Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
/*	$NetBSD: ddp_usrreq.c,v 1.73 2019/02/24 07:20:33 maxv Exp $	 */

/*
 * Copyright (c) 1990,1991 Regents of The University of Michigan.
 * All Rights Reserved.
 *
 * Permission to use, copy, modify, and distribute this software and
 * its documentation for any purpose and without fee is hereby granted,
 * provided that the above copyright notice appears in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation, and that the name of The University
 * of Michigan not be used in advertising or publicity pertaining to
 * distribution of the software without specific, written prior
 * permission. This software is supplied as is without expressed or
 * implied warranties of any kind.
 *
 * This product includes software developed by the University of
 * California, Berkeley and its contributors.
 *
 *	Research Systems Unix Group
 *	The University of Michigan
 *	c/o Wesley Craig
 *	535 W. William Street
 *	Ann Arbor, Michigan
 *	+1-313-764-2278
 *	netatalk@umich.edu
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ddp_usrreq.c,v 1.73 2019/02/24 07:20:33 maxv Exp $");

#include "opt_mbuftrace.h"
#include "opt_atalk.h"

#include <sys/param.h>
#include <sys/errno.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/ioctl.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/kauth.h>
#include <sys/kmem.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/route.h>
#include <net/if_ether.h>
#include <net/net_stats.h>
#include <netinet/in.h>

#include <netatalk/at.h>
#include <netatalk/at_var.h>
#include <netatalk/ddp_var.h>
#include <netatalk/ddp_private.h>
#include <netatalk/aarp.h>
#include <netatalk/at_extern.h>

static void at_pcbdisconnect(struct ddpcb *);
static void at_sockaddr(struct ddpcb *, struct sockaddr_at *);
static int at_pcbsetaddr(struct ddpcb *, struct sockaddr_at *);
static int at_pcbconnect(struct ddpcb *, struct sockaddr_at *);
static void ddp_detach(struct socket *);

struct ifqueue atintrq1, atintrq2;
struct ddpcb   *ddp_ports[ATPORT_LAST];
struct ddpcb   *ddpcb = NULL;
percpu_t *ddpstat_percpu;
struct at_ifaddrhead at_ifaddr;		/* Here as inited in this file */
u_long ddp_sendspace = DDP_MAXSZ;	/* Max ddp size + 1 (ddp_type) */
u_long ddp_recvspace = 25 * (587 + sizeof(struct sockaddr_at));

#ifdef MBUFTRACE
struct mowner atalk_rx_mowner = MOWNER_INIT("atalk", "rx");
struct mowner atalk_tx_mowner = MOWNER_INIT("atalk", "tx");
#endif

static void
at_sockaddr(struct ddpcb *ddp, struct sockaddr_at *addr)
{

	*addr = ddp->ddp_lsat;
}

static int
at_pcbsetaddr(struct ddpcb *ddp, struct sockaddr_at *sat)
{
	struct sockaddr_at lsat;
	struct at_ifaddr *aa;
	struct ddpcb   *ddpp;

	if (ddp->ddp_lsat.sat_port != ATADDR_ANYPORT) {	/* shouldn't be bound */
		return (EINVAL);
	}
	if (NULL != sat) {	/* validate passed address */

		if (sat->sat_family != AF_APPLETALK)
			return (EAFNOSUPPORT);

		if (sat->sat_addr.s_node != ATADDR_ANYNODE ||
		    sat->sat_addr.s_net != ATADDR_ANYNET) {
			TAILQ_FOREACH(aa, &at_ifaddr, aa_list) {
				if ((sat->sat_addr.s_net ==
				    AA_SAT(aa)->sat_addr.s_net) &&
				    (sat->sat_addr.s_node ==
				    AA_SAT(aa)->sat_addr.s_node))
					break;
			}
			if (!aa)
				return (EADDRNOTAVAIL);
		}
		if (sat->sat_port != ATADDR_ANYPORT) {
			int error;

			if (sat->sat_port < ATPORT_FIRST ||
			    sat->sat_port >= ATPORT_LAST)
				return (EINVAL);

			if (sat->sat_port < ATPORT_RESERVED &&
			    (error = kauth_authorize_network(curlwp->l_cred,
			    KAUTH_NETWORK_BIND, KAUTH_REQ_NETWORK_BIND_PRIVPORT,
			    ddpcb->ddp_socket, sat, NULL)) != 0)
				return (error);
		}
	} else {
		memset((void *) & lsat, 0, sizeof(struct sockaddr_at));
		lsat.sat_len = sizeof(struct sockaddr_at);
		lsat.sat_addr.s_node = ATADDR_ANYNODE;
		lsat.sat_addr.s_net = ATADDR_ANYNET;
		lsat.sat_family = AF_APPLETALK;
		sat = &lsat;
	}

	if (sat->sat_addr.s_node == ATADDR_ANYNODE &&
	    sat->sat_addr.s_net == ATADDR_ANYNET) {
		if (TAILQ_EMPTY(&at_ifaddr))
			return EADDRNOTAVAIL;
		sat->sat_addr = AA_SAT(TAILQ_FIRST(&at_ifaddr))->sat_addr;
	}
	ddp->ddp_lsat = *sat;

