Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
/*	$NetBSD: subr_blist.c,v 1.13 2017/02/13 16:53:41 zafer Exp $	*/

/*-
 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
/*
 * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
 *
 *	This module implements a general bitmap allocator/deallocator.  The
 *	allocator eats around 2 bits per 'block'.  The module does not 
 *	try to interpret the meaning of a 'block' other than to return 
 *	BLIST_NONE on an allocation failure.
 *
 *	A radix tree is used to maintain the bitmap.  Two radix constants are
 *	involved:  One for the bitmaps contained in the leaf nodes (typically
 *	32), and one for the meta nodes (typically 16).  Both meta and leaf
 *	nodes have a hint field.  This field gives us a hint as to the largest
 *	free contiguous range of blocks under the node.  It may contain a
 *	value that is too high, but will never contain a value that is too 
 *	low.  When the radix tree is searched, allocation failures in subtrees
 *	update the hint. 
 *
 *	The radix tree also implements two collapsed states for meta nodes:
 *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
 *	in either of these two states, all information contained underneath
 *	the node is considered stale.  These states are used to optimize
 *	allocation and freeing operations.
 *
 * 	The hinting greatly increases code efficiency for allocations while
 *	the general radix structure optimizes both allocations and frees.  The
 *	radix tree should be able to operate well no matter how much 
 *	fragmentation there is and no matter how large a bitmap is used.
 *
 *	Unlike the rlist code, the blist code wires all necessary memory at
 *	creation time.  Neither allocations nor frees require interaction with
 *	the memory subsystem.  In contrast, the rlist code may allocate memory 
 *	on an rlist_free() call.  The non-blocking features of the blist code
 *	are used to great advantage in the swap code (vm/nswap_pager.c).  The
 *	rlist code uses a little less overall memory than the blist code (but
 *	due to swap interleaving not all that much less), but the blist code 
 *	scales much, much better.
 *
 *	LAYOUT: The radix tree is layed out recursively using a
 *	linear array.  Each meta node is immediately followed (layed out
 *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
 *	is a recursive structure but one that can be easily scanned through
 *	a very simple 'skip' calculation.  In order to support large radixes, 
 *	portions of the tree may reside outside our memory allocation.  We 
 *	handle this with an early-termination optimization (when bighint is 
 *	set to -1) on the scan.  The memory allocation is only large enough 
 *	to cover the number of blocks requested at creation time even if it
 *	must be encompassed in larger root-node radix.
 *
 *	NOTE: the allocator cannot currently allocate more than 
 *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too 
 *	large' if you try.  This is an area that could use improvement.  The 
 *	radix is large enough that this restriction does not effect the swap 
 *	system, though.  Currently only the allocation code is effected by
 *	this algorithmic unfeature.  The freeing code can handle arbitrary
 *	ranges.
 *
 *	This code can be compiled stand-alone for debugging.
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_blist.c,v 1.13 2017/02/13 16:53:41 zafer Exp $");
#if 0
__FBSDID("$FreeBSD: src/sys/kern/subr_blist.c,v 1.17 2004/06/04 04:03:25 alc Exp $");
#endif

#ifdef _KERNEL

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/blist.h>
#include <sys/kmem.h>

#else

#ifndef BLIST_NO_DEBUG
#define BLIST_DEBUG
#endif

#include <sys/types.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
#include <inttypes.h>

#define	KM_SLEEP 1
#define	kmem_zalloc(a,b) calloc(1, (a))
#define	kmem_alloc(a,b) malloc(a)
#define	kmem_free(a,b) free(a)

#include "../sys/blist.h"

void panic(const char *ctl, ...) __printflike(1, 2);

#endif

/*
 * blmeta and bl_bitmap_t MUST be a power of 2 in size.
 */

typedef struct blmeta {
	union {
		blist_blkno_t	bmu_avail; /* space available under us	*/
		blist_bitmap_t	bmu_bitmap; /* bitmap if we are a leaf	*/
	} u;
	blist_blkno_t	bm_bighint;	/* biggest contiguous block hint*/
} blmeta_t;

struct blist {
	blist_blkno_t		bl_blocks;	/* area of coverage		*/
	blist_blkno_t		bl_radix;	/* coverage radix		*/
	blist_blkno_t		bl_skip;	/* starting skip		*/
	blist_blkno_t		bl_free;	/* number of free blocks	*/
	blmeta_t	*bl_root;	/* root of radix tree		*/
	blist_blkno_t		bl_rootblks;	/* blks allocated for tree */
};

