Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
          "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
  <title>Source Annotations</title>
  <link type="text/css" rel="stylesheet" href="menu.css">
  <link type="text/css" rel="stylesheet" href="content.css">
  <script type="text/javascript" src="scripts/menu.js"></script>
</head>
<body>

<div id="page">
<!--#include virtual="menu.html.incl"-->

<div id="content">

<h1>Source Annotations</h1>

<p>The Clang frontend supports several source-level annotations in the form of
<a href="http://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html">GCC-style
attributes</a> and pragmas that can help make using the Clang Static Analyzer
more useful. These annotations can both help suppress false positives as well as
enhance the analyzer's ability to find bugs.</p>

<p>This page gives a practical overview of such annotations. For more technical
specifics regarding Clang-specific annotations please see the Clang's list of <a
href="http://clang.llvm.org/docs/LanguageExtensions.html">language
extensions</a>. Details of &quot;standard&quot; GCC attributes (that Clang also
supports) can be found in the <a href="http://gcc.gnu.org/onlinedocs/gcc/">GCC
manual</a>, with the majority of the relevant attributes being in the section on
<a href="http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html">function
attributes</a>.</p>

<p>Note that attributes that are labeled <b>Clang-specific</b> are not
recognized by GCC. Their use can be conditioned using preprocessor macros
(examples included on this page).</p>

<h4>Specific Topics</h4>

<ul>
<li><a href="#generic">Annotations to Enhance Generic Checks</a>
  <ul>
    <li><a href="#null_checking"><span>Null Pointer Checking</span></a>
    <ul>
      <li><a href="#attr_nonnull"><span>Attribute 'nonnull'</span></a></li>
    </ul>
    </li>
  </ul>
</li>
<li><a href="#macosx">Mac OS X API Annotations</a>
  <ul>
    <li><a href="#cocoa_mem">Cocoa &amp; Core Foundation Memory Management Annotations</a>
    <ul>
      <li><a href="#attr_ns_returns_retained">Attribute 'ns_returns_retained'</a></li>
      <li><a href="#attr_ns_returns_not_retained">Attribute 'ns_returns_not_retained'</a></li>
      <li><a href="#attr_cf_returns_retained">Attribute 'cf_returns_retained'</a></li>
      <li><a href="#attr_cf_returns_not_retained">Attribute 'cf_returns_not_retained'</a></li>
      <li><a href="#attr_ns_consumed">Attribute 'ns_consumed'</a></li>
      <li><a href="#attr_cf_consumed">Attribute 'cf_consumed'</a></li>
      <li><a href="#attr_ns_consumes_self">Attribute 'ns_consumes_self'</a></li>
    </ul>
    </li>
  </ul>
</li>
<li><a href="#custom_assertions">Custom Assertion Handlers</a>
  <ul>
    <li><a href="#attr_noreturn">Attribute 'noreturn'</a></li>
    <li><a href="#attr_analyzer_noreturn">Attribute 'analyzer_noreturn'</a></li>
  </ul>
  </li>
</ul>

<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<h2 id="generic">Annotations to Enhance Generic Checks</h2>
<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->

<h3 id="null_checking">Null Pointer Checking</h3>

<h4 id="attr_nonnull">Attribute 'nonnull'</h4>

<p>The analyzer recognizes the GCC attribute 'nonnull', which indicates that a
function expects that a given function parameter is not a null pointer. Specific
details of the syntax of using the 'nonnull' attribute can be found in <a
href="http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html#index-g_t_0040code_007bnonnull_007d-function-attribute-2263">GCC's
documentation</a>.</p>

<p>Both the Clang compiler and GCC will flag warnings for simple cases where a
null pointer is directly being passed to a function with a 'nonnull' parameter
(e.g., as a constant). The analyzer extends this checking by using its deeper
symbolic analysis to track what pointer values are potentially null and then
flag warnings when they are passed in a function call via a 'nonnull'
parameter.</p>

<p><b>Example</b></p>

<pre class="code_example">
<span class="command">$ cat test.m</span>
int bar(int*p, int q, int *r) __attribute__((nonnull(1,3)));

int foo(int *p, int *q) {
   return !p ? bar(q, 2, p) 
             : bar(p, 2, q);
}
</pre>

<p>Running <tt>scan-build</tt> over this source produces the following
output:</p>