	/*
         * Choose port.
         */
	if (sat->sat_port == ATADDR_ANYPORT) {
		for (sat->sat_port = ATPORT_RESERVED;
		     sat->sat_port < ATPORT_LAST; sat->sat_port++) {
			if (ddp_ports[sat->sat_port - 1] == 0)
				break;
		}
		if (sat->sat_port == ATPORT_LAST) {
			return (EADDRNOTAVAIL);
		}
		ddp->ddp_lsat.sat_port = sat->sat_port;
		ddp_ports[sat->sat_port - 1] = ddp;
	} else {
		for (ddpp = ddp_ports[sat->sat_port - 1]; ddpp;
		     ddpp = ddpp->ddp_pnext) {
			if (ddpp->ddp_lsat.sat_addr.s_net ==
			    sat->sat_addr.s_net &&
			    ddpp->ddp_lsat.sat_addr.s_node ==
			    sat->sat_addr.s_node)
				break;
		}
		if (ddpp != NULL)
			return (EADDRINUSE);

		ddp->ddp_pnext = ddp_ports[sat->sat_port - 1];
		ddp_ports[sat->sat_port - 1] = ddp;
		if (ddp->ddp_pnext)
			ddp->ddp_pnext->ddp_pprev = ddp;
	}

	return 0;
}

static int
at_pcbconnect(struct ddpcb *ddp, struct sockaddr_at *sat)
{
	struct rtentry *rt;
	const struct sockaddr_at *cdst;
	struct route *ro;
	struct at_ifaddr *aa;
	struct ifnet   *ifp;
	u_short         hintnet = 0, net;

	if (sat->sat_family != AF_APPLETALK)
		return EAFNOSUPPORT;
	if (sat->sat_len != sizeof(*sat))
		return EINVAL;

	/*
         * Under phase 2, network 0 means "the network".  We take "the
         * network" to mean the network the control block is bound to.
         * If the control block is not bound, there is an error.
         */
	if (sat->sat_addr.s_net == ATADDR_ANYNET
	    && sat->sat_addr.s_node != ATADDR_ANYNODE) {
		if (ddp->ddp_lsat.sat_port == ATADDR_ANYPORT) {
			return EADDRNOTAVAIL;
		}
		hintnet = ddp->ddp_lsat.sat_addr.s_net;
	}
	ro = &ddp->ddp_route;
	/*
         * If we've got an old route for this pcb, check that it is valid.
         * If we've changed our address, we may have an old "good looking"
         * route here.  Attempt to detect it.
         */
	if ((rt = rtcache_validate(ro)) != NULL ||
	    (rt = rtcache_update(ro, 1)) != NULL) {
		if (hintnet) {
			net = hintnet;
		} else {
			net = sat->sat_addr.s_net;
		}
		if ((ifp = rt->rt_ifp) != NULL) {
			TAILQ_FOREACH(aa, &at_ifaddr, aa_list) {
				if (aa->aa_ifp == ifp &&
				    ntohs(net) >= ntohs(aa->aa_firstnet) &&
				    ntohs(net) <= ntohs(aa->aa_lastnet)) {
					break;
				}
			}
		} else
			aa = NULL;
		cdst = satocsat(rtcache_getdst(ro));
		if (aa == NULL || (cdst->sat_addr.s_net !=
		    (hintnet ? hintnet : sat->sat_addr.s_net) ||
		    cdst->sat_addr.s_node != sat->sat_addr.s_node)) {
			rtcache_unref(rt, ro);
			rtcache_free(ro);
			rt = NULL;
		}
	}
	/*
         * If we've got no route for this interface, try to find one.
         */
	if (rt == NULL) {
		union {
			struct sockaddr		dst;
			struct sockaddr_at	dsta;
		} u;

