Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
//===--- X86.h - Declare X86 target feature support -------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares X86 TargetInfo objects.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_LIB_BASIC_TARGETS_X86_H
#define LLVM_CLANG_LIB_BASIC_TARGETS_X86_H

#include "OSTargets.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/Compiler.h"

namespace clang {
namespace targets {

// X86 target abstract base class; x86-32 and x86-64 are very close, so
// most of the implementation can be shared.
class LLVM_LIBRARY_VISIBILITY X86TargetInfo : public TargetInfo {

  enum X86SSEEnum {
    NoSSE,
    SSE1,
    SSE2,
    SSE3,
    SSSE3,
    SSE41,
    SSE42,
    AVX,
    AVX2,
    AVX512F
  } SSELevel = NoSSE;
  enum MMX3DNowEnum {
    NoMMX3DNow,
    MMX,
    AMD3DNow,
    AMD3DNowAthlon
  } MMX3DNowLevel = NoMMX3DNow;
  enum XOPEnum { NoXOP, SSE4A, FMA4, XOP } XOPLevel = NoXOP;

  bool HasAES = false;
  bool HasVAES = false;
  bool HasPCLMUL = false;
  bool HasVPCLMULQDQ = false;
  bool HasGFNI = false;
  bool HasLZCNT = false;
  bool HasRDRND = false;
  bool HasFSGSBASE = false;
  bool HasBMI = false;
  bool HasBMI2 = false;
  bool HasPOPCNT = false;
  bool HasRTM = false;
  bool HasPRFCHW = false;
  bool HasRDSEED = false;
  bool HasADX = false;
  bool HasTBM = false;
  bool HasLWP = false;
  bool HasFMA = false;
  bool HasF16C = false;
  bool HasAVX512CD = false;
  bool HasAVX512VPOPCNTDQ = false;
  bool HasAVX512VNNI = false;
  bool HasAVX512ER = false;
  bool HasAVX512PF = false;
  bool HasAVX512DQ = false;
  bool HasAVX512BITALG = false;
  bool HasAVX512BW = false;
  bool HasAVX512VL = false;
  bool HasAVX512VBMI = false;
  bool HasAVX512VBMI2 = false;
  bool HasAVX512IFMA = false;
  bool HasSHA = false;
  bool HasMPX = false;
  bool HasSHSTK = false;
  bool HasSGX = false;
  bool HasCX16 = false;
  bool HasFXSR = false;
  bool HasXSAVE = false;
  bool HasXSAVEOPT = false;
  bool HasXSAVEC = false;
  bool HasXSAVES = false;
  bool HasMWAITX = false;
  bool HasCLZERO = false;
  bool HasCLDEMOTE = false;
  bool HasPCONFIG = false;
  bool HasPKU = false;
  bool HasCLFLUSHOPT = false;
  bool HasCLWB = false;
  bool HasMOVBE = false;
  bool HasPREFETCHWT1 = false;
  bool HasRDPID = false;
  bool HasRetpoline = false;
  bool HasRetpolineExternalThunk = false;
  bool HasLAHFSAHF = false;
  bool HasWBNOINVD = false;
  bool HasWAITPKG = false;
  bool HasMOVDIRI = false;
  bool HasMOVDIR64B = false;
  bool HasPTWRITE = false;
  bool HasINVPCID = false;

protected:
  /// Enumeration of all of the X86 CPUs supported by Clang.
  ///
  /// Each enumeration represents a particular CPU supported by Clang. These
  /// loosely correspond to the options passed to '-march' or '-mtune' flags.
  enum CPUKind {
    CK_Generic,
#define PROC(ENUM, STRING, IS64BIT) CK_##ENUM,
#include "clang/Basic/X86Target.def"
  } CPU = CK_Generic;

  bool checkCPUKind(CPUKind Kind) const;

  CPUKind getCPUKind(StringRef CPU) const;

  std::string getCPUKindCanonicalName(CPUKind Kind) const;

  enum FPMathKind { FP_Default, FP_SSE, FP_387 } FPMath = FP_Default;

public:
  X86TargetInfo(const llvm::Triple &Triple, const TargetOptions &)
      : TargetInfo(Triple) {
    LongDoubleFormat = &llvm::APFloat::x87DoubleExtended();
  }
  
  unsigned getFloatEvalMethod() const override {
    // X87 evaluates with 80 bits "long double" precision.
    return SSELevel == NoSSE ? 2 : 0;
  }

