcodeExtension_X1(ANDI_IMM8_OPCODE_X1) | FNOP_X0

#define SHLI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
	create_ShiftOpcodeExtension_X1(SHLI_SHIFT_OPCODE_X1) | FNOP_X0

#define SHL_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(SHL_RRR_0_OPCODE_X1) | FNOP_X0

#define SHRSI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
	create_ShiftOpcodeExtension_X1(SHRSI_SHIFT_OPCODE_X1) | FNOP_X0

#define SHRS_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(SHRS_RRR_0_OPCODE_X1) | FNOP_X0

#define SHRUI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
	create_ShiftOpcodeExtension_X1(SHRUI_SHIFT_OPCODE_X1) | FNOP_X0

#define SHRU_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(SHRU_RRR_0_OPCODE_X1) | FNOP_X0

#define BEQZ_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
	create_BrType_X1(BEQZ_BRANCH_OPCODE_X1) | FNOP_X0

#define BNEZ_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
	create_BrType_X1(BNEZ_BRANCH_OPCODE_X1) | FNOP_X0

#define J_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
	create_JumpOpcodeExtension_X1(J_JUMP_OPCODE_X1) | FNOP_X0

#define JAL_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
	create_JumpOpcodeExtension_X1(JAL_JUMP_OPCODE_X1) | FNOP_X0

#define DEST_X0(x) create_Dest_X0(x)
#define SRCA_X0(x) create_SrcA_X0(x)
#define SRCB_X0(x) create_SrcB_X0(x)
#define DEST_X1(x) create_Dest_X1(x)
#define SRCA_X1(x) create_SrcA_X1(x)
#define SRCB_X1(x) create_SrcB_X1(x)
#define IMM16_X1(x) create_Imm16_X1(x)
#define IMM8_X1(x) create_Imm8_X1(x)
#define BFSTART_X0(x) create_BFStart_X0(x)
#define BFEND_X0(x) create_BFEnd_X0(x)
#define SHIFTIMM_X1(x) create_ShAmt_X1(x)
#define JOFF_X1(x) create_JumpOff_X1(x)
#define BOFF_X1(x) create_BrOff_X1(x)

static const tilegx_mnemonic data_transfer_insts[16] = {
	/* u w s */ TILEGX_OPC_ST   /* st */,
	/* u w l */ TILEGX_OPC_LD   /* ld */,
	/* u b s */ TILEGX_OPC_ST1  /* st1 */,
	/* u b l */ TILEGX_OPC_LD1U /* ld1u */,
	/* u h s */ TILEGX_OPC_ST2  /* st2 */,
	/* u h l */ TILEGX_OPC_LD2U /* ld2u */,
	/* u i s */ TILEGX_OPC_ST4  /* st4 */,
	/* u i l */ TILEGX_OPC_LD4U /* ld4u */,
	/* s w s */ TILEGX_OPC_ST   /* st */,
	/* s w l */ TILEGX_OPC_LD   /* ld */,
	/* s b s */ TILEGX_OPC_ST1  /* st1 */,
	/* s b l */ TILEGX_OPC_LD1S /* ld1s */,
	/* s h s */ TILEGX_OPC_ST2  /* st2 */,
	/* s h l */ TILEGX_OPC_LD2S /* ld2s */,
	/* s i s */ TILEGX_OPC_ST4  /* st4 */,
	/* s i l */ TILEGX_OPC_LD4S /* ld4s */,
};

#ifdef TILEGX_JIT_DEBUG
static sljit_s32 push_inst_debug(struct sljit_compiler *compiler, sljit_ins ins, int line)
{
	sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
	FAIL_IF(!ptr);
	*ptr = ins;
	compiler->size++;
	printf("|%04d|S0|:\t\t", line);
	print_insn_tilegx(ptr);
	return SLJIT_SUCCESS;
}

static sljit_s32 push_inst_nodebug(struct sljit_compiler *compiler, sljit_ins ins)
{
	sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
	FAIL_IF(!ptr);
	*ptr = ins;
	compiler->size++;
	return SLJIT_SUCCESS;
}

#define push_inst(a, b) push_inst_debug(a, b, __LINE__)
#else
static sljit_s32 push_inst(struct sljit_compiler *compiler, sljit_ins ins)
{
	sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
	FAIL_IF(!ptr);
	*ptr = ins;
	compiler->size++;
	return SLJIT_SUCCESS;
}
#endif

#define BUNDLE_FORMAT_MASK(p0, p1, p2) \
	((p0) | ((p1) << 8) | ((p2) << 16))

#define BUNDLE_FORMAT(p0, p1, p2) \
	{ \
		{ \
			(tilegx_pipeline)(p0), \
			(tilegx_pipeline)(p1), \
			(tilegx_pipeline)(p2) \
		}, \
		BUNDLE_FORMAT_MASK(1 << (p0), 1 << (p1), (1 << (p2))) \
	}

#define NO_PIPELINE TILEGX_NUM_PIPELINE_ENCODINGS

#define tilegx_is_x_pipeline(p) ((int)(p) <= (int)TILEGX_PIPELINE_X1)

#define PI(encoding) \
	push_inst(compiler, encoding)

#define PB3(opcode, dst, srca, srcb) \
	push_3_buffer(compiler, opcode, dst, srca, srcb, __LINE__)

#define PB2(opcode, dst, src) \
	push_2_buffer(compiler, opcode, dst, src, __LINE__)

#define JR(reg) \
	push_jr_buffer(compiler, TILEGX_OPC_JR, reg, __LINE__)

#define ADD(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_ADD, dst, srca, srcb, __LINE__)

#define SUB(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_SUB, dst, srca, srcb, __LINE__)

#define MUL(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_MULX, dst, srca, srcb, __LINE__)

#define NOR(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_NOR, dst, srca, srcb, __LINE__)

#define OR(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_OR, dst, srca, srcb, __LINE__)

#define XOR(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_XOR, dst, srca, srcb, __LINE__)

#define AND(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_AND, dst, srca, srcb, __LINE__)

#define CLZ(dst, src) \
	push_2_buffer(compiler, TILEGX_OPC_CLZ, dst, src, __LINE__)

#define SHLI(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_SHLI, dst, srca, srcb, __LINE__)

#define SHRUI(dst, srca, imm) \
	push_3_buffer(compiler, TILEGX_OPC_SHRUI, dst, srca, imm, __LINE__)

#define XORI(dst, srca, imm) \
	push_3_buffer(compiler, TILEGX_OPC_XORI, dst, srca, imm, __LINE__)

#define ORI(dst, srca, imm) \
	push_3_buffer(compiler, TILEGX_OPC_ORI, dst, srca, imm, __LINE__)

#define CMPLTU(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_CMPLTU, dst, srca, srcb, __LINE__)

#define CMPLTS(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_CMPLTS, dst, srca, srcb, __LINE__)

#define CMPLTUI(dst, srca, imm) \
	push_3_buffer(compiler, TILEGX_OPC_CMPLTUI, dst, srca, imm, __LINE__)

#define CMOVNEZ(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_CMOVNEZ, dst, srca, srcb, __LINE__)

#define CMOVEQZ(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_CMOVEQZ, dst, srca, srcb, __LINE__)

#define ADDLI(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_ADDLI, dst, srca, srcb, __LINE__)

#define SHL16INSLI(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_SHL16INSLI, dst, srca, srcb, __LINE__)

#define LD_ADD(dst, addr, adjust) \
	push_3_buffer(compiler, TILEGX_OPC_LD_ADD, dst, addr, adjust, __LINE__)

#define ST_ADD(src, addr, adjust) \
	push_3_buffer(compiler, TILEGX_OPC_ST_ADD, src, addr, adjust, __LINE__)

#define LD(dst, addr) \
	push_2_buffer(compiler, TILEGX_OPC_LD, dst, addr, __LINE__)

#define BFEXTU(dst, src, start, end) \
	push_4_buffer(compiler, TILEGX_OPC_BFEXTU, dst, src, start, end, __LINE__)

#define BFEXTS(dst, src, start, end) \
	push_4_buffer(compiler, TILEGX_OPC_BFEXTS, dst, src, start, end, __LINE__)

#define ADD_SOLO(dest, srca, srcb) \
	push_inst(compiler, ADD_X1 | DEST_X1(dest) | SRCA_X1(srca) | SRCB_X1(srcb))

#define ADDI_SOLO(dest, srca, imm) \
	push_inst(compiler, ADDI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM8_X1(imm))

#define ADDLI_SOLO(dest, srca, imm) \
	push_inst(compiler, ADDLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))

#define SHL16INSLI_SOLO(dest, srca, imm) \
	push_inst(compiler, SHL16INSLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))

#define JALR_SOLO(reg) \
	push_inst(compiler, JALR_X1 | SRCA_X1(reg))

#define JR_SOLO(reg) \
	push_inst(compiler, JR_X1 | SRCA_X1(reg))

struct Format {
	/* Mapping of bundle issue slot to assigned pipe. */
	tilegx_pipeline pipe[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];

	/* Mask of pipes used by this bundle. */
	unsigned int pipe_mask;
};

const struct Format formats[] =
{
	/* In Y format we must always have something in Y2, since it has
	* no fnop, so this conveys that Y2 must always be used. */
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, NO_PIPELINE),
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, NO_PIPELINE),
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, NO_PIPELINE),
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, NO_PIPELINE),

	/* Y format has three instructions. */
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2),
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1),
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2),
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0),
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1),
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0),