<img src="images/example_attribute_nonnull.png" alt="example attribute nonnull">

<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<h2 id="macosx">Mac OS X API Annotations</h2>
<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->

<h3 id="cocoa_mem">Cocoa &amp; Core Foundation Memory Management
Annotations</h3>

<!--
<p>As described in <a href="/available_checks.html#retain_release">Available
Checks</a>,
-->
<p>The analyzer supports the proper management of retain counts for
both Cocoa and Core Foundation objects. This checking is largely based on
enforcing Cocoa and Core Foundation naming conventions for Objective-C methods
(Cocoa) and C functions (Core Foundation). Not strictly following these
conventions can cause the analyzer to miss bugs or flag false positives.</p>

<p>One can educate the analyzer (and others who read your code) about methods or
functions that deviate from the Cocoa and Core Foundation conventions using the
attributes described here. However, you should consider using proper naming
conventions or the <a 
href="http://clang.llvm.org/docs/LanguageExtensions.html#the-objc-method-family-attribute"><tt>objc_method_family</tt></a>
attribute, if applicable.</p>

<h4 id="attr_ns_returns_retained">Attribute 'ns_returns_retained'
(Clang-specific)</h4>

<p>The GCC-style (Clang-specific) attribute 'ns_returns_retained' allows one to
annotate an Objective-C method or C function as returning a retained Cocoa
object that the caller is responsible for releasing (via sending a
<tt>release</tt> message to the object). The Foundation framework defines a
macro <b><tt>NS_RETURNS_RETAINED</tt></b> that is functionally equivalent to the
one shown below.</p>

<p><b>Placing on Objective-C methods</b>: For Objective-C methods, this
annotation essentially tells the analyzer to treat the method as if its name
begins with &quot;alloc&quot; or &quot;new&quot; or contains the word
&quot;copy&quot;.</p>

<p><b>Placing on C functions</b>: For C functions returning Cocoa objects, the
analyzer typically does not make any assumptions about whether or not the object
is returned retained. Explicitly adding the 'ns_returns_retained' attribute to C
functions allows the analyzer to perform extra checking.</p>

<p><b>Important note when using Garbage Collection</b>: Note that the analyzer
interprets this attribute slightly differently when using Objective-C garbage
collection (available on Mac OS 10.5+). When analyzing Cocoa code that uses
garbage collection, &quot;alloc&quot; methods are assumed to return an object
that is managed by the garbage collector (and thus doesn't have a retain count
the caller must balance). These same assumptions are applied to methods or
functions annotated with 'ns_returns_retained'. If you are returning a Core
Foundation object (which may not be managed by the garbage collector) you should
use 'cf_returns_retained'.</p>

<p><b>Example</b></p>

<pre class="code_example">
<span class="command">$ cat test.m</span>
#import &lt;Foundation/Foundation.h&gt;

#ifndef __has_feature      // Optional.
#define __has_feature(x) 0 // Compatibility with non-clang compilers.
#endif

#ifndef NS_RETURNS_RETAINED
#if __has_feature(attribute_ns_returns_retained)
<span class="code_highlight">#define NS_RETURNS_RETAINED __attribute__((ns_returns_retained))</span>
#else
#define NS_RETURNS_RETAINED
#endif
#endif

@interface MyClass : NSObject {}
- (NSString*) returnsRetained <span class="code_highlight">NS_RETURNS_RETAINED</span>;
- (NSString*) alsoReturnsRetained;
@end

@implementation MyClass
- (NSString*) returnsRetained {
  return [[NSString alloc] initWithCString:"no leak here"];
}
- (NSString*) alsoReturnsRetained {
  return [[NSString alloc] initWithCString:"flag a leak"];
}
@end
</pre>

<p>Running <tt>scan-build</tt> on this source file produces the following output:</p>

<img src="images/example_ns_returns_retained.png" alt="example returns retained">

<h4 id="attr_ns_returns_not_retained">Attribute 'ns_returns_not_retained'
(Clang-specific)</h4>

<p>The 'ns_returns_not_retained' attribute is the complement of '<a
href="#attr_ns_returns_retained">ns_returns_retained</a>'. Where a function or
method may appear to obey the Cocoa conventions and return a retained Cocoa
object, this attribute can be used to indicate that the object reference
returned should not be considered as an &quot;owning&quot; reference being
returned to the caller. The Foundation framework defines a
macro <b><tt>NS_RETURNS_NOT_RETAINED</tt></b> that is functionally equivalent to
the one shown below.</p>

