Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
//===------------- PPCExpandISEL.cpp - Expand ISEL instruction ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// A pass that expands the ISEL instruction into an if-then-else sequence.
// This pass must be run post-RA since all operands must be physical registers.
//
//===----------------------------------------------------------------------===//

#include "PPC.h"
#include "PPCInstrInfo.h"
#include "PPCSubtarget.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "ppc-expand-isel"

STATISTIC(NumExpanded, "Number of ISEL instructions expanded");
STATISTIC(NumRemoved, "Number of ISEL instructions removed");
STATISTIC(NumFolded, "Number of ISEL instructions folded");

// If -ppc-gen-isel=false is set, we will disable generating the ISEL
// instruction on all PPC targets. Otherwise, if the user set option
// -misel or the platform supports ISEL by default, still generate the
// ISEL instruction, else expand it.
static cl::opt<bool>
    GenerateISEL("ppc-gen-isel",
                 cl::desc("Enable generating the ISEL instruction."),
                 cl::init(true), cl::Hidden);

namespace {
class PPCExpandISEL : public MachineFunctionPass {
  DebugLoc dl;
  MachineFunction *MF;
  const TargetInstrInfo *TII;
  bool IsTrueBlockRequired;
  bool IsFalseBlockRequired;
  MachineBasicBlock *TrueBlock;
  MachineBasicBlock *FalseBlock;
  MachineBasicBlock *NewSuccessor;
  MachineBasicBlock::iterator TrueBlockI;
  MachineBasicBlock::iterator FalseBlockI;

  typedef SmallVector<MachineInstr *, 4> BlockISELList;
  typedef SmallDenseMap<int, BlockISELList> ISELInstructionList;

  // A map of MBB numbers to their lists of contained ISEL instructions.
  // Please note when we traverse this list and expand ISEL, we only remove
  // the ISEL from the MBB not from this list.
  ISELInstructionList ISELInstructions;

  /// Initialize the object.
  void initialize(MachineFunction &MFParam);

  void handleSpecialCases(BlockISELList &BIL, MachineBasicBlock *MBB);
  void reorganizeBlockLayout(BlockISELList &BIL, MachineBasicBlock *MBB);
  void populateBlocks(BlockISELList &BIL);
  void expandMergeableISELs(BlockISELList &BIL);
  void expandAndMergeISELs();

  bool canMerge(MachineInstr *PrevPushedMI, MachineInstr *MI);

  ///  Is this instruction an ISEL or ISEL8?
  static bool isISEL(const MachineInstr &MI) {
    return (MI.getOpcode() == PPC::ISEL || MI.getOpcode() == PPC::ISEL8);
  }

  ///  Is this instruction an ISEL8?
  static bool isISEL8(const MachineInstr &MI) {
    return (MI.getOpcode() == PPC::ISEL8);
  }

  /// Are the two operands using the same register?
  bool useSameRegister(const MachineOperand &Op1, const MachineOperand &Op2) {
    return (Op1.getReg() == Op2.getReg());
  }

  ///
  ///  Collect all ISEL instructions from the current function.
  ///
  /// Walk the current function and collect all the ISEL instructions that are
  /// found. The instructions are placed in the ISELInstructions vector.
  ///
  /// \return true if any ISEL instructions were found, false otherwise
  ///
  bool collectISELInstructions();

public:
  static char ID;
  PPCExpandISEL() : MachineFunctionPass(ID) {
    initializePPCExpandISELPass(*PassRegistry::getPassRegistry());
  }

  ///
  ///  Determine whether to generate the ISEL instruction or expand it.
  ///
  /// Expand ISEL instruction into if-then-else sequence when one of
  /// the following two conditions hold:
  /// (1) -ppc-gen-isel=false
  /// (2) hasISEL() return false
  /// Otherwise, still generate ISEL instruction.
  /// The -ppc-gen-isel option is set to true by default. Which means the ISEL
  /// instruction is still generated by default on targets that support them.
  ///
  /// \return true if ISEL should be expanded into if-then-else code sequence;
  ///         false if ISEL instruction should be generated, i.e. not expanded.
  ///
  static bool isExpandISELEnabled(const MachineFunction &MF);

#ifndef NDEBUG
  void DumpISELInstructions() const;
#endif

  bool runOnMachineFunction(MachineFunction &MF) override {
    LLVM_DEBUG(dbgs() << "Function: "; MF.dump(); dbgs() << "\n");
    initialize(MF);

    if (!collectISELInstructions()) {
      LLVM_DEBUG(dbgs() << "No ISEL instructions in this function\n");
      return false;
    }