		sockaddr_at_init(&u.dsta, &sat->sat_addr, 0);
		if (hintnet)
			u.dsta.sat_addr.s_net = hintnet;
		rt = rtcache_lookup(ro, &u.dst);
	}
	/*
         * Make sure any route that we have has a valid interface.
         */
	if (rt != NULL && (ifp = rt->rt_ifp) != NULL) {
		TAILQ_FOREACH(aa, &at_ifaddr, aa_list) {
			if (aa->aa_ifp == ifp)
				break;
		}
	} else
		aa = NULL;
	rtcache_unref(rt, ro);
	if (aa == NULL)
		return ENETUNREACH;
	ddp->ddp_fsat = *sat;
	if (ddp->ddp_lsat.sat_port == ATADDR_ANYPORT)
		return at_pcbsetaddr(ddp, NULL);
	return 0;
}

static void
at_pcbdisconnect(struct ddpcb *ddp)
{
	ddp->ddp_fsat.sat_addr.s_net = ATADDR_ANYNET;
	ddp->ddp_fsat.sat_addr.s_node = ATADDR_ANYNODE;
	ddp->ddp_fsat.sat_port = ATADDR_ANYPORT;
}

static int
ddp_attach(struct socket *so, int proto)
{
	struct ddpcb *ddp;
	int error;

	KASSERT(sotoddpcb(so) == NULL);
	sosetlock(so);
#ifdef MBUFTRACE
	so->so_rcv.sb_mowner = &atalk_rx_mowner;
	so->so_snd.sb_mowner = &atalk_tx_mowner;
#endif
	error = soreserve(so, ddp_sendspace, ddp_recvspace);
	if (error) {
		return error;
	}

	ddp = kmem_zalloc(sizeof(*ddp), KM_SLEEP);
	ddp->ddp_lsat.sat_port = ATADDR_ANYPORT;

	ddp->ddp_next = ddpcb;
	ddp->ddp_prev = NULL;
	ddp->ddp_pprev = NULL;
	ddp->ddp_pnext = NULL;
	if (ddpcb) {
		ddpcb->ddp_prev = ddp;
	}
	ddpcb = ddp;

	ddp->ddp_socket = so;
	so->so_pcb = ddp;
	return 0;
}

static void
ddp_detach(struct socket *so)
{
	struct ddpcb *ddp = sotoddpcb(so);

	soisdisconnected(so);
	so->so_pcb = NULL;
	/* sofree drops the lock */
	sofree(so);
	mutex_enter(softnet_lock);

	/* remove ddp from ddp_ports list */
	if (ddp->ddp_lsat.sat_port != ATADDR_ANYPORT &&
	    ddp_ports[ddp->ddp_lsat.sat_port - 1] != NULL) {
		if (ddp->ddp_pprev != NULL) {
			ddp->ddp_pprev->ddp_pnext = ddp->ddp_pnext;
		} else {
			ddp_ports[ddp->ddp_lsat.sat_port - 1] = ddp->ddp_pnext;
		}
		if (ddp->ddp_pnext != NULL) {
			ddp->ddp_pnext->ddp_pprev = ddp->ddp_pprev;
		}
	}
	rtcache_free(&ddp->ddp_route);
	if (ddp->ddp_prev) {
		ddp->ddp_prev->ddp_next = ddp->ddp_next;
	} else {
		ddpcb = ddp->ddp_next;
	}
	if (ddp->ddp_next) {
		ddp->ddp_next->ddp_prev = ddp->ddp_prev;
	}
	kmem_free(ddp, sizeof(*ddp));
}

static int
ddp_accept(struct socket *so, struct sockaddr *nam)
{
	KASSERT(solocked(so));

	return EOPNOTSUPP;
}

static int
ddp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
{
	KASSERT(solocked(so));
	KASSERT(sotoddpcb(so) != NULL);

	return at_pcbsetaddr(sotoddpcb(so), (struct sockaddr_at *)nam);
}

static int
ddp_listen(struct socket *so, struct lwp *l)
{
	KASSERT(solocked(so));

	return EOPNOTSUPP;
}

static int
ddp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
{
	struct ddpcb *ddp = sotoddpcb(so);
	int error = 0;

	KASSERT(solocked(so));
	KASSERT(ddp != NULL);
	KASSERT(nam != NULL);

	if (ddp->ddp_fsat.sat_port != ATADDR_ANYPORT)
		return EISCONN;
	error = at_pcbconnect(ddp, (struct sockaddr_at *)nam);
	if (error == 0)
		soisconnected(so);

	return error;
}

static int
ddp_connect2(struct socket *so, struct socket *so2)
{
	KASSERT(solocked(so));

	return EOPNOTSUPP;
}

static int
ddp_disconnect(struct socket *so)
{
	struct ddpcb *ddp = sotoddpcb(so);