<p>Usage is identical to <a
href="#attr_ns_returns_retained">ns_returns_retained</a>.  When using the
attribute, be sure to declare it within the proper macro that checks for
its availability, as it is not available in earlier versions of the analyzer:</p>

<pre class="code_example">
<span class="command">$ cat test.m</span>
#ifndef __has_feature      // Optional.
#define __has_feature(x) 0 // Compatibility with non-clang compilers.
#endif

#ifndef NS_RETURNS_NOT_RETAINED
#if __has_feature(attribute_ns_returns_not_retained)
<span class="code_highlight">#define NS_RETURNS_NOT_RETAINED __attribute__((ns_returns_not_retained))</span>
#else
#define NS_RETURNS_NOT_RETAINED
#endif
#endif
</pre>

<h4 id="attr_cf_returns_retained">Attribute 'cf_returns_retained'
(Clang-specific)</h4>

<p>The GCC-style (Clang-specific) attribute 'cf_returns_retained' allows one to
annotate an Objective-C method or C function as returning a retained Core
Foundation object that the caller is responsible for releasing. The 
CoreFoundation framework defines a macro <b><tt>CF_RETURNS_RETAINED</tt></b>
that is functionally equivalent to the one shown below.</p>

<p><b>Placing on Objective-C methods</b>: With respect to Objective-C methods.,
this attribute is identical in its behavior and usage to 'ns_returns_retained'
except for the distinction of returning a Core Foundation object instead of a
Cocoa object. This distinction is important for two reasons:</p>

<ul>
  <li>Core Foundation objects are not automatically managed by the Objective-C
  garbage collector.</li>
  <li>Because Core Foundation is a C API, the analyzer cannot always tell that a
  pointer return value refers to a Core Foundation object. In contrast, it is
  trivial for the analyzer to recognize if a pointer refers to a Cocoa object
  (given the Objective-C type system).
</ul>

<p><b>Placing on C functions</b>: When placing the attribute
'cf_returns_retained' on the declarations of C functions, the analyzer
interprets the function as:</p>

<ol>
  <li>Returning a Core Foundation Object</li>
  <li>Treating the function as if it its name
contained the keywords &quot;create&quot; or &quot;copy&quot;. This means the
returned object as a +1 retain count that must be released by the caller, either
by sending a <tt>release</tt> message (via toll-free bridging to an Objective-C
object pointer), calling <tt>CFRelease</tt> (or similar function), or using
<tt>CFMakeCollectable</tt> to register the object with the Objective-C garbage
collector.</li>
</ol>

<p><b>Example</b></p>

<p>In this example, observe the difference in output when the code is compiled
to not use garbage collection versus when it is compiled to only use garbage
collection (<tt>-fobjc-gc-only</tt>).</p>

<pre class="code_example">
<span class="command">$ cat test.m</span>
$ cat test.m
#import &lt;Cocoa/Cocoa.h&gt;

#ifndef __has_feature      // Optional.
#define __has_feature(x) 0 // Compatibility with non-clang compilers.
#endif

#ifndef CF_RETURNS_RETAINED
#if __has_feature(attribute_cf_returns_retained)
<span class="code_highlight">#define CF_RETURNS_RETAINED __attribute__((cf_returns_retained))</span>
#else
#define CF_RETURNS_RETAINED
#endif
#endif

@interface MyClass : NSObject {}
- (NSDate*) returnsCFRetained <span class="code_highlight">CF_RETURNS_RETAINED</span>;
- (NSDate*) alsoReturnsRetained;
- (NSDate*) returnsNSRetained <span class="code_highlight">NS_RETURNS_RETAINED</span>;
@end

<span class="code_highlight">CF_RETURNS_RETAINED</span>
CFDateRef returnsRetainedCFDate()  {
  return CFDateCreate(0, CFAbsoluteTimeGetCurrent());
}

@implementation MyClass
- (NSDate*) returnsCFRetained {
  return (NSDate*) returnsRetainedCFDate(); <b><i>// No leak.</i></b>
}