#define BLIST_META_RADIX	16

/*
 * static support functions
 */

static blist_blkno_t blst_leaf_alloc(blmeta_t *scan, blist_blkno_t blk,
    int count);
static blist_blkno_t blst_meta_alloc(blmeta_t *scan, blist_blkno_t blk, 
    blist_blkno_t count, blist_blkno_t radix, blist_blkno_t skip);
static void blst_leaf_free(blmeta_t *scan, blist_blkno_t relblk, int count);
static void blst_meta_free(blmeta_t *scan, blist_blkno_t freeBlk,
    blist_blkno_t count, blist_blkno_t radix, blist_blkno_t skip,
    blist_blkno_t blk);
static void blst_copy(blmeta_t *scan, blist_blkno_t blk, blist_blkno_t radix, 
    blist_blkno_t skip, blist_t dest, blist_blkno_t count);
static int blst_leaf_fill(blmeta_t *scan, blist_blkno_t blk, int count);
static blist_blkno_t blst_meta_fill(blmeta_t *scan, blist_blkno_t allocBlk,
    blist_blkno_t count, blist_blkno_t radix, blist_blkno_t skip,
    blist_blkno_t blk);
static blist_blkno_t blst_radix_init(blmeta_t *scan, blist_blkno_t radix, 
    blist_blkno_t skip, blist_blkno_t count);
#ifndef _KERNEL
static void blst_radix_print(blmeta_t *scan, blist_blkno_t blk,
    blist_blkno_t radix, blist_blkno_t skip, int tab);
#endif

/*
 * blist_create() - create a blist capable of handling up to the specified
 *		    number of blocks
 *
 *	blocks must be greater than 0
 *
 *	The smallest blist consists of a single leaf node capable of 
 *	managing BLIST_BMAP_RADIX blocks.
 */

blist_t 
blist_create(blist_blkno_t blocks)
{
	blist_t bl;
	blist_blkno_t radix;
	blist_blkno_t skip = 0;

	/*
	 * Calculate radix and skip field used for scanning.
	 *
	 * XXX check overflow
	 */
	radix = BLIST_BMAP_RADIX;

	while (radix < blocks) {
		radix *= BLIST_META_RADIX;
		skip = (skip + 1) * BLIST_META_RADIX;
	}

	bl = kmem_zalloc(sizeof(struct blist), KM_SLEEP);

	bl->bl_blocks = blocks;
	bl->bl_radix = radix;
	bl->bl_skip = skip;
	bl->bl_rootblks = 1 +
	    blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
	bl->bl_root = kmem_alloc(sizeof(blmeta_t) * bl->bl_rootblks, KM_SLEEP);

#if defined(BLIST_DEBUG)
	printf(
		"BLIST representing %" PRIu64 " blocks (%" PRIu64 " MB of swap)"
		", requiring %" PRIu64 "K of ram\n",
		(uint64_t)bl->bl_blocks,
		(uint64_t)bl->bl_blocks * 4 / 1024,
		((uint64_t)bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
	);
	printf("BLIST raw radix tree contains %" PRIu64 " records\n",
	    (uint64_t)bl->bl_rootblks);
#endif
	blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);

	return(bl);
}

void 
blist_destroy(blist_t bl)
{

	kmem_free(bl->bl_root, sizeof(blmeta_t) * bl->bl_rootblks);
	kmem_free(bl, sizeof(struct blist));
}

/*
 * blist_alloc() - reserve space in the block bitmap.  Return the base
 *		     of a contiguous region or BLIST_NONE if space could
 *		     not be allocated.
 */

blist_blkno_t 
blist_alloc(blist_t bl, blist_blkno_t count)
{
	blist_blkno_t blk = BLIST_NONE;

	if (bl) {
		if (bl->bl_radix == BLIST_BMAP_RADIX)
			blk = blst_leaf_alloc(bl->bl_root, 0, count);
		else
			blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
		if (blk != BLIST_NONE)
			bl->bl_free -= count;
	}
	return(blk);
}