  ArrayRef<const char *> getGCCRegNames() const override;

  ArrayRef<TargetInfo::GCCRegAlias> getGCCRegAliases() const override {
    return None;
  }

  ArrayRef<TargetInfo::AddlRegName> getGCCAddlRegNames() const override;

  bool validateCpuSupports(StringRef Name) const override;

  bool validateCpuIs(StringRef Name) const override;

  bool validateAsmConstraint(const char *&Name,
                             TargetInfo::ConstraintInfo &info) const override;

  bool validateGlobalRegisterVariable(StringRef RegName, unsigned RegSize,
                                      bool &HasSizeMismatch) const override {
    // esp and ebp are the only 32-bit registers the x86 backend can currently
    // handle.
    if (RegName.equals("esp") || RegName.equals("ebp")) {
      // Check that the register size is 32-bit.
      HasSizeMismatch = RegSize != 32;
      return true;
    }

    return false;
  }

  bool validateOutputSize(StringRef Constraint, unsigned Size) const override;

  bool validateInputSize(StringRef Constraint, unsigned Size) const override;

  virtual bool
  checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const override {
    return true;
  };

  virtual bool
  checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const override {
    return true;
  };


  virtual bool validateOperandSize(StringRef Constraint, unsigned Size) const;

  std::string convertConstraint(const char *&Constraint) const override;
  const char *getClobbers() const override {
    return "~{dirflag},~{fpsr},~{flags}";
  }

  StringRef getConstraintRegister(StringRef Constraint,
                                  StringRef Expression) const override {
    StringRef::iterator I, E;
    for (I = Constraint.begin(), E = Constraint.end(); I != E; ++I) {
      if (isalpha(*I))
        break;
    }
    if (I == E)
      return "";
    switch (*I) {
    // For the register constraints, return the matching register name
    case 'a':
      return "ax";
    case 'b':
      return "bx";
    case 'c':
      return "cx";
    case 'd':
      return "dx";
    case 'S':
      return "si";
    case 'D':
      return "di";
    // In case the constraint is 'r' we need to return Expression
    case 'r':
      return Expression;
    // Double letters Y<x> constraints
    case 'Y':
      if ((++I != E) && ((*I == '0') || (*I == 'z')))
        return "xmm0";
    default:
      break;
    }
    return "";
  }

  bool useFP16ConversionIntrinsics() const override {
    return false;
  }

  void getTargetDefines(const LangOptions &Opts,
                        MacroBuilder &Builder) const override;
  
  static void setSSELevel(llvm::StringMap<bool> &Features, X86SSEEnum Level,
                          bool Enabled);

  static void setMMXLevel(llvm::StringMap<bool> &Features, MMX3DNowEnum Level,
                          bool Enabled);

  static void setXOPLevel(llvm::StringMap<bool> &Features, XOPEnum Level,
                          bool Enabled);

  void setFeatureEnabled(llvm::StringMap<bool> &Features, StringRef Name,
                         bool Enabled) const override {
    setFeatureEnabledImpl(Features, Name, Enabled);
  }

  // This exists purely to cut down on the number of virtual calls in
  // initFeatureMap which calls this repeatedly.
  static void setFeatureEnabledImpl(llvm::StringMap<bool> &Features,
                                    StringRef Name, bool Enabled);

  bool
  initFeatureMap(llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags,
                 StringRef CPU,
                 const std::vector<std::string> &FeaturesVec) const override;

  bool isValidFeatureName(StringRef Name) const override;

  bool hasFeature(StringRef Feature) const override;

  bool handleTargetFeatures(std::vector<std::string> &Features,
                            DiagnosticsEngine &Diags) override;

  StringRef getABI() const override {
    if (getTriple().getArch() == llvm::Triple::x86_64 && SSELevel >= AVX512F)
      return "avx512";
    if (getTriple().getArch() == llvm::Triple::x86_64 && SSELevel >= AVX)
      return "avx";
    if (getTriple().getArch() == llvm::Triple::x86 &&
        MMX3DNowLevel == NoMMX3DNow)
      return "no-mmx";
    return "";
  }

  bool isValidCPUName(StringRef Name) const override {
    return checkCPUKind(getCPUKind(Name));
  }

  void fillValidCPUList(SmallVectorImpl<StringRef> &Values) const override;

  bool setCPU(const std::string &Name) override {
    return checkCPUKind(CPU = getCPUKind(Name));
  }

  bool supportsMultiVersioning() const override {
    return getTriple().isOSBinFormatELF();
  }
  unsigned multiVersionSortPriority(StringRef Name) const override;

  bool setFPMath(StringRef Name) override;