- (NSDate*) alsoReturnsRetained {
  return (NSDate*) returnsRetainedCFDate(); <b><i>// Always report a leak.</i></b>
}

- (NSDate*) returnsNSRetained {
  return (NSDate*) returnsRetainedCFDate(); <b><i>// Report a leak when using GC.</i></b>
}
@end
</pre>

<p>Running <tt>scan-build</tt> on this example produces the following output:</p>

<img src="images/example_cf_returns_retained.png" alt="example returns retained">

<p>When the above code is compiled using Objective-C garbage collection (i.e.,
code is compiled with the flag <tt>-fobjc-gc</tt> or <tt>-fobjc-gc-only</tt>),
<tt>scan-build</tt> produces both the above error (with slightly different text
to indicate the code uses garbage collection) as well as the following warning,
which indicates a leak that occurs <em>only</em> when using garbage
collection:</p>

<img src="images/example_cf_returns_retained_gc.png" alt="example returns retained gc">

<h4 id="attr_cf_returns_not_retained">Attribute 'cf_returns_not_retained'
(Clang-specific)</h4>

<p>The 'cf_returns_not_retained' attribute is the complement of '<a
href="#attr_cf_returns_retained">cf_returns_retained</a>'. Where a function or
method may appear to obey the Core Foundation or Cocoa conventions and return
a retained Core Foundation object, this attribute can be used to indicate that
the object reference returned should not be considered as an
&quot;owning&quot; reference being returned to the caller. The 
CoreFoundation framework defines a macro <b><tt>CF_RETURNS_NOT_RETAINED</tt></b>
that is functionally equivalent to the one shown below.</p>

<p>Usage is identical to <a
href="#attr_cf_returns_retained">cf_returns_retained</a>.  When using the
attribute, be sure to declare it within the proper macro that checks for
its availability, as it is not available in earlier versions of the analyzer:</p>

<pre class="code_example">
<span class="command">$ cat test.m</span>
#ifndef __has_feature      // Optional.
#define __has_feature(x) 0 // Compatibility with non-clang compilers.
#endif

#ifndef CF_RETURNS_NOT_RETAINED
#if __has_feature(attribute_cf_returns_not_retained)
<span class="code_highlight">#define CF_RETURNS_NOT_RETAINED __attribute__((cf_returns_not_retained))</span>
#else
#define CF_RETURNS_NOT_RETAINED
#endif
#endif
</pre>

<h4 id="attr_ns_consumed">Attribute 'ns_consumed'
(Clang-specific)</h4>

<p>The 'ns_consumed' attribute can be placed on a specific parameter in either
the declaration of a function or an Objective-C method. It indicates to the
static analyzer that a <tt>release</tt> message is implicitly sent to the
parameter upon completion of the call to the given function or method. The 
Foundation framework defines a macro <b><tt>NS_RELEASES_ARGUMENT</tt></b> that 
is functionally equivalent to the <tt>NS_CONSUMED</tt> macro shown below.</p>
  
<p><b>Important note when using Garbage Collection</b>: Note that the analyzer
essentially ignores this attribute when code is compiled to use Objective-C
garbage collection.  This is because the <tt>release</tt> message does nothing
when using GC.  If the underlying function/method uses something like
<tt>CFRelease</tt> to decrement the reference count, consider using
the <a href="#attr_cf_consumed">cf_consumed</a> attribute instead.</p>

<p><b>Example</b></p>

<pre class="code_example">
<span class="command">$ cat test.m</span>
#ifndef __has_feature      // Optional.
#define __has_feature(x) 0 // Compatibility with non-clang compilers.
#endif

#ifndef NS_CONSUMED
#if __has_feature(attribute_ns_consumed)
<span class="code_highlight">#define NS_CONSUMED __attribute__((ns_consumed))</span>
#else
#define NS_CONSUMED
#endif
#endif

void consume_ns(id <span class="code_highlight">NS_CONSUMED</span> x);

void test() {
  id x = [[NSObject alloc] init];
  consume_ns(x); <b><i>// No leak!</i></b>
}