	KASSERT(solocked(so));
	KASSERT(ddp != NULL);

	if (ddp->ddp_fsat.sat_addr.s_node == ATADDR_ANYNODE)
		return ENOTCONN;

	at_pcbdisconnect(ddp);
	soisdisconnected(so);
	return 0;
}

static int
ddp_shutdown(struct socket *so)
{
	KASSERT(solocked(so));

	socantsendmore(so);
	return 0;
}

static int
ddp_abort(struct socket *so)
{
	KASSERT(solocked(so));

	soisdisconnected(so);
	ddp_detach(so);
	return 0;
}

static int
ddp_ioctl(struct socket *so, u_long cmd, void *addr, struct ifnet *ifp)
{
	return at_control(cmd, addr, ifp);
}

static int
ddp_stat(struct socket *so, struct stat *ub)
{
	KASSERT(solocked(so));

	/* stat: don't bother with a blocksize. */
	return 0;
}

static int
ddp_peeraddr(struct socket *so, struct sockaddr *nam)
{
	KASSERT(solocked(so));

	return EOPNOTSUPP;
}

static int
ddp_sockaddr(struct socket *so, struct sockaddr *nam)
{
	KASSERT(solocked(so));
	KASSERT(sotoddpcb(so) != NULL);
	KASSERT(nam != NULL);

	at_sockaddr(sotoddpcb(so), (struct sockaddr_at *)nam);
	return 0;
}

static int
ddp_rcvd(struct socket *so, int flags, struct lwp *l)
{
	KASSERT(solocked(so));

	return EOPNOTSUPP;
}

static int
ddp_recvoob(struct socket *so, struct mbuf *m, int flags)
{
	KASSERT(solocked(so));

	return EOPNOTSUPP;
}

static int
ddp_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
    struct mbuf *control, struct lwp *l)
{
	struct ddpcb *ddp = sotoddpcb(so);
	int error = 0;
	int s = 0; /* XXX gcc 4.8 warns on sgimips */

	KASSERT(solocked(so));
	KASSERT(ddp != NULL);

	if (nam) {
		if (ddp->ddp_fsat.sat_port != ATADDR_ANYPORT)
			return EISCONN;
		s = splnet();
		error = at_pcbconnect(ddp, (struct sockaddr_at *)nam);
		if (error) {
			splx(s);
			return error;
		}
	} else {
		if (ddp->ddp_fsat.sat_port == ATADDR_ANYPORT)
			return ENOTCONN;
	}

	error = ddp_output(m, ddp);
	m = NULL;
	if (nam) {
		at_pcbdisconnect(ddp);
		splx(s);
	}

	return error;
}

static int
ddp_sendoob(struct socket *so, struct mbuf *m, struct mbuf *control)
{
	KASSERT(solocked(so));

	m_freem(m);
	m_freem(control);

	return EOPNOTSUPP;
}

static int
ddp_purgeif(struct socket *so, struct ifnet *ifp)
{

	mutex_enter(softnet_lock);
	at_purgeif(ifp);
	mutex_exit(softnet_lock);

	return 0;
}

/*
 * For the moment, this just find the pcb with the correct local address.
 * In the future, this will actually do some real searching, so we can use
 * the sender's address to do de-multiplexing on a single port to many
 * sockets (pcbs).
 */
struct ddpcb   *
ddp_search(
    struct sockaddr_at *from,
    struct sockaddr_at *to,
    struct at_ifaddr *aa)
{
	struct ddpcb   *ddp;

	/*
         * Check for bad ports.
         */
	if (to->sat_port < ATPORT_FIRST || to->sat_port >= ATPORT_LAST)
		return NULL;

	/*
         * Make sure the local address matches the sent address.  What about
         * the interface?
         */
	for (ddp = ddp_ports[to->sat_port - 1]; ddp; ddp = ddp->ddp_pnext) {
		/* XXX should we handle 0.YY? */

		/* XXXX.YY to socket on destination interface */
		if (to->sat_addr.s_net == ddp->ddp_lsat.sat_addr.s_net &&
		    to->sat_addr.s_node == ddp->ddp_lsat.sat_addr.s_node) {
			break;
		}
		/* 0.255 to socket on receiving interface */
		if (to->sat_addr.s_node == ATADDR_BCAST &&
		    (to->sat_addr.s_net == 0 ||
		    to->sat_addr.s_net == ddp->ddp_lsat.sat_addr.s_net) &&
		ddp->ddp_lsat.sat_addr.s_net == AA_SAT(aa)->sat_addr.s_net) {
			break;
		}
		/* XXXX.0 to socket on destination interface */
		if (to->sat_addr.s_net == aa->aa_firstnet &&
		    to->sat_addr.s_node == 0 &&
		    ntohs(ddp->ddp_lsat.sat_addr.s_net) >=
		    ntohs(aa->aa_firstnet) &&
		    ntohs(ddp->ddp_lsat.sat_addr.s_net) <=
		    ntohs(aa->aa_lastnet)) {
			break;
		}
	}
	return (ddp);
}