  CallingConvCheckResult checkCallingConvention(CallingConv CC) const override {
    // Most of the non-ARM calling conventions are i386 conventions.
    switch (CC) {
    case CC_X86ThisCall:
    case CC_X86FastCall:
    case CC_X86StdCall:
    case CC_X86VectorCall:
    case CC_X86RegCall:
    case CC_C:
    case CC_PreserveMost:
    case CC_Swift:
    case CC_X86Pascal:
    case CC_IntelOclBicc:
    case CC_OpenCLKernel:
      return CCCR_OK;
    default:
      return CCCR_Warning;
    }
  }

  CallingConv getDefaultCallingConv(CallingConvMethodType MT) const override {
    return MT == CCMT_Member ? CC_X86ThisCall : CC_C;
  }

  bool hasSjLjLowering() const override { return true; }

  void setSupportedOpenCLOpts() override {
    getSupportedOpenCLOpts().supportAll();
  }
};

// X86-32 generic target
class LLVM_LIBRARY_VISIBILITY X86_32TargetInfo : public X86TargetInfo {
public:
  X86_32TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
      : X86TargetInfo(Triple, Opts) {
    DoubleAlign = LongLongAlign = 32;
    LongDoubleWidth = 96;
    LongDoubleAlign = 32;
    SuitableAlign = 128;
    resetDataLayout("e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128");
    SizeType = UnsignedInt;
    PtrDiffType = SignedInt;
    IntPtrType = SignedInt;
    RegParmMax = 3;

    // Use fpret for all types.
    RealTypeUsesObjCFPRet =
        ((1 << TargetInfo::Float) | (1 << TargetInfo::Double) |
         (1 << TargetInfo::LongDouble));

    // x86-32 has atomics up to 8 bytes
    CPUKind Kind = getCPUKind(Opts.CPU);
    if (Kind >= CK_i586 || Kind == CK_Generic)
      MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 64;
    else if (Kind >= CK_i486)
      MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 32;
  }

  BuiltinVaListKind getBuiltinVaListKind() const override {
    return TargetInfo::CharPtrBuiltinVaList;
  }

  int getEHDataRegisterNumber(unsigned RegNo) const override {
    if (RegNo == 0)
      return 0;
    if (RegNo == 1)
      return 2;
    return -1;
  }

  bool validateOperandSize(StringRef Constraint, unsigned Size) const override {
    switch (Constraint[0]) {
    default:
      break;
    case 'R':
    case 'q':
    case 'Q':
    case 'a':
    case 'b':
    case 'c':
    case 'd':
    case 'S':
    case 'D':
      return Size <= 32;
    case 'A':
      return Size <= 64;
    }

    return X86TargetInfo::validateOperandSize(Constraint, Size);
  }

  ArrayRef<Builtin::Info> getTargetBuiltins() const override;
};

class LLVM_LIBRARY_VISIBILITY NetBSDI386TargetInfo
    : public NetBSDTargetInfo<X86_32TargetInfo> {
public:
  NetBSDI386TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
      : NetBSDTargetInfo<X86_32TargetInfo>(Triple, Opts) {}

  unsigned getFloatEvalMethod() const override {
    unsigned Major, Minor, Micro;
    getTriple().getOSVersion(Major, Minor, Micro);
    // New NetBSD uses the default rounding mode.
    if (Major >= 7 || (Major == 6 && Minor == 99 && Micro >= 26) || Major == 0)
      return X86_32TargetInfo::getFloatEvalMethod();
    // NetBSD before 6.99.26 defaults to "double" rounding.
    return 1;
  }
};

class LLVM_LIBRARY_VISIBILITY OpenBSDI386TargetInfo
    : public OpenBSDTargetInfo<X86_32TargetInfo> {
public:
  OpenBSDI386TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
      : OpenBSDTargetInfo<X86_32TargetInfo>(Triple, Opts) {
    SizeType = UnsignedLong;
    IntPtrType = SignedLong;
    PtrDiffType = SignedLong;
  }
};