	/* X format has only two instructions. */
	BUNDLE_FORMAT(TILEGX_PIPELINE_X0, TILEGX_PIPELINE_X1, NO_PIPELINE),
	BUNDLE_FORMAT(TILEGX_PIPELINE_X1, TILEGX_PIPELINE_X0, NO_PIPELINE)
};


struct jit_instr inst_buf[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
unsigned long inst_buf_index;

tilegx_pipeline get_any_valid_pipe(const struct tilegx_opcode* opcode)
{
	/* FIXME: tile: we could pregenerate this. */
	int pipe;
	for (pipe = 0; ((opcode->pipes & (1 << pipe)) == 0 && pipe < TILEGX_NUM_PIPELINE_ENCODINGS); pipe++)
		;
	return (tilegx_pipeline)(pipe);
}

void insert_nop(tilegx_mnemonic opc, int line)
{
	const struct tilegx_opcode* opcode = NULL;

	memmove(&inst_buf[1], &inst_buf[0], inst_buf_index * sizeof inst_buf[0]);

	opcode = &tilegx_opcodes[opc];
	inst_buf[0].opcode = opcode;
	inst_buf[0].pipe = get_any_valid_pipe(opcode);
	inst_buf[0].input_registers = 0;
	inst_buf[0].output_registers = 0;
	inst_buf[0].line = line;
	++inst_buf_index;
}

const struct Format* compute_format()
{
	unsigned int compatible_pipes = BUNDLE_FORMAT_MASK(
		inst_buf[0].opcode->pipes,
		inst_buf[1].opcode->pipes,
		(inst_buf_index == 3 ? inst_buf[2].opcode->pipes : (1 << NO_PIPELINE)));

	const struct Format* match = NULL;
	const struct Format *b = NULL;
	unsigned int i;
	for (i = 0; i < sizeof formats / sizeof formats[0]; i++) {
		b = &formats[i];
		if ((b->pipe_mask & compatible_pipes) == b->pipe_mask) {
			match = b;
			break;
		}
	}

	return match;
}

sljit_s32 assign_pipes()
{
	unsigned long output_registers = 0;
	unsigned int i = 0;

	if (inst_buf_index == 1) {
		tilegx_mnemonic opc = inst_buf[0].opcode->can_bundle
					? TILEGX_OPC_FNOP : TILEGX_OPC_NOP;
		insert_nop(opc, __LINE__);
	}

	const struct Format* match = compute_format();

	if (match == NULL)
		return -1;

	for (i = 0; i < inst_buf_index; i++) {

		if ((i > 0) && ((inst_buf[i].input_registers & output_registers) != 0))
			return -1;

		if ((i > 0) && ((inst_buf[i].output_registers & output_registers) != 0))
			return -1;

		/* Don't include Rzero in the match set, to avoid triggering
		   needlessly on 'prefetch' instrs. */

		output_registers |= inst_buf[i].output_registers & 0xFFFFFFFFFFFFFFL;

		inst_buf[i].pipe = match->pipe[i];
	}

	/* If only 2 instrs, and in Y-mode, insert a nop. */
	if (inst_buf_index == 2 && !tilegx_is_x_pipeline(match->pipe[0])) {
		insert_nop(TILEGX_OPC_FNOP, __LINE__);

		/* Select the yet unassigned pipe. */
		tilegx_pipeline pipe = (tilegx_pipeline)(((TILEGX_PIPELINE_Y0
					+ TILEGX_PIPELINE_Y1 + TILEGX_PIPELINE_Y2)
					- (inst_buf[1].pipe + inst_buf[2].pipe)));

		inst_buf[0].pipe = pipe;
	}

	return 0;
}

tilegx_bundle_bits get_bundle_bit(struct jit_instr *inst)
{
	int i, val;
	const struct tilegx_opcode* opcode = inst->opcode;
	tilegx_bundle_bits bits = opcode->fixed_bit_values[inst->pipe];

	const struct tilegx_operand* operand = NULL;
	for (i = 0; i < opcode->num_operands; i++) {
		operand = &tilegx_operands[opcode->operands[inst->pipe][i]];
		val = inst->operand_value[i];

		bits |= operand->insert(val);
	}

	return bits;
}

static sljit_s32 update_buffer(struct sljit_compiler *compiler)
{
	int i;
	int orig_index = inst_buf_index;
	struct jit_instr inst0 = inst_buf[0];
	struct jit_instr inst1 = inst_buf[1];
	struct jit_instr inst2 = inst_buf[2];
	tilegx_bundle_bits bits = 0;

	/* If the bundle is valid as is, perform the encoding and return 1. */
	if (assign_pipes() == 0) {
		for (i = 0; i < inst_buf_index; i++) {
			bits |= get_bundle_bit(inst_buf + i);
#ifdef TILEGX_JIT_DEBUG
			printf("|%04d", inst_buf[i].line);
#endif
		}
#ifdef TILEGX_JIT_DEBUG
		if (inst_buf_index == 3)
			printf("|M0|:\t");
		else
			printf("|M0|:\t\t");
		print_insn_tilegx(&bits);
#endif

		inst_buf_index = 0;

#ifdef TILEGX_JIT_DEBUG
		return push_inst_nodebug(compiler, bits);
#else
		return push_inst(compiler, bits);
#endif
	}

	/* If the bundle is invalid, split it in two. First encode the first two
	   (or possibly 1) instructions, and then the last, separately. Note that
	   assign_pipes may have re-ordered the instrs (by inserting no-ops in
	   lower slots) so we need to reset them. */

	inst_buf_index = orig_index - 1;
	inst_buf[0] = inst0;
	inst_buf[1] = inst1;
	inst_buf[2] = inst2;
	if (assign_pipes() == 0) {
		for (i = 0; i < inst_buf_index; i++) {
			bits |= get_bundle_bit(inst_buf + i);
#ifdef TILEGX_JIT_DEBUG
			printf("|%04d", inst_buf[i].line);
#endif
		}

#ifdef TILEGX_JIT_DEBUG
		if (inst_buf_index == 3)
			printf("|M1|:\t");
		else
			printf("|M1|:\t\t");
		print_insn_tilegx(&bits);
#endif

		if ((orig_index - 1) == 2) {
			inst_buf[0] = inst2;
			inst_buf_index = 1;
		} else if ((orig_index - 1) == 1) {
			inst_buf[0] = inst1;
			inst_buf_index = 1;
		} else
			SLJIT_UNREACHABLE();

#ifdef TILEGX_JIT_DEBUG
		return push_inst_nodebug(compiler, bits);
#else
		return push_inst(compiler, bits);
#endif
	} else {
		/* We had 3 instrs of which the first 2 can't live in the same bundle.
		   Split those two. Note that we don't try to then combine the second
		   and third instr into a single bundle.  First instruction: */
		inst_buf_index = 1;
		inst_buf[0] = inst0;
		inst_buf[1] = inst1;
		inst_buf[2] = inst2;
		if (assign_pipes() == 0) {
			for (i = 0; i < inst_buf_index; i++) {
				bits |= get_bundle_bit(inst_buf + i);
#ifdef TILEGX_JIT_DEBUG
				printf("|%04d", inst_buf[i].line);
#endif
			}

#ifdef TILEGX_JIT_DEBUG
			if (inst_buf_index == 3)
				printf("|M2|:\t");
			else
				printf("|M2|:\t\t");
			print_insn_tilegx(&bits);
#endif

			inst_buf[0] = inst1;
			inst_buf[1] = inst2;
			inst_buf_index = orig_index - 1;
#ifdef TILEGX_JIT_DEBUG
			return push_inst_nodebug(compiler, bits);
#else
			return push_inst(compiler, bits);
#endif
		} else
			SLJIT_UNREACHABLE();
	}

	SLJIT_UNREACHABLE();
}

static sljit_s32 flush_buffer(struct sljit_compiler *compiler)
{
	while (inst_buf_index != 0) {
		FAIL_IF(update_buffer(compiler));
	}
	return SLJIT_SUCCESS;
}

static sljit_s32 push_4_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int op3, int line)
{
	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
		FAIL_IF(update_buffer(compiler));

	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
	inst_buf[inst_buf_index].opcode = opcode;
	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
	inst_buf[inst_buf_index].operand_value[0] = op0;
	inst_buf[inst_buf_index].operand_value[1] = op1;
	inst_buf[inst_buf_index].operand_value[2] = op2;
	inst_buf[inst_buf_index].operand_value[3] = op3;
	inst_buf[inst_buf_index].input_registers = 1L << op1;
	inst_buf[inst_buf_index].output_registers = 1L << op0;
	inst_buf[inst_buf_index].line = line;
	inst_buf_index++;

	return SLJIT_SUCCESS;
}

static sljit_s32 push_3_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int line)
{
	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
		FAIL_IF(update_buffer(compiler));