@interface Foo : NSObject
+ (void) releaseArg:(id) <span class="code_highlight">NS_CONSUMED</span> x;
+ (void) releaseSecondArg:(id)x second:(id) <span class="code_highlight">NS_CONSUMED</span> y;
@end

void test_method() {
  id x = [[NSObject alloc] init];
  [Foo releaseArg:x]; <b><i>// No leak!</i></b>
}

void test_method2() {
  id a = [[NSObject alloc] init];
  id b = [[NSObject alloc] init];
  [Foo releaseSecondArg:a second:b]; <b><i>// 'a' is leaked, but 'b' is released.</i></b>
}
</pre>

<h4 id="attr_cf_consumed">Attribute 'cf_consumed'
(Clang-specific)</h4>

<p>The 'cf_consumed' attribute is practically identical to <a
href="#attr_ns_consumed">ns_consumed</a>. The attribute can be placed on a
specific parameter in either the declaration of a function or an Objective-C
method. It indicates to the static analyzer that the object reference is
implicitly passed to a call to <tt>CFRelease</tt> upon completion of the call
to the given function or method. The CoreFoundation framework defines a macro
<b><tt>CF_RELEASES_ARGUMENT</tt></b> that is functionally equivalent to the
<tt>CF_CONSUMED</tt> macro shown below.</p>
    
<p>Operationally this attribute is nearly identical to 'ns_consumed' with the
main difference that the reference count decrement still occurs when using
Objective-C garbage collection (which is important for Core Foundation types,
which are not automatically garbage collected).</p>

<p><b>Example</b></p>

<pre class="code_example">
<span class="command">$ cat test.m</span>
#ifndef __has_feature      // Optional.
#define __has_feature(x) 0 // Compatibility with non-clang compilers.
#endif

#ifndef CF_CONSUMED
#if __has_feature(attribute_cf_consumed)
<span class="code_highlight">#define CF_CONSUMED __attribute__((cf_consumed))</span>
#else
#define CF_CONSUMED
#endif
#endif

void consume_cf(id <span class="code_highlight">CF_CONSUMED</span> x);
void consume_CFDate(CFDateRef <span class="code_highlight">CF_CONSUMED</span> x);

void test() {
  id x = [[NSObject alloc] init];
  consume_cf(x); <b><i>// No leak!</i></b>
}

void test2() {
  CFDateRef date = CFDateCreate(0, CFAbsoluteTimeGetCurrent());
  consume_CFDate(date); <b><i>// No leak, including under GC!</i></b>
  
}

@interface Foo : NSObject
+ (void) releaseArg:(CFDateRef) <span class="code_highlight">CF_CONSUMED</span> x;
@end

void test_method() {
  CFDateRef date = CFDateCreate(0, CFAbsoluteTimeGetCurrent());
  [Foo releaseArg:date]; <b><i>// No leak!</i></b>
}
</pre>

<h4 id="attr_ns_consumes_self">Attribute 'ns_consumes_self'
(Clang-specific)</h4>

<p>The 'ns_consumes_self' attribute can be placed only on an Objective-C method
declaration. It indicates that the receiver of the message is
&quot;consumed&quot; (a single reference count decremented) after the message
is sent. This matches the semantics of all &quot;init&quot; methods.</p>

<p>One use of this attribute is declare your own init-like methods that do not
follow the standard Cocoa naming conventions.</p>

<p><b>Example</b></p>
  
<pre class="code_example">
#ifndef __has_feature
#define __has_feature(x) 0 // Compatibility with non-clang compilers.
#endif

#ifndef NS_CONSUMES_SELF
#if __has_feature((attribute_ns_consumes_self))
<span class="code_highlight">#define NS_CONSUMES_SELF __attribute__((ns_consumes_self))</span>
#else
#define NS_CONSUMES_SELF
#endif
#endif

@interface MyClass : NSObject
- initWith:(MyClass *)x;
- nonstandardInitWith:(MyClass *)x <span class="code_highlight">NS_CONSUMES_SELF</span> NS_RETURNS_RETAINED;
@end
</pre>

<p>In this example, <tt>-nonstandardInitWith:</tt> has the same ownership
semantics as the init method <tt>-initWith:</tt>. The static analyzer will
observe that the method consumes the receiver, and then returns an object with
a +1 retain count.</p>

<p>The Foundation framework defines a macro <b><tt>NS_REPLACES_RECEIVER</tt></b>
which is functionally equivalent to the combination of <tt>NS_CONSUMES_SELF</tt>
and <tt>NS_RETURNS_RETAINED</tt> shown above.</p>