/*
 * blist_free() -	free up space in the block bitmap.  Return the base
 *		     	of a contiguous region.  Panic if an inconsistancy is
 *			found.
 */

void 
blist_free(blist_t bl, blist_blkno_t blkno, blist_blkno_t count)
{
	if (bl) {
		if (bl->bl_radix == BLIST_BMAP_RADIX)
			blst_leaf_free(bl->bl_root, blkno, count);
		else
			blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
		bl->bl_free += count;
	}
}

/*
 * blist_fill() -	mark a region in the block bitmap as off-limits
 *			to the allocator (i.e. allocate it), ignoring any
 *			existing allocations.  Return the number of blocks
 *			actually filled that were free before the call.
 */

blist_blkno_t
blist_fill(blist_t bl, blist_blkno_t blkno, blist_blkno_t count)
{
	blist_blkno_t filled;

	if (bl) {
		if (bl->bl_radix == BLIST_BMAP_RADIX)
			filled = blst_leaf_fill(bl->bl_root, blkno, count);
		else
			filled = blst_meta_fill(bl->bl_root, blkno, count,
			    bl->bl_radix, bl->bl_skip, 0);
		bl->bl_free -= filled;
		return filled;
	} else
		return 0;
}

/*
 * blist_resize() -	resize an existing radix tree to handle the
 *			specified number of blocks.  This will reallocate
 *			the tree and transfer the previous bitmap to the new
 *			one.  When extending the tree you can specify whether
 *			the new blocks are to left allocated or freed.
 */

void
blist_resize(blist_t *pbl, blist_blkno_t count, int freenew)
{
    blist_t newbl = blist_create(count);
    blist_t save = *pbl;

    *pbl = newbl;
    if (count > save->bl_blocks)
	    count = save->bl_blocks;
    blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);

    /*
     * If resizing upwards, should we free the new space or not?
     */
    if (freenew && count < newbl->bl_blocks) {
	    blist_free(newbl, count, newbl->bl_blocks - count);
    }
    blist_destroy(save);
}

#ifdef BLIST_DEBUG

/*
 * blist_print()    - dump radix tree
 */

void
blist_print(blist_t bl)
{
	printf("BLIST {\n");
	blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
	printf("}\n");
}

#endif

/************************************************************************
 *			  ALLOCATION SUPPORT FUNCTIONS			*
 ************************************************************************
 *
 *	These support functions do all the actual work.  They may seem 
 *	rather longish, but that's because I've commented them up.  The
 *	actual code is straight forward.
 *
 */

/*
 * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
 *
 *	This is the core of the allocator and is optimized for the 1 block
 *	and the BLIST_BMAP_RADIX block allocation cases.  Other cases are
 *	somewhat slower.  The 1 block allocation case is log2 and extremely
 *	quick.
 */

static blist_blkno_t
blst_leaf_alloc(
	blmeta_t *scan,
	blist_blkno_t blk,
	int count
) {
	blist_bitmap_t orig = scan->u.bmu_bitmap;

	if (orig == 0) {
		/*
		 * Optimize bitmap all-allocated case.  Also, count = 1
		 * case assumes at least 1 bit is free in the bitmap, so
		 * we have to take care of this case here.
		 */
		scan->bm_bighint = 0;
		return(BLIST_NONE);
	}
	if (count == 1) {
		/*
		 * Optimized code to allocate one bit out of the bitmap
		 */
		blist_bitmap_t mask;
		int j = BLIST_BMAP_RADIX/2;
		int r = 0;

		mask = (blist_bitmap_t)-1 >> (BLIST_BMAP_RADIX/2);