	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
	inst_buf[inst_buf_index].opcode = opcode;
	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
	inst_buf[inst_buf_index].operand_value[0] = op0;
	inst_buf[inst_buf_index].operand_value[1] = op1;
	inst_buf[inst_buf_index].operand_value[2] = op2;
	inst_buf[inst_buf_index].line = line;

	switch (opc) {
	case TILEGX_OPC_ST_ADD:
		inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
		inst_buf[inst_buf_index].output_registers = 1L << op0;
		break;
	case TILEGX_OPC_LD_ADD:
		inst_buf[inst_buf_index].input_registers = 1L << op1;
		inst_buf[inst_buf_index].output_registers = (1L << op0) | (1L << op1);
		break;
	case TILEGX_OPC_ADD:
	case TILEGX_OPC_AND:
	case TILEGX_OPC_SUB:
	case TILEGX_OPC_MULX:
	case TILEGX_OPC_OR:
	case TILEGX_OPC_XOR:
	case TILEGX_OPC_NOR:
	case TILEGX_OPC_SHL:
	case TILEGX_OPC_SHRU:
	case TILEGX_OPC_SHRS:
	case TILEGX_OPC_CMPLTU:
	case TILEGX_OPC_CMPLTS:
	case TILEGX_OPC_CMOVEQZ:
	case TILEGX_OPC_CMOVNEZ:
		inst_buf[inst_buf_index].input_registers = (1L << op1) | (1L << op2);
		inst_buf[inst_buf_index].output_registers = 1L << op0;
		break;
	case TILEGX_OPC_ADDLI:
	case TILEGX_OPC_XORI:
	case TILEGX_OPC_ORI:
	case TILEGX_OPC_SHLI:
	case TILEGX_OPC_SHRUI:
	case TILEGX_OPC_SHRSI:
	case TILEGX_OPC_SHL16INSLI:
	case TILEGX_OPC_CMPLTUI:
	case TILEGX_OPC_CMPLTSI:
		inst_buf[inst_buf_index].input_registers = 1L << op1;
		inst_buf[inst_buf_index].output_registers = 1L << op0;
		break;
	default:
		printf("unrecoginzed opc: %s\n", opcode->name);
		SLJIT_UNREACHABLE();
	}

	inst_buf_index++;

	return SLJIT_SUCCESS;
}

static sljit_s32 push_2_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int line)
{
	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
		FAIL_IF(update_buffer(compiler));

	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
	inst_buf[inst_buf_index].opcode = opcode;
	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
	inst_buf[inst_buf_index].operand_value[0] = op0;
	inst_buf[inst_buf_index].operand_value[1] = op1;
	inst_buf[inst_buf_index].line = line;

	switch (opc) {
	case TILEGX_OPC_BEQZ:
	case TILEGX_OPC_BNEZ:
		inst_buf[inst_buf_index].input_registers = 1L << op0;
		break;
	case TILEGX_OPC_ST:
	case TILEGX_OPC_ST1:
	case TILEGX_OPC_ST2:
	case TILEGX_OPC_ST4:
		inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
		inst_buf[inst_buf_index].output_registers = 0;
		break;
	case TILEGX_OPC_CLZ:
	case TILEGX_OPC_LD:
	case TILEGX_OPC_LD1U:
	case TILEGX_OPC_LD1S:
	case TILEGX_OPC_LD2U:
	case TILEGX_OPC_LD2S:
	case TILEGX_OPC_LD4U:
	case TILEGX_OPC_LD4S:
		inst_buf[inst_buf_index].input_registers = 1L << op1;
		inst_buf[inst_buf_index].output_registers = 1L << op0;
		break;
	default:
		printf("unrecoginzed opc: %s\n", opcode->name);
		SLJIT_UNREACHABLE();
	}

	inst_buf_index++;

	return SLJIT_SUCCESS;
}

static sljit_s32 push_0_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int line)
{
	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
		FAIL_IF(update_buffer(compiler));

	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
	inst_buf[inst_buf_index].opcode = opcode;
	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
	inst_buf[inst_buf_index].input_registers = 0;
	inst_buf[inst_buf_index].output_registers = 0;
	inst_buf[inst_buf_index].line = line;
	inst_buf_index++;

	return SLJIT_SUCCESS;
}

static sljit_s32 push_jr_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int line)
{
	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
		FAIL_IF(update_buffer(compiler));

	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
	inst_buf[inst_buf_index].opcode = opcode;
	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
	inst_buf[inst_buf_index].operand_value[0] = op0;
	inst_buf[inst_buf_index].input_registers = 1L << op0;
	inst_buf[inst_buf_index].output_registers = 0;
	inst_buf[inst_buf_index].line = line;
	inst_buf_index++;
 
	return flush_buffer(compiler);
}

static SLJIT_INLINE sljit_ins * detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
{
	sljit_sw diff;
	sljit_uw target_addr;
	sljit_ins *inst;

	if (jump->flags & SLJIT_REWRITABLE_JUMP)
		return code_ptr;

	if (jump->flags & JUMP_ADDR)
		target_addr = jump->u.target;
	else {
		SLJIT_ASSERT(jump->flags & JUMP_LABEL);
		target_addr = (sljit_uw)(code + jump->u.label->size);
	}

	inst = (sljit_ins *)jump->addr;
	if (jump->flags & IS_COND)
		inst--;

	diff = ((sljit_sw) target_addr - (sljit_sw) inst) >> 3;
	if (diff <= SIMM_17BIT_MAX && diff >= SIMM_17BIT_MIN) {
		jump->flags |= PATCH_B;

		if (!(jump->flags & IS_COND)) {
			if (jump->flags & IS_JAL) {
				jump->flags &= ~(PATCH_B);
				jump->flags |= PATCH_J;
				inst[0] = JAL_X1;

#ifdef TILEGX_JIT_DEBUG
				printf("[runtime relocate]%04d:\t", __LINE__);
				print_insn_tilegx(inst);
#endif
			} else {
				inst[0] = BEQZ_X1 | SRCA_X1(ZERO);

#ifdef TILEGX_JIT_DEBUG
				printf("[runtime relocate]%04d:\t", __LINE__);
				print_insn_tilegx(inst);
#endif
			}

			return inst;
		}

		inst[0] = inst[0] ^ (0x7L << 55);

#ifdef TILEGX_JIT_DEBUG
		printf("[runtime relocate]%04d:\t", __LINE__);
		print_insn_tilegx(inst);
#endif
		jump->addr -= sizeof(sljit_ins);
		return inst;
	}

	if (jump->flags & IS_COND) {
		if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
			jump->flags |= PATCH_J;
			inst[0] = (inst[0] & ~(BOFF_X1(-1))) | BOFF_X1(2);
			inst[1] = J_X1;
			return inst + 1;
		}

		return code_ptr;
	}

	if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
		jump->flags |= PATCH_J;

		if (jump->flags & IS_JAL) {
			inst[0] = JAL_X1;

#ifdef TILEGX_JIT_DEBUG
			printf("[runtime relocate]%04d:\t", __LINE__);
			print_insn_tilegx(inst);
#endif

		} else {
			inst[0] = J_X1;

#ifdef TILEGX_JIT_DEBUG
			printf("[runtime relocate]%04d:\t", __LINE__);
			print_insn_tilegx(inst);
#endif
		}

		return inst;
	}

	return code_ptr;
}

SLJIT_API_FUNC_ATTRIBUTE void * sljit_generate_code(struct sljit_compiler *compiler)
{
	struct sljit_memory_fragment *buf;
	sljit_ins *code;
	sljit_ins *code_ptr;
	sljit_ins *buf_ptr;
	sljit_ins *buf_end;
	sljit_uw word_count;
	sljit_uw addr;

	struct sljit_label *label;
	struct sljit_jump *jump;
	struct sljit_const *const_;

	CHECK_ERROR_PTR();
	CHECK_PTR(check_sljit_generate_code(compiler));
	reverse_buf(compiler);

	code = (sljit_ins *)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
	PTR_FAIL_WITH_EXEC_IF(code);
	buf = compiler->buf;

	code_ptr = code;
	word_count = 0;
	label = compiler->labels;
	jump = compiler->jumps;
	const_ = compiler->consts;
	do {
		buf_ptr = (sljit_ins *)buf->memory;
		buf_end = buf_ptr + (buf->used_size >> 3);
		do {
			*code_ptr = *buf_ptr++;
			SLJIT_ASSERT(!label || label->size >= word_count);
			SLJIT_ASSERT(!jump || jump->addr >= word_count);
			SLJIT_ASSERT(!const_ || const_->addr >= word_count);
			/* These structures are ordered by their address. */
			if (label && label->size == word_count) {
				/* Just recording the address. */
				label->addr = (sljit_uw) code_ptr;
				label->size = code_ptr - code;
				label = label->next;
			}

			if (jump && jump->addr == word_count) {
				if (jump->flags & IS_JAL)
					jump->addr = (sljit_uw)(code_ptr - 4);
				else
					jump->addr = (sljit_uw)(code_ptr - 3);

				code_ptr = detect_jump_type(jump, code_ptr, code);
				jump = jump->next;
			}

			if (const_ && const_->addr == word_count) {
				/* Just recording the address. */
				const_->addr = (sljit_uw) code_ptr;
				const_ = const_->next;
			}

			code_ptr++;
			word_count++;
		} while (buf_ptr < buf_end);

		buf = buf->next;
	} while (buf);

	if (label && label->size == word_count) {
		label->addr = (sljit_uw) code_ptr;
		label->size = code_ptr - code;
		label = label->next;
	}

	SLJIT_ASSERT(!label);
	SLJIT_ASSERT(!jump);
	SLJIT_ASSERT(!const_);
	SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);

	jump = compiler->jumps;
	while (jump) {
		do {
			addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
			buf_ptr = (sljit_ins *)jump->addr;

			if (jump->flags & PATCH_B) {
				addr = (sljit_sw)(addr - (jump->addr)) >> 3;
				SLJIT_ASSERT((sljit_sw) addr <= SIMM_17BIT_MAX && (sljit_sw) addr >= SIMM_17BIT_MIN);
				buf_ptr[0] = (buf_ptr[0] & ~(BOFF_X1(-1))) | BOFF_X1(addr);