<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<h2 id="custom_assertions">Custom Assertion Handlers</h2>
<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->

<p>The analyzer exploits code assertions by pruning off paths where the
assertion condition is false. The idea is capture any program invariants
specified in the assertion that the developer may know but is not immediately
apparent in the code itself. In this way assertions make implicit assumptions
explicit in the code, which not only makes the analyzer more accurate when
finding bugs, but can help others better able to understand your code as well.
It can also help remove certain kinds of analyzer false positives by pruning off
false paths.</p>

<p>In order to exploit assertions, however, the analyzer must understand when it
encounters an &quot;assertion handler.&quot; Typically assertions are
implemented with a macro, with the macro performing a check for the assertion
condition and, when the check fails, calling an assertion handler.  For example, consider the following code
fragment:</p>

<pre class="code_example">
void foo(int *p) {
  assert(p != NULL);
}
</pre>

<p>When this code is preprocessed on Mac OS X it expands to the following:</p>

<pre class="code_example">
void foo(int *p) {
  (__builtin_expect(!(p != NULL), 0) ? __assert_rtn(__func__, "t.c", 4, "p != NULL") : (void)0);
}
</pre>

<p>In this example, the assertion handler is <tt>__assert_rtn</tt>. When called,
most assertion handlers typically print an error and terminate the program. The
analyzer can exploit such semantics by ending the analysis of a path once it
hits a call to an assertion handler.</p>

<p>The trick, however, is that the analyzer needs to know that a called function
is an assertion handler; otherwise the analyzer might assume the function call
returns and it will continue analyzing the path where the assertion condition
failed. This can lead to false positives, as the assertion condition usually
implies a safety condition (e.g., a pointer is not null) prior to performing
some action that depends on that condition (e.g., dereferencing a pointer).</p>

<p>The analyzer knows about several well-known assertion handlers, but can
automatically infer if a function should be treated as an assertion handler if
it is annotated with the 'noreturn' attribute or the (Clang-specific)
'analyzer_noreturn' attribute. Note that, currently, clang does not support 
these attributes on Objective-C methods and C++ methods.</p>

<h4 id="attr_noreturn">Attribute 'noreturn'</h4>

<p>The 'noreturn' attribute is a GCC-attribute that can be placed on the
declarations of functions. It means exactly what its name implies: a function
with a 'noreturn' attribute should never return.</p>

<p>Specific details of the syntax of using the 'noreturn' attribute can be found
in <a
href="http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html#index-g_t_0040code_007bnoreturn_007d-function-attribute-2264">GCC's
documentation</a>.</p>

<p>Not only does the analyzer exploit this information when pruning false paths,
but the compiler also takes it seriously and will generate different code (and
possibly better optimized) under the assumption that the function does not
return.</p>

<p><b>Example</b></p>

<p>On Mac OS X, the function prototype for <tt>__assert_rtn</tt> (declared in
<tt>assert.h</tt>) is specifically annotated with the 'noreturn' attribute:</p>

<pre class="code_example">
void __assert_rtn(const char *, const char *, int, const char *) <span class="code_highlight">__attribute__((__noreturn__))</span>;
</pre>

<h4 id="attr_analyzer_noreturn">Attribute 'analyzer_noreturn' (Clang-specific)</h4>

<p>The Clang-specific 'analyzer_noreturn' attribute is almost identical to
'noreturn' except that it is ignored by the compiler for the purposes of code
generation.</p>

<p>This attribute is useful for annotating assertion handlers that actually
<em>can</em> return, but for the purpose of using the analyzer we want to
pretend that such functions do not return.</p>

<p>Because this attribute is Clang-specific, its use should be conditioned with
the use of preprocessor macros.</p>

<p><b>Example</b>

<pre class="code_example">
#ifndef CLANG_ANALYZER_NORETURN
#if __has_feature(attribute_analyzer_noreturn)
<span class="code_highlight">#define CLANG_ANALYZER_NORETURN __attribute__((analyzer_noreturn))</span>
#else
#define CLANG_ANALYZER_NORETURN
#endif
#endif

void my_assert_rtn(const char *, const char *, int, const char *) <span class="code_highlight">CLANG_ANALYZER_NORETURN</span>;
</pre>

</div>
</div>
</body>
</html>