		while (j) {
			if ((orig & mask) == 0) {
			    r += j;
			    orig >>= j;
			}
			j >>= 1;
			mask >>= j;
		}
		scan->u.bmu_bitmap &= ~((blist_bitmap_t)1 << r);
		return(blk + r);
	}
	if (count <= BLIST_BMAP_RADIX) {
		/*
		 * non-optimized code to allocate N bits out of the bitmap.
		 * The more bits, the faster the code runs.  It will run
		 * the slowest allocating 2 bits, but since there aren't any
		 * memory ops in the core loop (or shouldn't be, anyway),
		 * you probably won't notice the difference.
		 */
		int j;
		int n = BLIST_BMAP_RADIX - count;
		blist_bitmap_t mask;

		mask = (blist_bitmap_t)-1 >> n;

		for (j = 0; j <= n; ++j) {
			if ((orig & mask) == mask) {
				scan->u.bmu_bitmap &= ~mask;
				return(blk + j);
			}
			mask = (mask << 1);
		}
	}
	/*
	 * We couldn't allocate count in this subtree, update bighint.
	 */
	scan->bm_bighint = count - 1;
	return(BLIST_NONE);
}

/*
 * blist_meta_alloc() -	allocate at a meta in the radix tree.
 *
 *	Attempt to allocate at a meta node.  If we can't, we update
 *	bighint and return a failure.  Updating bighint optimize future
 *	calls that hit this node.  We have to check for our collapse cases
 *	and we have a few optimizations strewn in as well.
 */

static blist_blkno_t
blst_meta_alloc(
	blmeta_t *scan, 
	blist_blkno_t blk,
	blist_blkno_t count,
	blist_blkno_t radix, 
	blist_blkno_t skip
) {
	blist_blkno_t i;
	blist_blkno_t next_skip = (skip / BLIST_META_RADIX);

	if (scan->u.bmu_avail == 0)  {
		/*
		 * ALL-ALLOCATED special case
		 */
		scan->bm_bighint = count;
		return(BLIST_NONE);
	}

	if (scan->u.bmu_avail == radix) {
		radix /= BLIST_META_RADIX;

		/*
		 * ALL-FREE special case, initialize uninitialize
		 * sublevel.
		 */
		for (i = 1; i <= skip; i += next_skip) {
			if (scan[i].bm_bighint == (blist_blkno_t)-1)
				break;
			if (next_skip == 1) {
				scan[i].u.bmu_bitmap = (blist_bitmap_t)-1;
				scan[i].bm_bighint = BLIST_BMAP_RADIX;
			} else {
				scan[i].bm_bighint = radix;
				scan[i].u.bmu_avail = radix;
			}
		}
	} else {
		radix /= BLIST_META_RADIX;
	}

	for (i = 1; i <= skip; i += next_skip) {
		if (scan[i].bm_bighint == (blist_blkno_t)-1) {
			/*
			 * Terminator
			 */
			break;
		} else if (count <= scan[i].bm_bighint) {
			/*
			 * count fits in object
			 */
			blist_blkno_t r;
			if (next_skip == 1) {
				r = blst_leaf_alloc(&scan[i], blk, count);
			} else {
				r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
			}
			if (r != BLIST_NONE) {
				scan->u.bmu_avail -= count;
				if (scan->bm_bighint > scan->u.bmu_avail)
					scan->bm_bighint = scan->u.bmu_avail;
				return(r);
			}
		} else if (count > radix) {
			/*
			 * count does not fit in object even if it were
			 * complete free.
			 */
			panic("blist_meta_alloc: allocation too large");
		}
		blk += radix;
	}

	/*
	 * We couldn't allocate count in this subtree, update bighint.
	 */
	if (scan->bm_bighint >= count)
		scan->bm_bighint = count - 1;
	return(BLIST_NONE);
}

/*
 * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
 *
 */

static void
blst_leaf_free(
	blmeta_t *scan,
	blist_blkno_t blk,
	int count
) {
	/*
	 * free some data in this bitmap
	 *
	 * e.g.
	 *	0000111111111110000
	 *          \_________/\__/
	 *		v        n
	 */
	int n = blk & (BLIST_BMAP_RADIX - 1);
	blist_bitmap_t mask;

	mask = ((blist_bitmap_t)-1 << n) &
	    ((blist_bitmap_t)-1 >> (BLIST_BMAP_RADIX - count - n));

	if (scan->u.bmu_bitmap & mask)
		panic("blst_radix_free: freeing free block");
	scan->u.bmu_bitmap |= mask;