class LLVM_LIBRARY_VISIBILITY DarwinI386TargetInfo
    : public DarwinTargetInfo<X86_32TargetInfo> {
public:
  DarwinI386TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
      : DarwinTargetInfo<X86_32TargetInfo>(Triple, Opts) {
    LongDoubleWidth = 128;
    LongDoubleAlign = 128;
    SuitableAlign = 128;
    MaxVectorAlign = 256;
    // The watchOS simulator uses the builtin bool type for Objective-C.
    llvm::Triple T = llvm::Triple(Triple);
    if (T.isWatchOS())
      UseSignedCharForObjCBool = false;
    SizeType = UnsignedLong;
    IntPtrType = SignedLong;
    resetDataLayout("e-m:o-p:32:32-f64:32:64-f80:128-n8:16:32-S128");
    HasAlignMac68kSupport = true;
  }

  bool handleTargetFeatures(std::vector<std::string> &Features,
                            DiagnosticsEngine &Diags) override {
    if (!DarwinTargetInfo<X86_32TargetInfo>::handleTargetFeatures(Features,
                                                                  Diags))
      return false;
    // We now know the features we have: we can decide how to align vectors.
    MaxVectorAlign =
        hasFeature("avx512f") ? 512 : hasFeature("avx") ? 256 : 128;
    return true;
  }
};

// x86-32 Windows target
class LLVM_LIBRARY_VISIBILITY WindowsX86_32TargetInfo
    : public WindowsTargetInfo<X86_32TargetInfo> {
public:
  WindowsX86_32TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
      : WindowsTargetInfo<X86_32TargetInfo>(Triple, Opts) {
    DoubleAlign = LongLongAlign = 64;
    bool IsWinCOFF =
        getTriple().isOSWindows() && getTriple().isOSBinFormatCOFF();
    resetDataLayout(IsWinCOFF
                        ? "e-m:x-p:32:32-i64:64-f80:32-n8:16:32-a:0:32-S32"
                        : "e-m:e-p:32:32-i64:64-f80:32-n8:16:32-a:0:32-S32");
  }
};

// x86-32 Windows Visual Studio target
class LLVM_LIBRARY_VISIBILITY MicrosoftX86_32TargetInfo
    : public WindowsX86_32TargetInfo {
public:
  MicrosoftX86_32TargetInfo(const llvm::Triple &Triple,
                            const TargetOptions &Opts)
      : WindowsX86_32TargetInfo(Triple, Opts) {
    LongDoubleWidth = LongDoubleAlign = 64;
    LongDoubleFormat = &llvm::APFloat::IEEEdouble();
  }

  void getTargetDefines(const LangOptions &Opts,
                        MacroBuilder &Builder) const override {
    WindowsX86_32TargetInfo::getTargetDefines(Opts, Builder);
    WindowsX86_32TargetInfo::getVisualStudioDefines(Opts, Builder);
    // The value of the following reflects processor type.
    // 300=386, 400=486, 500=Pentium, 600=Blend (default)
    // We lost the original triple, so we use the default.
    Builder.defineMacro("_M_IX86", "600");
  }
};

// x86-32 MinGW target
class LLVM_LIBRARY_VISIBILITY MinGWX86_32TargetInfo
    : public WindowsX86_32TargetInfo {
public:
  MinGWX86_32TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
      : WindowsX86_32TargetInfo(Triple, Opts) {
    HasFloat128 = true;
  }

  void getTargetDefines(const LangOptions &Opts,
                        MacroBuilder &Builder) const override {
    WindowsX86_32TargetInfo::getTargetDefines(Opts, Builder);
    Builder.defineMacro("_X86_");
  }
};

// x86-32 Cygwin target
class LLVM_LIBRARY_VISIBILITY CygwinX86_32TargetInfo : public X86_32TargetInfo {
public:
  CygwinX86_32TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
      : X86_32TargetInfo(Triple, Opts) {
    this->WCharType = TargetInfo::UnsignedShort;
    DoubleAlign = LongLongAlign = 64;
    resetDataLayout("e-m:x-p:32:32-i64:64-f80:32-n8:16:32-a:0:32-S32");
  }

  void getTargetDefines(const LangOptions &Opts,
                        MacroBuilder &Builder) const override {
    X86_32TargetInfo::getTargetDefines(Opts, Builder);
    Builder.defineMacro("_X86_");
    Builder.defineMacro("__CYGWIN__");
    Builder.defineMacro("__CYGWIN32__");
    addCygMingDefines(Opts, Builder);
    DefineStd(Builder, "unix", Opts);
    if (Opts.CPlusPlus)
      Builder.defineMacro("_GNU_SOURCE");
  }
};