/*
 * Initialize all the ddp & appletalk stuff
 */
void
ddp_init(void)
{

	ddpstat_percpu = percpu_alloc(sizeof(uint64_t) * DDP_NSTATS);

	TAILQ_INIT(&at_ifaddr);
	atintrq1.ifq_maxlen = IFQ_MAXLEN;
	atintrq2.ifq_maxlen = IFQ_MAXLEN;
	IFQ_LOCK_INIT(&atintrq1);
	IFQ_LOCK_INIT(&atintrq2);

	MOWNER_ATTACH(&atalk_tx_mowner);
	MOWNER_ATTACH(&atalk_rx_mowner);
	MOWNER_ATTACH(&aarp_mowner);
}

PR_WRAP_USRREQS(ddp)
#define	ddp_attach	ddp_attach_wrapper
#define	ddp_detach	ddp_detach_wrapper
#define	ddp_accept	ddp_accept_wrapper
#define	ddp_bind	ddp_bind_wrapper
#define	ddp_listen	ddp_listen_wrapper
#define	ddp_connect	ddp_connect_wrapper
#define	ddp_connect2	ddp_connect2_wrapper
#define	ddp_disconnect	ddp_disconnect_wrapper
#define	ddp_shutdown	ddp_shutdown_wrapper
#define	ddp_abort	ddp_abort_wrapper
#define	ddp_ioctl	ddp_ioctl_wrapper
#define	ddp_stat	ddp_stat_wrapper
#define	ddp_peeraddr	ddp_peeraddr_wrapper
#define	ddp_sockaddr	ddp_sockaddr_wrapper
#define	ddp_rcvd	ddp_rcvd_wrapper
#define	ddp_recvoob	ddp_recvoob_wrapper
#define	ddp_send	ddp_send_wrapper
#define	ddp_sendoob	ddp_sendoob_wrapper
#define	ddp_purgeif	ddp_purgeif_wrapper

const struct pr_usrreqs ddp_usrreqs = {
	.pr_attach	= ddp_attach,
	.pr_detach	= ddp_detach,
	.pr_accept	= ddp_accept,
	.pr_bind	= ddp_bind,
	.pr_listen	= ddp_listen,
	.pr_connect	= ddp_connect,
	.pr_connect2	= ddp_connect2,
	.pr_disconnect	= ddp_disconnect,
	.pr_shutdown	= ddp_shutdown,
	.pr_abort	= ddp_abort,
	.pr_ioctl	= ddp_ioctl,
	.pr_stat	= ddp_stat,
	.pr_peeraddr	= ddp_peeraddr,
	.pr_sockaddr	= ddp_sockaddr,
	.pr_rcvd	= ddp_rcvd,
	.pr_recvoob	= ddp_recvoob,
	.pr_send	= ddp_send,
	.pr_sendoob	= ddp_sendoob,
	.pr_purgeif	= ddp_purgeif,
};

static int
sysctl_net_atalk_ddp_stats(SYSCTLFN_ARGS)
{

	return (NETSTAT_SYSCTL(ddpstat_percpu, DDP_NSTATS));
}

/*
 * Sysctl for DDP variables.
 */
SYSCTL_SETUP(sysctl_net_atalk_ddp_setup, "sysctl net.atalk.ddp subtree setup")
{

	sysctl_createv(clog, 0, NULL, NULL,
		       CTLFLAG_PERMANENT,
		       CTLTYPE_NODE, "atalk", NULL,
		       NULL, 0, NULL, 0,
		       CTL_NET, PF_APPLETALK, CTL_EOL);
	sysctl_createv(clog, 0, NULL, NULL,
		       CTLFLAG_PERMANENT,
		       CTLTYPE_NODE, "ddp",
		       SYSCTL_DESCR("DDP related settings"),
		       NULL, 0, NULL, 0,
		       CTL_NET, PF_APPLETALK, ATPROTO_DDP, CTL_EOL);
	
	sysctl_createv(clog, 0, NULL, NULL,
		       CTLFLAG_PERMANENT,
		       CTLTYPE_STRUCT, "stats",
		       SYSCTL_DESCR("DDP statistics"),
		       sysctl_net_atalk_ddp_stats, 0, NULL, 0,
		       CTL_NET, PF_APPLETALK, ATPROTO_DDP, CTL_CREATE,
		       CTL_EOL);
}