#ifdef TILEGX_JIT_DEBUG
				printf("[runtime relocate]%04d:\t", __LINE__);
				print_insn_tilegx(buf_ptr);
#endif
				break;
			}

			if (jump->flags & PATCH_J) {
				SLJIT_ASSERT((addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL));
				addr = (sljit_sw)(addr - (jump->addr)) >> 3;
				buf_ptr[0] = (buf_ptr[0] & ~(JOFF_X1(-1))) | JOFF_X1(addr);

#ifdef TILEGX_JIT_DEBUG
				printf("[runtime relocate]%04d:\t", __LINE__);
				print_insn_tilegx(buf_ptr);
#endif
				break;
			}

			SLJIT_ASSERT(!(jump->flags & IS_JAL));

			/* Set the fields of immediate loads. */
			buf_ptr[0] = (buf_ptr[0] & ~(0xFFFFL << 43)) | (((addr >> 32) & 0xFFFFL) << 43);
			buf_ptr[1] = (buf_ptr[1] & ~(0xFFFFL << 43)) | (((addr >> 16) & 0xFFFFL) << 43);
			buf_ptr[2] = (buf_ptr[2] & ~(0xFFFFL << 43)) | ((addr & 0xFFFFL) << 43);
		} while (0);

		jump = jump->next;
	}

	compiler->error = SLJIT_ERR_COMPILED;
	compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins);
	SLJIT_CACHE_FLUSH(code, code_ptr);
	return code;
}

static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 dst_ar, sljit_sw imm)
{

	if (imm <= SIMM_16BIT_MAX && imm >= SIMM_16BIT_MIN)
		return ADDLI(dst_ar, ZERO, imm);

	if (imm <= SIMM_32BIT_MAX && imm >= SIMM_32BIT_MIN) {
		FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 16));
		return SHL16INSLI(dst_ar, dst_ar, imm);
	}

	if (imm <= SIMM_48BIT_MAX && imm >= SIMM_48BIT_MIN) {
		FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
		FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
		return SHL16INSLI(dst_ar, dst_ar, imm);
	}

	FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 48));
	FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 32));
	FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
	return SHL16INSLI(dst_ar, dst_ar, imm);
}

static sljit_s32 emit_const(struct sljit_compiler *compiler, sljit_s32 dst_ar, sljit_sw imm, int flush)
{
	/* Should *not* be optimized as load_immediate, as pcre relocation
	   mechanism will match this fixed 4-instruction pattern. */
	if (flush) {
		FAIL_IF(ADDLI_SOLO(dst_ar, ZERO, imm >> 32));
		FAIL_IF(SHL16INSLI_SOLO(dst_ar, dst_ar, imm >> 16));
		return SHL16INSLI_SOLO(dst_ar, dst_ar, imm);
	}

	FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
	FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
	return SHL16INSLI(dst_ar, dst_ar, imm);
}

static sljit_s32 emit_const_64(struct sljit_compiler *compiler, sljit_s32 dst_ar, sljit_sw imm, int flush)
{
	/* Should *not* be optimized as load_immediate, as pcre relocation
	   mechanism will match this fixed 4-instruction pattern. */
	if (flush) {
		FAIL_IF(ADDLI_SOLO(reg_map[dst_ar], ZERO, imm >> 48));
		FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
		FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
		return SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm);
	}

	FAIL_IF(ADDLI(reg_map[dst_ar], ZERO, imm >> 48));
	FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
	FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
	return SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm);
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
	sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
{
	sljit_ins base;
	sljit_s32 i, tmp;
 
	CHECK_ERROR();
	CHECK(check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
	set_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);

	local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1);
	local_size = (local_size + 7) & ~7;
	compiler->local_size = local_size;

	if (local_size <= SIMM_16BIT_MAX) {
		/* Frequent case. */
		FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, -local_size));
		base = SLJIT_LOCALS_REG_mapped;
	} else {
		FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
		FAIL_IF(ADD(TMP_REG2_mapped, SLJIT_LOCALS_REG_mapped, ZERO));
		FAIL_IF(SUB(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
		base = TMP_REG2_mapped;
		local_size = 0;
	}

	/* Save the return address. */
	FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
	FAIL_IF(ST_ADD(ADDR_TMP_mapped, RA, -8));

	/* Save the S registers. */
	tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
	for (i = SLJIT_S0; i >= tmp; i--) {
		FAIL_IF(ST_ADD(ADDR_TMP_mapped, reg_map[i], -8));
	}

	/* Save the R registers that need to be reserved. */
	for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
		FAIL_IF(ST_ADD(ADDR_TMP_mapped, reg_map[i], -8));
	}

	/* Move the arguments to S registers. */
	for (i = 0; i < args; i++) {
		FAIL_IF(ADD(reg_map[SLJIT_S0 - i], i, ZERO));
	}

	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
	sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
{
	CHECK_ERROR();
	CHECK(check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
	set_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);

	local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1);
	compiler->local_size = (local_size + 7) & ~7;

	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src, sljit_sw srcw)
{
	sljit_s32 local_size;
	sljit_ins base;
	sljit_s32 i, tmp;
	sljit_s32 saveds;

	CHECK_ERROR();
	CHECK(check_sljit_emit_return(compiler, op, src, srcw));

	FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));

	local_size = compiler->local_size;
	if (local_size <= SIMM_16BIT_MAX)
		base = SLJIT_LOCALS_REG_mapped;
	else {
		FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
		FAIL_IF(ADD(TMP_REG1_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
		base = TMP_REG1_mapped;
		local_size = 0;
	}

	/* Restore the return address. */
	FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
	FAIL_IF(LD_ADD(RA, ADDR_TMP_mapped, -8));

	/* Restore the S registers. */
	saveds = compiler->saveds;
	tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
	for (i = SLJIT_S0; i >= tmp; i--) {
		FAIL_IF(LD_ADD(reg_map[i], ADDR_TMP_mapped, -8));
	}

	/* Restore the R registers that need to be reserved. */
	for (i = compiler->scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
		FAIL_IF(LD_ADD(reg_map[i], ADDR_TMP_mapped, -8));
	}

	if (compiler->local_size <= SIMM_16BIT_MAX)
		FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, compiler->local_size));
	else
		FAIL_IF(ADD(SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped, ZERO));

	return JR(RA);
}

/* reg_ar is an absoulute register! */

/* Can perform an operation using at most 1 instruction. */
static sljit_s32 getput_arg_fast(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw)
{
	SLJIT_ASSERT(arg & SLJIT_MEM);

	if ((!(flags & WRITE_BACK) || !(arg & REG_MASK))
			&& !(arg & OFFS_REG_MASK) && argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
		/* Works for both absoulte and relative addresses. */
		if (SLJIT_UNLIKELY(flags & ARG_TEST))
			return 1;

		FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[arg & REG_MASK], argw));

		if (flags & LOAD_DATA)
			FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
		else
			FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));

		return -1;
	}

	return 0;
}

/* See getput_arg below.
   Note: can_cache is called only for binary operators. Those
   operators always uses word arguments without write back. */
static sljit_s32 can_cache(sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw)
{
	SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM));

	/* Simple operation except for updates. */
	if (arg & OFFS_REG_MASK) {
		argw &= 0x3;
		next_argw &= 0x3;
		if (argw && argw == next_argw
				&& (arg == next_arg || (arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK)))
			return 1;
		return 0;
	}

	if (arg == next_arg) {
		if (((next_argw - argw) <= SIMM_16BIT_MAX
				&& (next_argw - argw) >= SIMM_16BIT_MIN))
			return 1;

		return 0;
	}

	return 0;
}

/* Emit the necessary instructions. See can_cache above. */
static sljit_s32 getput_arg(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw)
{
	sljit_s32 tmp_ar, base;

	SLJIT_ASSERT(arg & SLJIT_MEM);
	if (!(next_arg & SLJIT_MEM)) {
		next_arg = 0;
		next_argw = 0;
	}

	if ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA))
		tmp_ar = reg_ar;
	else
		tmp_ar = TMP_REG1_mapped;

	base = arg & REG_MASK;

	if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
		argw &= 0x3;

		if ((flags & WRITE_BACK) && reg_ar == reg_map[base]) {
			SLJIT_ASSERT(!(flags & LOAD_DATA) && reg_map[TMP_REG1] != reg_ar);
			FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
			reg_ar = TMP_REG1_mapped;
		}

		/* Using the cache. */
		if (argw == compiler->cache_argw) {
			if (!(flags & WRITE_BACK)) {
				if (arg == compiler->cache_arg) {
					if (flags & LOAD_DATA)
						return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
					else
						return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
				}

				if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
					if (arg == next_arg && argw == (next_argw & 0x3)) {
						compiler->cache_arg = arg;
						compiler->cache_argw = argw;
						FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], TMP_REG3_mapped));
						if (flags & LOAD_DATA)
							return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
						else
							return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
					}