	/*
	 * We could probably do a better job here.  We are required to make
	 * bighint at least as large as the biggest contiguous block of 
	 * data.  If we just shoehorn it, a little extra overhead will
	 * be incured on the next allocation (but only that one typically).
	 */
	scan->bm_bighint = BLIST_BMAP_RADIX;
}

/*
 * BLST_META_FREE() - free allocated blocks from radix tree meta info
 *
 *	This support routine frees a range of blocks from the bitmap.
 *	The range must be entirely enclosed by this radix node.  If a
 *	meta node, we break the range down recursively to free blocks
 *	in subnodes (which means that this code can free an arbitrary
 *	range whereas the allocation code cannot allocate an arbitrary
 *	range).
 */

static void 
blst_meta_free(
	blmeta_t *scan, 
	blist_blkno_t freeBlk,
	blist_blkno_t count,
	blist_blkno_t radix, 
	blist_blkno_t skip,
	blist_blkno_t blk
) {
	blist_blkno_t i;
	blist_blkno_t next_skip = (skip / BLIST_META_RADIX);

#if 0
	printf("FREE (%" PRIx64 ",%" PRIu64
	    ") FROM (%" PRIx64 ",%" PRIu64 ")\n",
	    (uint64_t)freeBlk, (uint64_t)count,
	    (uint64_t)blk, (uint64_t)radix
	);
#endif

	if (scan->u.bmu_avail == 0) {
		/*
		 * ALL-ALLOCATED special case, with possible
		 * shortcut to ALL-FREE special case.
		 */
		scan->u.bmu_avail = count;
		scan->bm_bighint = count;

		if (count != radix)  {
			for (i = 1; i <= skip; i += next_skip) {
				if (scan[i].bm_bighint == (blist_blkno_t)-1)
					break;
				scan[i].bm_bighint = 0;
				if (next_skip == 1) {
					scan[i].u.bmu_bitmap = 0;
				} else {
					scan[i].u.bmu_avail = 0;
				}
			}
			/* fall through */
		}
	} else {
		scan->u.bmu_avail += count;
		/* scan->bm_bighint = radix; */
	}

	/*
	 * ALL-FREE special case.
	 */

	if (scan->u.bmu_avail == radix)
		return;
	if (scan->u.bmu_avail > radix)
		panic("blst_meta_free: freeing already free blocks (%"
		    PRIu64 ") %" PRIu64 "/%" PRIu64,
		    (uint64_t)count,
		    (uint64_t)scan->u.bmu_avail,
		    (uint64_t)radix);

	/*
	 * Break the free down into its components
	 */

	radix /= BLIST_META_RADIX;

	i = (freeBlk - blk) / radix;
	blk += i * radix;
	i = i * next_skip + 1;

	while (i <= skip && blk < freeBlk + count) {
		blist_blkno_t v;

		v = blk + radix - freeBlk;
		if (v > count)
			v = count;

		if (scan->bm_bighint == (blist_blkno_t)-1)
			panic("blst_meta_free: freeing unexpected range");

		if (next_skip == 1) {
			blst_leaf_free(&scan[i], freeBlk, v);
		} else {
			blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
		}
		if (scan->bm_bighint < scan[i].bm_bighint)
		    scan->bm_bighint = scan[i].bm_bighint;
		count -= v;
		freeBlk += v;
		blk += radix;
		i += next_skip;
	}
}

/*
 * BLIST_RADIX_COPY() - copy one radix tree to another
 *
 *	Locates free space in the source tree and frees it in the destination
 *	tree.  The space may not already be free in the destination.
 */

static void blst_copy(
	blmeta_t *scan, 
	blist_blkno_t blk,
	blist_blkno_t radix, 
	blist_blkno_t skip, 
	blist_t dest,
	blist_blkno_t count
) {
	blist_blkno_t next_skip;
	blist_blkno_t i;