// x86-32 Haiku target
class LLVM_LIBRARY_VISIBILITY HaikuX86_32TargetInfo
    : public HaikuTargetInfo<X86_32TargetInfo> {
public:
  HaikuX86_32TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
      : HaikuTargetInfo<X86_32TargetInfo>(Triple, Opts) {}

  void getTargetDefines(const LangOptions &Opts,
                        MacroBuilder &Builder) const override {
    HaikuTargetInfo<X86_32TargetInfo>::getTargetDefines(Opts, Builder);
    Builder.defineMacro("__INTEL__");
  }
};

// X86-32 MCU target
class LLVM_LIBRARY_VISIBILITY MCUX86_32TargetInfo : public X86_32TargetInfo {
public:
  MCUX86_32TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
      : X86_32TargetInfo(Triple, Opts) {
    LongDoubleWidth = 64;
    LongDoubleFormat = &llvm::APFloat::IEEEdouble();
    resetDataLayout("e-m:e-p:32:32-i64:32-f64:32-f128:32-n8:16:32-a:0:32-S32");
    WIntType = UnsignedInt;
  }

  CallingConvCheckResult checkCallingConvention(CallingConv CC) const override {
    // On MCU we support only C calling convention.
    return CC == CC_C ? CCCR_OK : CCCR_Warning;
  }

  void getTargetDefines(const LangOptions &Opts,
                        MacroBuilder &Builder) const override {
    X86_32TargetInfo::getTargetDefines(Opts, Builder);
    Builder.defineMacro("__iamcu");
    Builder.defineMacro("__iamcu__");
  }

  bool allowsLargerPreferedTypeAlignment() const override { return false; }
};

// x86-32 RTEMS target
class LLVM_LIBRARY_VISIBILITY RTEMSX86_32TargetInfo : public X86_32TargetInfo {
public:
  RTEMSX86_32TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
      : X86_32TargetInfo(Triple, Opts) {
    SizeType = UnsignedLong;
    IntPtrType = SignedLong;
    PtrDiffType = SignedLong;
  }
  
  void getTargetDefines(const LangOptions &Opts,
                        MacroBuilder &Builder) const override {
    X86_32TargetInfo::getTargetDefines(Opts, Builder);
    Builder.defineMacro("__INTEL__");
    Builder.defineMacro("__rtems__");
  }
};

// x86-64 generic target
class LLVM_LIBRARY_VISIBILITY X86_64TargetInfo : public X86TargetInfo {
public:
  X86_64TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
      : X86TargetInfo(Triple, Opts) {
    const bool IsX32 = getTriple().getEnvironment() == llvm::Triple::GNUX32;
    bool IsWinCOFF =
        getTriple().isOSWindows() && getTriple().isOSBinFormatCOFF();
    LongWidth = LongAlign = PointerWidth = PointerAlign = IsX32 ? 32 : 64;
    LongDoubleWidth = 128;
    LongDoubleAlign = 128;
    LargeArrayMinWidth = 128;
    LargeArrayAlign = 128;
    SuitableAlign = 128;
    SizeType = IsX32 ? UnsignedInt : UnsignedLong;
    PtrDiffType = IsX32 ? SignedInt : SignedLong;
    IntPtrType = IsX32 ? SignedInt : SignedLong;
    IntMaxType = IsX32 ? SignedLongLong : SignedLong;
    Int64Type = IsX32 ? SignedLongLong : SignedLong;
    RegParmMax = 6;

    // Pointers are 32-bit in x32.
    resetDataLayout(IsX32
                        ? "e-m:e-p:32:32-i64:64-f80:128-n8:16:32:64-S128"
                        : IsWinCOFF ? "e-m:w-i64:64-f80:128-n8:16:32:64-S128"
                                    : "e-m:e-i64:64-f80:128-n8:16:32:64-S128");

    // Use fpret only for long double.
    RealTypeUsesObjCFPRet = (1 << TargetInfo::LongDouble);

    // Use fp2ret for _Complex long double.
    ComplexLongDoubleUsesFP2Ret = true;