					FAIL_IF(ADD(tmp_ar, reg_map[base], TMP_REG3_mapped));
					if (flags & LOAD_DATA)
						return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
					else
						return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
				}
			} else {
				if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
					FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
					if (flags & LOAD_DATA)
						return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
					else
						return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
				}
			}
		}

		if (SLJIT_UNLIKELY(argw)) {
			compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK);
			compiler->cache_argw = argw;
			FAIL_IF(SHLI(TMP_REG3_mapped, reg_map[OFFS_REG(arg)], argw));
		}

		if (!(flags & WRITE_BACK)) {
			if (arg == next_arg && argw == (next_argw & 0x3)) {
				compiler->cache_arg = arg;
				compiler->cache_argw = argw;
				FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
				tmp_ar = TMP_REG3_mapped;
			} else
				FAIL_IF(ADD(tmp_ar, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));

			if (flags & LOAD_DATA)
				return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
			else
				return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
		}

		FAIL_IF(ADD(reg_map[base], reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));

		if (flags & LOAD_DATA)
			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
		else
			return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
	}

	if (SLJIT_UNLIKELY(flags & WRITE_BACK) && base) {
		/* Update only applies if a base register exists. */
		if (reg_ar == reg_map[base]) {
			SLJIT_ASSERT(!(flags & LOAD_DATA) && TMP_REG1_mapped != reg_ar);
			if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
				FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[base], argw));
				if (flags & LOAD_DATA)
					FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
				else
					FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));

				if (argw)
					return ADDLI(reg_map[base], reg_map[base], argw);

				return SLJIT_SUCCESS;
			}

			FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
			reg_ar = TMP_REG1_mapped;
		}

		if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
			if (argw)
				FAIL_IF(ADDLI(reg_map[base], reg_map[base], argw));
		} else {
			if (compiler->cache_arg == SLJIT_MEM
					&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
					&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
				if (argw != compiler->cache_argw) {
					FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
					compiler->cache_argw = argw;
				}

				FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
			} else {
				compiler->cache_arg = SLJIT_MEM;
				compiler->cache_argw = argw;
				FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
				FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
			}
		}

		if (flags & LOAD_DATA)
			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
		else
			return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
	}

	if (compiler->cache_arg == arg
			&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
			&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
		if (argw != compiler->cache_argw) {
			FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
			compiler->cache_argw = argw;
		}

		if (flags & LOAD_DATA)
			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
		else
			return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
	}

	if (compiler->cache_arg == SLJIT_MEM
			&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
			&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
		if (argw != compiler->cache_argw)
			FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
	} else {
		compiler->cache_arg = SLJIT_MEM;
		FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
	}

	compiler->cache_argw = argw;

	if (!base) {
		if (flags & LOAD_DATA)
			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
		else
			return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
	}

	if (arg == next_arg
			&& next_argw - argw <= SIMM_16BIT_MAX
			&& next_argw - argw >= SIMM_16BIT_MIN) {
		compiler->cache_arg = arg;
		FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, reg_map[base]));
		if (flags & LOAD_DATA)
			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
		else
			return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
	}

	FAIL_IF(ADD(tmp_ar, TMP_REG3_mapped, reg_map[base]));

	if (flags & LOAD_DATA)
		return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
	else
		return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
}

static SLJIT_INLINE sljit_s32 emit_op_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw)
{
	if (getput_arg_fast(compiler, flags, reg_ar, arg, argw))
		return compiler->error;

	compiler->cache_arg = 0;
	compiler->cache_argw = 0;
	return getput_arg(compiler, flags, reg_ar, arg, argw, 0, 0);
}

static SLJIT_INLINE sljit_s32 emit_op_mem2(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg1, sljit_sw arg1w, sljit_s32 arg2, sljit_sw arg2w)
{
	if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
		return compiler->error;
	return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw)
{
	CHECK_ERROR();
	CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw));
	ADJUST_LOCAL_OFFSET(dst, dstw);

	/* For UNUSED dst. Uncommon, but possible. */
	if (dst == SLJIT_UNUSED)
		return SLJIT_SUCCESS;

	if (FAST_IS_REG(dst))
		return ADD(reg_map[dst], RA, ZERO);

	/* Memory. */
	return emit_op_mem(compiler, WORD_DATA, RA, dst, dstw);
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw)
{
	CHECK_ERROR();
	CHECK(check_sljit_emit_fast_return(compiler, src, srcw));
	ADJUST_LOCAL_OFFSET(src, srcw);

	if (FAST_IS_REG(src))
		FAIL_IF(ADD(RA, reg_map[src], ZERO));

	else if (src & SLJIT_MEM)
		FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, RA, src, srcw));

	else if (src & SLJIT_IMM)
		FAIL_IF(load_immediate(compiler, RA, srcw));

	return JR(RA);
}

static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags, sljit_s32 dst, sljit_s32 src1, sljit_sw src2)
{
	sljit_s32 overflow_ra = 0;

	switch (GET_OPCODE(op)) {
	case SLJIT_MOV:
	case SLJIT_MOV_P:
		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
		if (dst != src2)
			return ADD(reg_map[dst], reg_map[src2], ZERO);
		return SLJIT_SUCCESS;

	case SLJIT_MOV_U32:
	case SLJIT_MOV_S32:
		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
			if (op == SLJIT_MOV_S32)
				return BFEXTS(reg_map[dst], reg_map[src2], 0, 31);

			return BFEXTU(reg_map[dst], reg_map[src2], 0, 31);
		} else if (dst != src2) {
			SLJIT_ASSERT(src2 == 0);
			return ADD(reg_map[dst], reg_map[src2], ZERO);
		}

		return SLJIT_SUCCESS;

	case SLJIT_MOV_U8:
	case SLJIT_MOV_S8:
		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
			if (op == SLJIT_MOV_S8)
				return BFEXTS(reg_map[dst], reg_map[src2], 0, 7);

			return BFEXTU(reg_map[dst], reg_map[src2], 0, 7);
		} else if (dst != src2) {
			SLJIT_ASSERT(src2 == 0);
			return ADD(reg_map[dst], reg_map[src2], ZERO);
		}

		return SLJIT_SUCCESS;

	case SLJIT_MOV_U16:
	case SLJIT_MOV_S16:
		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
			if (op == SLJIT_MOV_S16)
				return BFEXTS(reg_map[dst], reg_map[src2], 0, 15);

			return BFEXTU(reg_map[dst], reg_map[src2], 0, 15);
		} else if (dst != src2) {
			SLJIT_ASSERT(src2 == 0);
			return ADD(reg_map[dst], reg_map[src2], ZERO);
		}

		return SLJIT_SUCCESS;

	case SLJIT_NOT:
		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
		if (op & SLJIT_SET_E)
			FAIL_IF(NOR(EQUAL_FLAG, reg_map[src2], reg_map[src2]));
		if (CHECK_FLAGS(SLJIT_SET_E))
			FAIL_IF(NOR(reg_map[dst], reg_map[src2], reg_map[src2]));

		return SLJIT_SUCCESS;

	case SLJIT_CLZ:
		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
		if (op & SLJIT_SET_E)
			FAIL_IF(CLZ(EQUAL_FLAG, reg_map[src2]));
		if (CHECK_FLAGS(SLJIT_SET_E))
			FAIL_IF(CLZ(reg_map[dst], reg_map[src2]));

		return SLJIT_SUCCESS;

	case SLJIT_ADD:
		if (flags & SRC2_IMM) {
			if (op & SLJIT_SET_O) {
				FAIL_IF(SHRUI(TMP_EREG1, reg_map[src1], 63));
				if (src2 < 0)
					FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));
			}

			if (op & SLJIT_SET_E)
				FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], src2));

			if (op & SLJIT_SET_C) {
				if (src2 >= 0)
					FAIL_IF(ORI(ULESS_FLAG ,reg_map[src1], src2));
				else {
					FAIL_IF(ADDLI(ULESS_FLAG ,ZERO, src2));
					FAIL_IF(OR(ULESS_FLAG,reg_map[src1],ULESS_FLAG));
				}
			}

			/* dst may be the same as src1 or src2. */
			if (CHECK_FLAGS(SLJIT_SET_E))
				FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));

			if (op & SLJIT_SET_O) {
				FAIL_IF(SHRUI(OVERFLOW_FLAG, reg_map[dst], 63));

				if (src2 < 0)
					FAIL_IF(XORI(OVERFLOW_FLAG, OVERFLOW_FLAG, 1));
			}
		} else {
			if (op & SLJIT_SET_O) {
				FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
				FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));

				if (src1 != dst)
					overflow_ra = reg_map[src1];
				else if (src2 != dst)
					overflow_ra = reg_map[src2];
				else {
					/* Rare ocasion. */
					FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
					overflow_ra = TMP_EREG2;
				}
			}

			if (op & SLJIT_SET_E)
				FAIL_IF(ADD(EQUAL_FLAG ,reg_map[src1], reg_map[src2]));

			if (op & SLJIT_SET_C)
				FAIL_IF(OR(ULESS_FLAG,reg_map[src1], reg_map[src2]));

			/* dst may be the same as src1 or src2. */
			if (CHECK_FLAGS(SLJIT_SET_E))
				FAIL_IF(ADD(reg_map[dst],reg_map[src1], reg_map[src2]));

			if (op & SLJIT_SET_O) {
				FAIL_IF(XOR(OVERFLOW_FLAG,reg_map[dst], overflow_ra));
				FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
			}
		}