	/*
	 * Leaf node
	 */

	if (radix == BLIST_BMAP_RADIX) {
		blist_bitmap_t v = scan->u.bmu_bitmap;

		if (v == (blist_bitmap_t)-1) {
			blist_free(dest, blk, count);
		} else if (v != 0) {
			int j;

			for (j = 0; j < BLIST_BMAP_RADIX && j < count; ++j) {
				if (v & (1 << j))
					blist_free(dest, blk + j, 1);
			}
		}
		return;
	}

	/*
	 * Meta node
	 */

	if (scan->u.bmu_avail == 0) {
		/*
		 * Source all allocated, leave dest allocated
		 */
		return;
	} 
	if (scan->u.bmu_avail == radix) {
		/*
		 * Source all free, free entire dest
		 */
		if (count < radix)
			blist_free(dest, blk, count);
		else
			blist_free(dest, blk, radix);
		return;
	}


	radix /= BLIST_META_RADIX;
	next_skip = (skip / BLIST_META_RADIX);

	for (i = 1; count && i <= skip; i += next_skip) {
		if (scan[i].bm_bighint == (blist_blkno_t)-1)
			break;

		if (count >= radix) {
			blst_copy(
			    &scan[i],
			    blk,
			    radix,
			    next_skip - 1,
			    dest,
			    radix
			);
			count -= radix;
		} else {
			if (count) {
				blst_copy(
				    &scan[i],
				    blk,
				    radix,
				    next_skip - 1,
				    dest,
				    count
				);
			}
			count = 0;
		}
		blk += radix;
	}
}

/*
 * BLST_LEAF_FILL() -	allocate specific blocks in leaf bitmap
 *
 *	This routine allocates all blocks in the specified range
 *	regardless of any existing allocations in that range.  Returns
 *	the number of blocks allocated by the call.
 */

static int
blst_leaf_fill(blmeta_t *scan, blist_blkno_t blk, int count)
{
	int n = blk & (BLIST_BMAP_RADIX - 1);
	int nblks;
	blist_bitmap_t mask, bitmap;

	mask = ((blist_bitmap_t)-1 << n) &
	    ((blist_bitmap_t)-1 >> (BLIST_BMAP_RADIX - count - n));

	/* Count the number of blocks we're about to allocate */
	bitmap = scan->u.bmu_bitmap & mask;
	for (nblks = 0; bitmap != 0; nblks++)
		bitmap &= bitmap - 1;

	scan->u.bmu_bitmap &= ~mask;
	return nblks;
}

/*
 * BLIST_META_FILL() -	allocate specific blocks at a meta node
 *
 *	This routine allocates the specified range of blocks,
 *	regardless of any existing allocations in the range.  The
 *	range must be within the extent of this node.  Returns the
 *	number of blocks allocated by the call.
 */
static blist_blkno_t
blst_meta_fill(
	blmeta_t *scan,
	blist_blkno_t allocBlk,
	blist_blkno_t count,
	blist_blkno_t radix, 
	blist_blkno_t skip,
	blist_blkno_t blk
) {
	blist_blkno_t i;
	blist_blkno_t next_skip = (skip / BLIST_META_RADIX);
	blist_blkno_t nblks = 0;

	if (count == radix || scan->u.bmu_avail == 0)  {
		/*
		 * ALL-ALLOCATED special case
		 */
		nblks = scan->u.bmu_avail;
		scan->u.bmu_avail = 0;
		scan->bm_bighint = count;
		return nblks;
	}

	if (count > radix)
		panic("blist_meta_fill: allocation too large");

	if (scan->u.bmu_avail == radix) {
		radix /= BLIST_META_RADIX;