    // Make __builtin_ms_va_list available.
    HasBuiltinMSVaList = true;

    // x86-64 has atomics up to 16 bytes.
    MaxAtomicPromoteWidth = 128;
    MaxAtomicInlineWidth = 64;
  }

  BuiltinVaListKind getBuiltinVaListKind() const override {
    return TargetInfo::X86_64ABIBuiltinVaList;
  }

  int getEHDataRegisterNumber(unsigned RegNo) const override {
    if (RegNo == 0)
      return 0;
    if (RegNo == 1)
      return 1;
    return -1;
  }

  CallingConvCheckResult checkCallingConvention(CallingConv CC) const override {
    switch (CC) {
    case CC_C:
    case CC_Swift:
    case CC_X86VectorCall:
    case CC_IntelOclBicc:
    case CC_Win64:
    case CC_PreserveMost:
    case CC_PreserveAll:
    case CC_X86RegCall:
    case CC_OpenCLKernel:
      return CCCR_OK;
    default:
      return CCCR_Warning;
    }
  }

  CallingConv getDefaultCallingConv(CallingConvMethodType MT) const override {
    return CC_C;
  }

  // for x32 we need it here explicitly
  bool hasInt128Type() const override { return true; }

  unsigned getUnwindWordWidth() const override { return 64; }
  
  unsigned getRegisterWidth() const override { return 64; }

  bool validateGlobalRegisterVariable(StringRef RegName, unsigned RegSize,
                                      bool &HasSizeMismatch) const override {
    // rsp and rbp are the only 64-bit registers the x86 backend can currently
    // handle.
    if (RegName.equals("rsp") || RegName.equals("rbp")) {
      // Check that the register size is 64-bit.
      HasSizeMismatch = RegSize != 64;
      return true;
    }

    // Check if the register is a 32-bit register the backend can handle.
    return X86TargetInfo::validateGlobalRegisterVariable(RegName, RegSize,
                                                         HasSizeMismatch);
  }

  void setMaxAtomicWidth() override {
    if (hasFeature("cx16"))
      MaxAtomicInlineWidth = 128;
  }

  ArrayRef<Builtin::Info> getTargetBuiltins() const override;
};

// x86-64 Windows target
class LLVM_LIBRARY_VISIBILITY WindowsX86_64TargetInfo
    : public WindowsTargetInfo<X86_64TargetInfo> {
public:
  WindowsX86_64TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
      : WindowsTargetInfo<X86_64TargetInfo>(Triple, Opts) {
    LongWidth = LongAlign = 32;
    DoubleAlign = LongLongAlign = 64;
    IntMaxType = SignedLongLong;
    Int64Type = SignedLongLong;
    SizeType = UnsignedLongLong;
    PtrDiffType = SignedLongLong;
    IntPtrType = SignedLongLong;
  }

  BuiltinVaListKind getBuiltinVaListKind() const override {
    return TargetInfo::CharPtrBuiltinVaList;
  }

  CallingConvCheckResult checkCallingConvention(CallingConv CC) const override {
    switch (CC) {
    case CC_X86StdCall:
    case CC_X86ThisCall:
    case CC_X86FastCall:
      return CCCR_Ignore;
    case CC_C:
    case CC_X86VectorCall:
    case CC_IntelOclBicc:
    case CC_PreserveMost:
    case CC_PreserveAll:
    case CC_X86_64SysV:
    case CC_Swift:
    case CC_X86RegCall:
    case CC_OpenCLKernel:
      return CCCR_OK;
    default:
      return CCCR_Warning;
    }
  }
};

// x86-64 Windows Visual Studio target
class LLVM_LIBRARY_VISIBILITY MicrosoftX86_64TargetInfo
    : public WindowsX86_64TargetInfo {
public:
  MicrosoftX86_64TargetInfo(const llvm::Triple &Triple,
                            const TargetOptions &Opts)
      : WindowsX86_64TargetInfo(Triple, Opts) {
    LongDoubleWidth = LongDoubleAlign = 64;
    LongDoubleFormat = &llvm::APFloat::IEEEdouble();
  }

  void getTargetDefines(const LangOptions &Opts,
                        MacroBuilder &Builder) const override {
    WindowsX86_64TargetInfo::getTargetDefines(Opts, Builder);
    WindowsX86_64TargetInfo::getVisualStudioDefines(Opts, Builder);
    Builder.defineMacro("_M_X64", "100");
    Builder.defineMacro("_M_AMD64", "100");
  }