		/* a + b >= a | b (otherwise, the carry should be set to 1). */
		if (op & SLJIT_SET_C)
			FAIL_IF(CMPLTU(ULESS_FLAG ,reg_map[dst] ,ULESS_FLAG));

		if (op & SLJIT_SET_O)
			return CMOVNEZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);

		return SLJIT_SUCCESS;

	case SLJIT_ADDC:
		if (flags & SRC2_IMM) {
			if (op & SLJIT_SET_C) {
				if (src2 >= 0)
					FAIL_IF(ORI(TMP_EREG1, reg_map[src1], src2));
				else {
					FAIL_IF(ADDLI(TMP_EREG1, ZERO, src2));
					FAIL_IF(OR(TMP_EREG1, reg_map[src1], TMP_EREG1));
				}
			}

			FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));

		} else {
			if (op & SLJIT_SET_C)
				FAIL_IF(OR(TMP_EREG1, reg_map[src1], reg_map[src2]));

			/* dst may be the same as src1 or src2. */
			FAIL_IF(ADD(reg_map[dst], reg_map[src1], reg_map[src2]));
		}

		if (op & SLJIT_SET_C)
			FAIL_IF(CMPLTU(TMP_EREG1, reg_map[dst], TMP_EREG1));

		FAIL_IF(ADD(reg_map[dst], reg_map[dst], ULESS_FLAG));

		if (!(op & SLJIT_SET_C))
			return SLJIT_SUCCESS;

		/* Set TMP_EREG2 (dst == 0) && (ULESS_FLAG == 1). */
		FAIL_IF(CMPLTUI(TMP_EREG2, reg_map[dst], 1));
		FAIL_IF(AND(TMP_EREG2, TMP_EREG2, ULESS_FLAG));
		/* Set carry flag. */
		return OR(ULESS_FLAG, TMP_EREG2, TMP_EREG1);

	case SLJIT_SUB:
		if ((flags & SRC2_IMM) && ((op & (SLJIT_SET_U | SLJIT_SET_S)) || src2 == SIMM_16BIT_MIN)) {
			FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
			src2 = TMP_REG2;
			flags &= ~SRC2_IMM;
		}

		if (flags & SRC2_IMM) {
			if (op & SLJIT_SET_O) {
				FAIL_IF(SHRUI(TMP_EREG1,reg_map[src1], 63));

				if (src2 < 0)
					FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));

				if (src1 != dst)
					overflow_ra = reg_map[src1];
				else {
					/* Rare ocasion. */
					FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
					overflow_ra = TMP_EREG2;
				}
			}

			if (op & SLJIT_SET_E)
				FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], -src2));

			if (op & SLJIT_SET_C) {
				FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2));
				FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], ADDR_TMP_mapped));
			}

			/* dst may be the same as src1 or src2. */
			if (CHECK_FLAGS(SLJIT_SET_E))
				FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));

		} else {

			if (op & SLJIT_SET_O) {
				FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
				FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));

				if (src1 != dst)
					overflow_ra = reg_map[src1];
				else {
					/* Rare ocasion. */
					FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
					overflow_ra = TMP_EREG2;
				}
			}

			if (op & SLJIT_SET_E)
				FAIL_IF(SUB(EQUAL_FLAG, reg_map[src1], reg_map[src2]));

			if (op & (SLJIT_SET_U | SLJIT_SET_C))
				FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], reg_map[src2]));

			if (op & SLJIT_SET_U)
				FAIL_IF(CMPLTU(UGREATER_FLAG, reg_map[src2], reg_map[src1]));

			if (op & SLJIT_SET_S) {
				FAIL_IF(CMPLTS(LESS_FLAG ,reg_map[src1] ,reg_map[src2]));
				FAIL_IF(CMPLTS(GREATER_FLAG ,reg_map[src2] ,reg_map[src1]));
			}

			/* dst may be the same as src1 or src2. */
			if (CHECK_FLAGS(SLJIT_SET_E | SLJIT_SET_U | SLJIT_SET_S | SLJIT_SET_C))
				FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
		}

		if (op & SLJIT_SET_O) {
			FAIL_IF(XOR(OVERFLOW_FLAG, reg_map[dst], overflow_ra));
			FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
			return CMOVEQZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);
		}

		return SLJIT_SUCCESS;

	case SLJIT_SUBC:
		if ((flags & SRC2_IMM) && src2 == SIMM_16BIT_MIN) {
			FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
			src2 = TMP_REG2;
			flags &= ~SRC2_IMM;
		}

		if (flags & SRC2_IMM) {
			if (op & SLJIT_SET_C) {
				FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, -src2));
				FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], ADDR_TMP_mapped));
			}

			/* dst may be the same as src1 or src2. */
			FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));

		} else {
			if (op & SLJIT_SET_C)
				FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], reg_map[src2]));
				/* dst may be the same as src1 or src2. */
			FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
		}

		if (op & SLJIT_SET_C)
			FAIL_IF(CMOVEQZ(TMP_EREG1, reg_map[dst], ULESS_FLAG));

		FAIL_IF(SUB(reg_map[dst], reg_map[dst], ULESS_FLAG));

		if (op & SLJIT_SET_C)
			FAIL_IF(ADD(ULESS_FLAG, TMP_EREG1, ZERO));

		return SLJIT_SUCCESS;

	case SLJIT_MUL:
		if (flags & SRC2_IMM) {
			FAIL_IF(load_immediate(compiler, TMP_REG2_mapped, src2));
			src2 = TMP_REG2;
			flags &= ~SRC2_IMM;
		}

		FAIL_IF(MUL(reg_map[dst], reg_map[src1], reg_map[src2]));

		return SLJIT_SUCCESS;

#define EMIT_LOGICAL(op_imm, op_norm) \
	if (flags & SRC2_IMM) { \
		FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2)); \
		if (op & SLJIT_SET_E) \
			FAIL_IF(push_3_buffer( \
				compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
				ADDR_TMP_mapped, __LINE__)); \
		if (CHECK_FLAGS(SLJIT_SET_E)) \
			FAIL_IF(push_3_buffer( \
				compiler, op_norm, reg_map[dst], reg_map[src1], \
				ADDR_TMP_mapped, __LINE__)); \
	} else { \
		if (op & SLJIT_SET_E) \
			FAIL_IF(push_3_buffer( \
				compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
				reg_map[src2], __LINE__)); \
		if (CHECK_FLAGS(SLJIT_SET_E)) \
			FAIL_IF(push_3_buffer( \
				compiler, op_norm, reg_map[dst], reg_map[src1], \
				reg_map[src2], __LINE__)); \
	}

	case SLJIT_AND:
		EMIT_LOGICAL(TILEGX_OPC_ANDI, TILEGX_OPC_AND);
		return SLJIT_SUCCESS;

	case SLJIT_OR:
		EMIT_LOGICAL(TILEGX_OPC_ORI, TILEGX_OPC_OR);
		return SLJIT_SUCCESS;

	case SLJIT_XOR:
		EMIT_LOGICAL(TILEGX_OPC_XORI, TILEGX_OPC_XOR);
		return SLJIT_SUCCESS;

#define EMIT_SHIFT(op_imm, op_norm) \
	if (flags & SRC2_IMM) { \
		if (op & SLJIT_SET_E) \
			FAIL_IF(push_3_buffer( \
				compiler, op_imm, EQUAL_FLAG, reg_map[src1], \
				src2 & 0x3F, __LINE__)); \
		if (CHECK_FLAGS(SLJIT_SET_E)) \
			FAIL_IF(push_3_buffer( \
				compiler, op_imm, reg_map[dst], reg_map[src1], \
				src2 & 0x3F, __LINE__)); \
	} else { \
		if (op & SLJIT_SET_E) \
			FAIL_IF(push_3_buffer( \
				compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
				reg_map[src2], __LINE__)); \
		if (CHECK_FLAGS(SLJIT_SET_E)) \
			FAIL_IF(push_3_buffer( \
				compiler, op_norm, reg_map[dst], reg_map[src1], \
				reg_map[src2], __LINE__)); \
	}

	case SLJIT_SHL:
		EMIT_SHIFT(TILEGX_OPC_SHLI, TILEGX_OPC_SHL);
		return SLJIT_SUCCESS;

	case SLJIT_LSHR:
		EMIT_SHIFT(TILEGX_OPC_SHRUI, TILEGX_OPC_SHRU);
		return SLJIT_SUCCESS;

	case SLJIT_ASHR:
		EMIT_SHIFT(TILEGX_OPC_SHRSI, TILEGX_OPC_SHRS);
		return SLJIT_SUCCESS;
	}

	SLJIT_UNREACHABLE();
	return SLJIT_SUCCESS;
}

static sljit_s32 emit_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w)
{
	/* arg1 goes to TMP_REG1 or src reg.
	   arg2 goes to TMP_REG2, imm or src reg.
	   TMP_REG3 can be used for caching.
	   result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
	sljit_s32 dst_r = TMP_REG2;
	sljit_s32 src1_r;
	sljit_sw src2_r = 0;
	sljit_s32 sugg_src2_r = TMP_REG2;

	if (!(flags & ALT_KEEP_CACHE)) {
		compiler->cache_arg = 0;
		compiler->cache_argw = 0;
	}

	if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) {
		if (op >= SLJIT_MOV && op <= SLJIT_MOVU_S32 && !(src2 & SLJIT_MEM))
			return SLJIT_SUCCESS;
		if (GET_FLAGS(op))
			flags |= UNUSED_DEST;
	} else if (FAST_IS_REG(dst)) {
		dst_r = dst;
		flags |= REG_DEST;
		if (op >= SLJIT_MOV && op <= SLJIT_MOVU_S32)
			sugg_src2_r = dst_r;
	} else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, TMP_REG1_mapped, dst, dstw))
		flags |= SLOW_DEST;

	if (flags & IMM_OP) {
		if ((src2 & SLJIT_IMM) && src2w) {
			if ((!(flags & LOGICAL_OP)
					&& (src2w <= SIMM_16BIT_MAX && src2w >= SIMM_16BIT_MIN))
					|| ((flags & LOGICAL_OP) && !(src2w & ~UIMM_16BIT_MAX))) {
				flags |= SRC2_IMM;
				src2_r = src2w;
			}
		}

		if (!(flags & SRC2_IMM) && (flags & CUMULATIVE_OP) && (src1 & SLJIT_IMM) && src1w) {
			if ((!(flags & LOGICAL_OP)
					&& (src1w <= SIMM_16BIT_MAX && src1w >= SIMM_16BIT_MIN))
					|| ((flags & LOGICAL_OP) && !(src1w & ~UIMM_16BIT_MAX))) {
				flags |= SRC2_IMM;
				src2_r = src1w;