		/*
		 * ALL-FREE special case, initialize sublevel
		 */
		for (i = 1; i <= skip; i += next_skip) {
			if (scan[i].bm_bighint == (blist_blkno_t)-1)
				break;
			if (next_skip == 1) {
				scan[i].u.bmu_bitmap = (blist_bitmap_t)-1;
				scan[i].bm_bighint = BLIST_BMAP_RADIX;
			} else {
				scan[i].bm_bighint = radix;
				scan[i].u.bmu_avail = radix;
			}
		}
	} else {
		radix /= BLIST_META_RADIX;
	}

	i = (allocBlk - blk) / radix;
	blk += i * radix;
	i = i * next_skip + 1;

	while (i <= skip && blk < allocBlk + count) {
		blist_blkno_t v;

		v = blk + radix - allocBlk;
		if (v > count)
			v = count;

		if (scan->bm_bighint == (blist_blkno_t)-1)
			panic("blst_meta_fill: filling unexpected range");

		if (next_skip == 1) {
			nblks += blst_leaf_fill(&scan[i], allocBlk, v);
		} else {
			nblks += blst_meta_fill(&scan[i], allocBlk, v,
			    radix, next_skip - 1, blk);
		}
		count -= v;
		allocBlk += v;
		blk += radix;
		i += next_skip;
	}
	scan->u.bmu_avail -= nblks;
	return nblks;
}

/*
 * BLST_RADIX_INIT() - initialize radix tree
 *
 *	Initialize our meta structures and bitmaps and calculate the exact
 *	amount of space required to manage 'count' blocks - this space may
 *	be considerably less than the calculated radix due to the large
 *	RADIX values we use.
 */

static blist_blkno_t	
blst_radix_init(blmeta_t *scan, blist_blkno_t radix, blist_blkno_t skip,
    blist_blkno_t count)
{
	blist_blkno_t i;
	blist_blkno_t next_skip;
	blist_blkno_t memindex = 0;

	/*
	 * Leaf node
	 */

	if (radix == BLIST_BMAP_RADIX) {
		if (scan) {
			scan->bm_bighint = 0;
			scan->u.bmu_bitmap = 0;
		}
		return(memindex);
	}

	/*
	 * Meta node.  If allocating the entire object we can special
	 * case it.  However, we need to figure out how much memory
	 * is required to manage 'count' blocks, so we continue on anyway.
	 */

	if (scan) {
		scan->bm_bighint = 0;
		scan->u.bmu_avail = 0;
	}

	radix /= BLIST_META_RADIX;
	next_skip = (skip / BLIST_META_RADIX);

	for (i = 1; i <= skip; i += next_skip) {
		if (count >= radix) {
			/*
			 * Allocate the entire object
			 */
			memindex = i + blst_radix_init(
			    ((scan) ? &scan[i] : NULL),
			    radix,
			    next_skip - 1,
			    radix
			);
			count -= radix;
		} else if (count > 0) {
			/*
			 * Allocate a partial object
			 */
			memindex = i + blst_radix_init(
			    ((scan) ? &scan[i] : NULL),
			    radix,
			    next_skip - 1,
			    count
			);
			count = 0;
		} else {
			/*
			 * Add terminator and break out
			 */
			if (scan)
				scan[i].bm_bighint = (blist_blkno_t)-1;
			break;
		}
	}
	if (memindex < i)
		memindex = i;
	return(memindex);
}

#ifdef BLIST_DEBUG

static void	
blst_radix_print(blmeta_t *scan, blist_blkno_t blk, blist_blkno_t radix,
    blist_blkno_t skip, int tab)
{
	blist_blkno_t i;
	blist_blkno_t next_skip;
	int lastState = 0;

	if (radix == BLIST_BMAP_RADIX) {
		printf(
		    "%*.*s(%0*" PRIx64 ",%" PRIu64
		    "): bitmap %0*" PRIx64 " big=%" PRIu64 "\n", 
		    tab, tab, "",
		    sizeof(blk) * 2,
		    (uint64_t)blk,
		    (uint64_t)radix,
		    sizeof(scan->u.bmu_bitmap) * 2,
		    (uint64_t)scan->u.bmu_bitmap,
		    (uint64_t)scan->bm_bighint
		);
		return;
	}

	if (scan->u.bmu_avail == 0) {
		printf(
		    "%*.*s(%0*" PRIx64 ",%" PRIu64") ALL ALLOCATED\n",
		    tab, tab, "",
		    sizeof(blk) * 2,
		    (uint64_t)blk,
		    (uint64_t)radix
		);
		return;
	}
	if (scan->u.bmu_avail == radix) {
		printf(
		    "%*.*s(%0*" PRIx64 ",%" PRIu64 ") ALL FREE\n",
		    tab, tab, "",
		    sizeof(blk) * 2,
		    (uint64_t)blk,
		    (uint64_t)radix
		);
		return;
	}