  TargetInfo::CallingConvKind
  getCallingConvKind(bool ClangABICompat4) const override {
    return CCK_MicrosoftX86_64;
  }
};

// x86-64 MinGW target
class LLVM_LIBRARY_VISIBILITY MinGWX86_64TargetInfo
    : public WindowsX86_64TargetInfo {
public:
  MinGWX86_64TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
      : WindowsX86_64TargetInfo(Triple, Opts) {
    // Mingw64 rounds long double size and alignment up to 16 bytes, but sticks
    // with x86 FP ops. Weird.
    LongDoubleWidth = LongDoubleAlign = 128;
    LongDoubleFormat = &llvm::APFloat::x87DoubleExtended();
    HasFloat128 = true;
  }
};

// x86-64 Cygwin target
class LLVM_LIBRARY_VISIBILITY CygwinX86_64TargetInfo : public X86_64TargetInfo {
public:
  CygwinX86_64TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
      : X86_64TargetInfo(Triple, Opts) {
    this->WCharType = TargetInfo::UnsignedShort;
    TLSSupported = false;
  }

  void getTargetDefines(const LangOptions &Opts,
                        MacroBuilder &Builder) const override {
    X86_64TargetInfo::getTargetDefines(Opts, Builder);
    Builder.defineMacro("__x86_64__");
    Builder.defineMacro("__CYGWIN__");
    Builder.defineMacro("__CYGWIN64__");
    addCygMingDefines(Opts, Builder);
    DefineStd(Builder, "unix", Opts);
    if (Opts.CPlusPlus)
      Builder.defineMacro("_GNU_SOURCE");
  }
};

class LLVM_LIBRARY_VISIBILITY DarwinX86_64TargetInfo
    : public DarwinTargetInfo<X86_64TargetInfo> {
public:
  DarwinX86_64TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
      : DarwinTargetInfo<X86_64TargetInfo>(Triple, Opts) {
    Int64Type = SignedLongLong;
    // The 64-bit iOS simulator uses the builtin bool type for Objective-C.
    llvm::Triple T = llvm::Triple(Triple);
    if (T.isiOS())
      UseSignedCharForObjCBool = false;
    resetDataLayout("e-m:o-i64:64-f80:128-n8:16:32:64-S128");
  }

  bool handleTargetFeatures(std::vector<std::string> &Features,
                            DiagnosticsEngine &Diags) override {
    if (!DarwinTargetInfo<X86_64TargetInfo>::handleTargetFeatures(Features,
                                                                  Diags))
      return false;
    // We now know the features we have: we can decide how to align vectors.
    MaxVectorAlign =
        hasFeature("avx512f") ? 512 : hasFeature("avx") ? 256 : 128;
    return true;
  }
};

class LLVM_LIBRARY_VISIBILITY OpenBSDX86_64TargetInfo
    : public OpenBSDTargetInfo<X86_64TargetInfo> {
public:
  OpenBSDX86_64TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
      : OpenBSDTargetInfo<X86_64TargetInfo>(Triple, Opts) {
    IntMaxType = SignedLongLong;
    Int64Type = SignedLongLong;
  }
};

// x86_32 Android target
class LLVM_LIBRARY_VISIBILITY AndroidX86_32TargetInfo
    : public LinuxTargetInfo<X86_32TargetInfo> {
public:
  AndroidX86_32TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
      : LinuxTargetInfo<X86_32TargetInfo>(Triple, Opts) {
    SuitableAlign = 32;
    LongDoubleWidth = 64;
    LongDoubleFormat = &llvm::APFloat::IEEEdouble();
  }
};

// x86_64 Android target
class LLVM_LIBRARY_VISIBILITY AndroidX86_64TargetInfo
    : public LinuxTargetInfo<X86_64TargetInfo> {
public:
  AndroidX86_64TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts)
      : LinuxTargetInfo<X86_64TargetInfo>(Triple, Opts) {
    LongDoubleFormat = &llvm::APFloat::IEEEquad();
  }

  bool useFloat128ManglingForLongDouble() const override { return true; }
};
} // namespace targets
} // namespace clang
#endif // LLVM_CLANG_LIB_BASIC_TARGETS_X86_H