				/* And swap arguments. */
				src1 = src2;
				src1w = src2w;
				src2 = SLJIT_IMM;
				/* src2w = src2_r unneeded. */
			}
		}
	}

	/* Source 1. */
	if (FAST_IS_REG(src1)) {
		src1_r = src1;
		flags |= REG1_SOURCE;
	} else if (src1 & SLJIT_IMM) {
		if (src1w) {
			FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, src1w));
			src1_r = TMP_REG1;
		} else
			src1_r = 0;
	} else {
		if (getput_arg_fast(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w))
			FAIL_IF(compiler->error);
		else
			flags |= SLOW_SRC1;
		src1_r = TMP_REG1;
	}

	/* Source 2. */
	if (FAST_IS_REG(src2)) {
		src2_r = src2;
		flags |= REG2_SOURCE;
		if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_S32)
			dst_r = src2_r;
	} else if (src2 & SLJIT_IMM) {
		if (!(flags & SRC2_IMM)) {
			if (src2w) {
				FAIL_IF(load_immediate(compiler, reg_map[sugg_src2_r], src2w));
				src2_r = sugg_src2_r;
			} else {
				src2_r = 0;
				if ((op >= SLJIT_MOV && op <= SLJIT_MOVU_S32) && (dst & SLJIT_MEM))
					dst_r = 0;
			}
		}
	} else {
		if (getput_arg_fast(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w))
			FAIL_IF(compiler->error);
		else
			flags |= SLOW_SRC2;
		src2_r = sugg_src2_r;
	}

	if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
		SLJIT_ASSERT(src2_r == TMP_REG2);
		if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, src1, src1w));
			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
		} else {
			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, src2, src2w));
			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, dst, dstw));
		}
	} else if (flags & SLOW_SRC1)
		FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
	else if (flags & SLOW_SRC2)
		FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w, dst, dstw));

	FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));

	if (dst & SLJIT_MEM) {
		if (!(flags & SLOW_DEST)) {
			getput_arg_fast(compiler, flags, reg_map[dst_r], dst, dstw);
			return compiler->error;
		}

		return getput_arg(compiler, flags, reg_map[dst_r], dst, dstw, 0, 0);
	}

	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw, sljit_s32 type)
{
	sljit_s32 sugg_dst_ar, dst_ar;
	sljit_s32 flags = GET_ALL_FLAGS(op);
	sljit_s32 mem_type = (op & SLJIT_I32_OP) ? (INT_DATA | SIGNED_DATA) : WORD_DATA;

	CHECK_ERROR();
	CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type));
	ADJUST_LOCAL_OFFSET(dst, dstw);

	if (dst == SLJIT_UNUSED)
		return SLJIT_SUCCESS;

	op = GET_OPCODE(op);
	if (op == SLJIT_MOV_S32 || op == SLJIT_MOV_U32)
		mem_type = INT_DATA | SIGNED_DATA;
	sugg_dst_ar = reg_map[(op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2];

	compiler->cache_arg = 0;
	compiler->cache_argw = 0;
	if (op >= SLJIT_ADD && (src & SLJIT_MEM)) {
		ADJUST_LOCAL_OFFSET(src, srcw);
		FAIL_IF(emit_op_mem2(compiler, mem_type | LOAD_DATA, TMP_REG1_mapped, src, srcw, dst, dstw));
		src = TMP_REG1;
		srcw = 0;
	}

	switch (type & 0xff) {
	case SLJIT_EQUAL:
	case SLJIT_NOT_EQUAL:
		FAIL_IF(CMPLTUI(sugg_dst_ar, EQUAL_FLAG, 1));
		dst_ar = sugg_dst_ar;
		break;
	case SLJIT_LESS:
	case SLJIT_GREATER_EQUAL:
		dst_ar = ULESS_FLAG;
		break;
	case SLJIT_GREATER:
	case SLJIT_LESS_EQUAL:
		dst_ar = UGREATER_FLAG;
		break;
	case SLJIT_SIG_LESS:
	case SLJIT_SIG_GREATER_EQUAL:
		dst_ar = LESS_FLAG;
		break;
	case SLJIT_SIG_GREATER:
	case SLJIT_SIG_LESS_EQUAL:
		dst_ar = GREATER_FLAG;
		break;
	case SLJIT_OVERFLOW:
	case SLJIT_NOT_OVERFLOW:
		dst_ar = OVERFLOW_FLAG;
		break;
	case SLJIT_MUL_OVERFLOW:
	case SLJIT_MUL_NOT_OVERFLOW:
		FAIL_IF(CMPLTUI(sugg_dst_ar, OVERFLOW_FLAG, 1));
		dst_ar = sugg_dst_ar;
		type ^= 0x1; /* Flip type bit for the XORI below. */
		break;

	default:
		SLJIT_UNREACHABLE();
		dst_ar = sugg_dst_ar;
		break;
	}

	if (type & 0x1) {
		FAIL_IF(XORI(sugg_dst_ar, dst_ar, 1));
		dst_ar = sugg_dst_ar;
	}

	if (op >= SLJIT_ADD) {
		if (TMP_REG2_mapped != dst_ar)
			FAIL_IF(ADD(TMP_REG2_mapped, dst_ar, ZERO));
		return emit_op(compiler, op | flags, mem_type | CUMULATIVE_OP | LOGICAL_OP | IMM_OP | ALT_KEEP_CACHE, dst, dstw, src, srcw, TMP_REG2, 0);
	}

	if (dst & SLJIT_MEM)
		return emit_op_mem(compiler, mem_type, dst_ar, dst, dstw);

	if (sugg_dst_ar != dst_ar)
		return ADD(sugg_dst_ar, dst_ar, ZERO);

	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op) {
	CHECK_ERROR();
	CHECK(check_sljit_emit_op0(compiler, op));

	op = GET_OPCODE(op);
	switch (op) {
	case SLJIT_NOP:
		return push_0_buffer(compiler, TILEGX_OPC_FNOP, __LINE__);

	case SLJIT_BREAKPOINT:
		return PI(BPT);

	case SLJIT_LMUL_UW:
	case SLJIT_LMUL_SW:
	case SLJIT_DIVMOD_UW:
	case SLJIT_DIVMOD_SW:
	case SLJIT_DIV_UW:
	case SLJIT_DIV_SW:
		SLJIT_UNREACHABLE();
	}

	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw)
{
	CHECK_ERROR();
	CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
	ADJUST_LOCAL_OFFSET(dst, dstw);
	ADJUST_LOCAL_OFFSET(src, srcw);

	switch (GET_OPCODE(op)) {
	case SLJIT_MOV:
	case SLJIT_MOV_P:
		return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);

	case SLJIT_MOV_U32:
		return emit_op(compiler, SLJIT_MOV_U32, INT_DATA, dst, dstw, TMP_REG1, 0, src, srcw);

	case SLJIT_MOV_S32:
		return emit_op(compiler, SLJIT_MOV_S32, INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, srcw);

	case SLJIT_MOV_U8:
		return emit_op(compiler, SLJIT_MOV_U8, BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u8) srcw : srcw);

	case SLJIT_MOV_S8:
		return emit_op(compiler, SLJIT_MOV_S8, BYTE_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s8) srcw : srcw);

	case SLJIT_MOV_U16:
		return emit_op(compiler, SLJIT_MOV_U16, HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u16) srcw : srcw);

	case SLJIT_MOV_S16:
		return emit_op(compiler, SLJIT_MOV_S16, HALF_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s16) srcw : srcw);

	case SLJIT_MOVU:
	case SLJIT_MOVU_P:
		return emit_op(compiler, SLJIT_MOV, WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);

	case SLJIT_MOVU_U32:
		return emit_op(compiler, SLJIT_MOV_U32, INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);

	case SLJIT_MOVU_S32:
		return emit_op(compiler, SLJIT_MOV_S32, INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);

	case SLJIT_MOVU_U8:
		return emit_op(compiler, SLJIT_MOV_U8, BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u8) srcw : srcw);

	case SLJIT_MOVU_S8:
		return emit_op(compiler, SLJIT_MOV_S8, BYTE_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s8) srcw : srcw);

	case SLJIT_MOVU_U16:
		return emit_op(compiler, SLJIT_MOV_U16, HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u16) srcw : srcw);

	case SLJIT_MOVU_S16:
		return emit_op(compiler, SLJIT_MOV_S16, HALF_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s16) srcw : srcw);

	case SLJIT_NOT:
		return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);

	case SLJIT_NEG:
		return emit_op(compiler, SLJIT_SUB | GET_ALL_FLAGS(op), IMM_OP, dst, dstw, SLJIT_IMM, 0, src, srcw);

	case SLJIT_CLZ:
		return emit_op(compiler, op, (op & SLJIT_I32_OP) ? INT_DATA : WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
	}