	printf(
	    "%*.*s(%0*" PRIx64 ",%" PRIu64 "): subtree (%" PRIu64 "/%"
	    PRIu64 ") big=%" PRIu64 " {\n",
	    tab, tab, "",
	    sizeof(blk) * 2,
	    (uint64_t)blk,
	    (uint64_t)radix,
	    (uint64_t)scan->u.bmu_avail,
	    (uint64_t)radix,
	    (uint64_t)scan->bm_bighint
	);

	radix /= BLIST_META_RADIX;
	next_skip = (skip / BLIST_META_RADIX);
	tab += 4;

	for (i = 1; i <= skip; i += next_skip) {
		if (scan[i].bm_bighint == (blist_blkno_t)-1) {
			printf(
			    "%*.*s(%0*" PRIx64 ",%" PRIu64 "): Terminator\n",
			    tab, tab, "",
			    sizeof(blk) * 2,
			    (uint64_t)blk,
			    (uint64_t)radix
			);
			lastState = 0;
			break;
		}
		blst_radix_print(
		    &scan[i],
		    blk,
		    radix,
		    next_skip - 1,
		    tab
		);
		blk += radix;
	}
	tab -= 4;

	printf(
	    "%*.*s}\n",
	    tab, tab, ""
	);
}

#endif

#ifdef BLIST_DEBUG

int
main(int ac, char **av)
{
	blist_blkno_t size = 1024;
	int i;
	blist_t bl;

	for (i = 1; i < ac; ++i) {
		const char *ptr = av[i];
		if (*ptr != '-') {
			size = strtol(ptr, NULL, 0);
			continue;
		}
		ptr += 2;
		fprintf(stderr, "Bad option: %s\n", ptr - 2);
		exit(1);
	}
	bl = blist_create(size);
	blist_free(bl, 0, size);

	for (;;) {
		char buf[1024];
		uint64_t da = 0;
		uint64_t count = 0;

		printf("%" PRIu64 "/%" PRIu64 "/%" PRIu64 "> ",
		    (uint64_t)bl->bl_free,
		    (uint64_t)size,
		    (uint64_t)bl->bl_radix);
		fflush(stdout);
		if (fgets(buf, sizeof(buf), stdin) == NULL)
			break;
		switch(buf[0]) {
		case 'r':
			if (sscanf(buf + 1, "%" SCNu64, &count) == 1) {
				blist_resize(&bl, count, 1);
			} else {
				printf("?\n");
			}
		case 'p':
			blist_print(bl);
			break;
		case 'a':
			if (sscanf(buf + 1, "%" SCNu64, &count) == 1) {
				blist_blkno_t blk = blist_alloc(bl, count);
				printf("    R=%0*" PRIx64 "\n",
				    sizeof(blk) * 2,
				    (uint64_t)blk);
			} else {
				printf("?\n");
			}
			break;
		case 'f':
			if (sscanf(buf + 1, "%" SCNx64 " %" SCNu64,
			    &da, &count) == 2) {
				blist_free(bl, da, count);
			} else {
				printf("?\n");
			}
			break;
		case 'l':
			if (sscanf(buf + 1, "%" SCNx64 " %" SCNu64,
			    &da, &count) == 2) {
				printf("    n=%" PRIu64 "\n",
				    (uint64_t)blist_fill(bl, da, count));
			} else {
				printf("?\n");
			}
			break;
		case '?':
		case 'h':
			puts(
			    "p          -print\n"
			    "a %d       -allocate\n"
			    "f %x %d    -free\n"
			    "l %x %d    -fill\n"
			    "r %d       -resize\n"
			    "h/?        -help"
			);
			break;
		default:
			printf("?\n");
			break;
		}
	}
	return(0);
}

void
panic(const char *ctl, ...)
{
	va_list va;

	va_start(va, ctl);
	vfprintf(stderr, ctl, va);
	fprintf(stderr, "\n");
	va_end(va);
	exit(1);
}

#endif