	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w)
{
	CHECK_ERROR();
	CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
	ADJUST_LOCAL_OFFSET(dst, dstw);
	ADJUST_LOCAL_OFFSET(src1, src1w);
	ADJUST_LOCAL_OFFSET(src2, src2w);

	switch (GET_OPCODE(op)) {
	case SLJIT_ADD:
	case SLJIT_ADDC:
		return emit_op(compiler, op, CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);

	case SLJIT_SUB:
	case SLJIT_SUBC:
		return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);

	case SLJIT_MUL:
		return emit_op(compiler, op, CUMULATIVE_OP, dst, dstw, src1, src1w, src2, src2w);

	case SLJIT_AND:
	case SLJIT_OR:
	case SLJIT_XOR:
		return emit_op(compiler, op, CUMULATIVE_OP | LOGICAL_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);

	case SLJIT_SHL:
	case SLJIT_LSHR:
	case SLJIT_ASHR:
		if (src2 & SLJIT_IMM)
			src2w &= 0x3f;
		if (op & SLJIT_I32_OP)
			src2w &= 0x1f;

		return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);
	}

	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE struct sljit_label * sljit_emit_label(struct sljit_compiler *compiler)
{
	struct sljit_label *label;

	flush_buffer(compiler);

	CHECK_ERROR_PTR();
	CHECK_PTR(check_sljit_emit_label(compiler));

	if (compiler->last_label && compiler->last_label->size == compiler->size)
		return compiler->last_label;

	label = (struct sljit_label *)ensure_abuf(compiler, sizeof(struct sljit_label));
	PTR_FAIL_IF(!label);
	set_label(label, compiler);
	return label;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw)
{
	sljit_s32 src_r = TMP_REG2;
	struct sljit_jump *jump = NULL;

	flush_buffer(compiler);

	CHECK_ERROR();
	CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
	ADJUST_LOCAL_OFFSET(src, srcw);

	if (FAST_IS_REG(src)) {
		if (reg_map[src] != 0)
			src_r = src;
		else
			FAIL_IF(ADD_SOLO(TMP_REG2_mapped, reg_map[src], ZERO));
	}

	if (type >= SLJIT_CALL0) {
		SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
		if (src & (SLJIT_IMM | SLJIT_MEM)) {
			if (src & SLJIT_IMM)
				FAIL_IF(emit_const(compiler, reg_map[PIC_ADDR_REG], srcw, 1));
			else {
				SLJIT_ASSERT(src_r == TMP_REG2 && (src & SLJIT_MEM));
				FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
			}

			FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));

			FAIL_IF(ADDI_SOLO(54, 54, -16));

			FAIL_IF(JALR_SOLO(reg_map[PIC_ADDR_REG]));

			return ADDI_SOLO(54, 54, 16);
		}

		/* Register input. */
		if (type >= SLJIT_CALL1)
			FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));

		FAIL_IF(ADD_SOLO(reg_map[PIC_ADDR_REG], reg_map[src_r], ZERO));

		FAIL_IF(ADDI_SOLO(54, 54, -16));

		FAIL_IF(JALR_SOLO(reg_map[src_r]));

		return ADDI_SOLO(54, 54, 16);
	}

	if (src & SLJIT_IMM) {
		jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
		FAIL_IF(!jump);
		set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_JAL : 0));
		jump->u.target = srcw;
		FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));

		if (type >= SLJIT_FAST_CALL) {
			FAIL_IF(ADD_SOLO(ZERO, ZERO, ZERO));
			jump->addr = compiler->size;
			FAIL_IF(JR_SOLO(reg_map[src_r]));
		} else {
			jump->addr = compiler->size;
			FAIL_IF(JR_SOLO(reg_map[src_r]));
		}

		return SLJIT_SUCCESS;

	} else if (src & SLJIT_MEM) {
		FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
		flush_buffer(compiler);
	}

	FAIL_IF(JR_SOLO(reg_map[src_r]));

	if (jump)
		jump->addr = compiler->size;

	return SLJIT_SUCCESS;
}

#define BR_Z(src) \
	inst = BEQZ_X1 | SRCA_X1(src); \
	flags = IS_COND;

#define BR_NZ(src) \
	inst = BNEZ_X1 | SRCA_X1(src); \
	flags = IS_COND;

SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump * sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type)
{
	struct sljit_jump *jump;
	sljit_ins inst;
	sljit_s32 flags = 0;

	flush_buffer(compiler);

	CHECK_ERROR_PTR();
	CHECK_PTR(check_sljit_emit_jump(compiler, type));

	jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
	PTR_FAIL_IF(!jump);
	set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
	type &= 0xff;

	switch (type) {
	case SLJIT_EQUAL:
		BR_NZ(EQUAL_FLAG);
		break;
	case SLJIT_NOT_EQUAL:
		BR_Z(EQUAL_FLAG);
		break;
	case SLJIT_LESS:
		BR_Z(ULESS_FLAG);
		break;
	case SLJIT_GREATER_EQUAL:
		BR_NZ(ULESS_FLAG);
		break;
	case SLJIT_GREATER:
		BR_Z(UGREATER_FLAG);
		break;
	case SLJIT_LESS_EQUAL:
		BR_NZ(UGREATER_FLAG);
		break;
	case SLJIT_SIG_LESS:
		BR_Z(LESS_FLAG);
		break;
	case SLJIT_SIG_GREATER_EQUAL:
		BR_NZ(LESS_FLAG);
		break;
	case SLJIT_SIG_GREATER:
		BR_Z(GREATER_FLAG);
		break;
	case SLJIT_SIG_LESS_EQUAL:
		BR_NZ(GREATER_FLAG);
		break;
	case SLJIT_OVERFLOW:
	case SLJIT_MUL_OVERFLOW:
		BR_Z(OVERFLOW_FLAG);
		break;
	case SLJIT_NOT_OVERFLOW:
	case SLJIT_MUL_NOT_OVERFLOW:
		BR_NZ(OVERFLOW_FLAG);
		break;
	default:
		/* Not conditional branch. */
		inst = 0;
		break;
	}

	jump->flags |= flags;

	if (inst) {
		inst = inst | ((type <= SLJIT_JUMP) ? BOFF_X1(5) : BOFF_X1(6));
		PTR_FAIL_IF(PI(inst));
	}

	PTR_FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));
	if (type <= SLJIT_JUMP) {
		jump->addr = compiler->size;
		PTR_FAIL_IF(JR_SOLO(TMP_REG2_mapped));
	} else {
		SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
		/* Cannot be optimized out if type is >= CALL0. */
		jump->flags |= IS_JAL | (type >= SLJIT_CALL0 ? SLJIT_REWRITABLE_JUMP : 0);
		PTR_FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));
		jump->addr = compiler->size;
		PTR_FAIL_IF(JALR_SOLO(TMP_REG2_mapped));
	}

	return jump;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_is_fpu_available(void)
{
	return 0;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw)
{
	SLJIT_UNREACHABLE();
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w)
{
	SLJIT_UNREACHABLE();
}

SLJIT_API_FUNC_ATTRIBUTE struct sljit_const * sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value)
{
	struct sljit_const *const_;
	sljit_s32 reg;

	flush_buffer(compiler);

	CHECK_ERROR_PTR();
	CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
	ADJUST_LOCAL_OFFSET(dst, dstw);

	const_ = (struct sljit_const *)ensure_abuf(compiler, sizeof(struct sljit_const));
	PTR_FAIL_IF(!const_);
	set_const(const_, compiler);

	reg = FAST_IS_REG(dst) ? dst : TMP_REG2;

	PTR_FAIL_IF(emit_const_64(compiler, reg, init_value, 1));

	if (dst & SLJIT_MEM)
		PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0));
	return const_;
}

SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target)
{
	sljit_ins *inst = (sljit_ins *)addr;

	inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_target >> 32) & 0xffff) << 43);
	inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_target >> 16) & 0xffff) << 43);
	inst[2] = (inst[2] & ~(0xFFFFL << 43)) | ((new_target & 0xffff) << 43);
	SLJIT_CACHE_FLUSH(inst, inst + 3);
}

SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
{
	sljit_ins *inst = (sljit_ins *)addr;

	inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_constant >> 48) & 0xFFFFL) << 43);
	inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_constant >> 32) & 0xFFFFL) << 43);
	inst[2] = (inst[2] & ~(0xFFFFL << 43)) | (((new_constant >> 16) & 0xFFFFL) << 43);
	inst[3] = (inst[3] & ~(0xFFFFL << 43)) | ((new_constant & 0xFFFFL) << 43);
	SLJIT_CACHE_FLUSH(inst, inst + 4);
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg)
{
	CHECK_REG_INDEX(check_sljit_get_register_index(reg));
	return reg_map[reg];
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
	void *instruction, sljit_s32 size)
{
	CHECK_ERROR();
	CHECK(check_sljit_emit_op_custom(compiler, instruction, size));
	return SLJIT_ERR_UNSUPPORTED;
}