#ifndef NDEBUG
    DumpISELInstructions();
#endif

    expandAndMergeISELs();

    return true;
  }
};
} // end anonymous namespace

void PPCExpandISEL::initialize(MachineFunction &MFParam) {
  MF = &MFParam;
  TII = MF->getSubtarget().getInstrInfo();
  ISELInstructions.clear();
}

bool PPCExpandISEL::isExpandISELEnabled(const MachineFunction &MF) {
  return !GenerateISEL || !MF.getSubtarget<PPCSubtarget>().hasISEL();
}

bool PPCExpandISEL::collectISELInstructions() {
  for (MachineBasicBlock &MBB : *MF) {
    BlockISELList thisBlockISELs;
    for (MachineInstr &MI : MBB)
      if (isISEL(MI))
        thisBlockISELs.push_back(&MI);
    if (!thisBlockISELs.empty())
      ISELInstructions.insert(std::make_pair(MBB.getNumber(), thisBlockISELs));
  }
  return !ISELInstructions.empty();
}

#ifndef NDEBUG
void PPCExpandISEL::DumpISELInstructions() const {
  for (const auto &I : ISELInstructions) {
    LLVM_DEBUG(dbgs() << printMBBReference(*MF->getBlockNumbered(I.first))
                      << ":\n");
    for (const auto &VI : I.second)
      LLVM_DEBUG(dbgs() << "    "; VI->print(dbgs()));
  }
}
#endif

/// Contiguous ISELs that have the same condition can be merged.
bool PPCExpandISEL::canMerge(MachineInstr *PrevPushedMI, MachineInstr *MI) {
  // Same Condition Register?
  if (!useSameRegister(PrevPushedMI->getOperand(3), MI->getOperand(3)))
    return false;

  MachineBasicBlock::iterator PrevPushedMBBI = *PrevPushedMI;
  MachineBasicBlock::iterator MBBI = *MI;
  return (std::prev(MBBI) == PrevPushedMBBI); // Contiguous ISELs?
}

void PPCExpandISEL::expandAndMergeISELs() {
  bool ExpandISELEnabled = isExpandISELEnabled(*MF);

  for (auto &BlockList : ISELInstructions) {
    LLVM_DEBUG(
        dbgs() << "Expanding ISEL instructions in "
               << printMBBReference(*MF->getBlockNumbered(BlockList.first))
               << "\n");
    BlockISELList &CurrentISELList = BlockList.second;
    auto I = CurrentISELList.begin();
    auto E = CurrentISELList.end();

    while (I != E) {
      assert(isISEL(**I) && "Expecting an ISEL instruction");
      MachineOperand &Dest = (*I)->getOperand(0);
      MachineOperand &TrueValue = (*I)->getOperand(1);
      MachineOperand &FalseValue = (*I)->getOperand(2);

      // Special case 1, all registers used by ISEL are the same one.
      // The non-redundant isel 0, 0, 0, N would not satisfy these conditions
      // as it would be ISEL %R0, %ZERO, %R0, %CRN.
      if (useSameRegister(Dest, TrueValue) &&
          useSameRegister(Dest, FalseValue)) {
        LLVM_DEBUG(dbgs() << "Remove redundant ISEL instruction: " << **I
                          << "\n");
        // FIXME: if the CR field used has no other uses, we could eliminate the
        // instruction that defines it. This would have to be done manually
        // since this pass runs too late to run DCE after it.
        NumRemoved++;
        (*I)->eraseFromParent();
        I++;
      } else if (useSameRegister(TrueValue, FalseValue)) {
        // Special case 2, the two input registers used by ISEL are the same.
        // Note: the non-foldable isel RX, 0, 0, N would not satisfy this
        // condition as it would be ISEL %RX, %ZERO, %R0, %CRN, which makes it
        // safe to fold ISEL to MR(OR) instead of ADDI.
        MachineBasicBlock *MBB = (*I)->getParent();
        LLVM_DEBUG(
            dbgs() << "Fold the ISEL instruction to an unconditional copy:\n");
        LLVM_DEBUG(dbgs() << "ISEL: " << **I << "\n");
        NumFolded++;
        // Note: we're using both the TrueValue and FalseValue operands so as
        // not to lose the kill flag if it is set on either of them.
        BuildMI(*MBB, (*I), dl, TII->get(isISEL8(**I) ? PPC::OR8 : PPC::OR))
            .add(Dest)
            .add(TrueValue)
            .add(FalseValue);
        (*I)->eraseFromParent();
        I++;
      } else if (ExpandISELEnabled) { // Normal cases expansion enabled
        LLVM_DEBUG(dbgs() << "Expand ISEL instructions:\n");
        LLVM_DEBUG(dbgs() << "ISEL: " << **I << "\n");
        BlockISELList SubISELList;
        SubISELList.push_back(*I++);
        // Collect the ISELs that can be merged together.
        // This will eat up ISEL instructions without considering whether they
        // may be redundant or foldable to a register copy. So we still keep
        // the handleSpecialCases() downstream to handle them.
        while (I != E && canMerge(SubISELList.back(), *I)) {
          LLVM_DEBUG(dbgs() << "ISEL: " << **I << "\n");
          SubISELList.push_back(*I++);
        }

        expandMergeableISELs(SubISELList);
      } else { // Normal cases expansion disabled
        I++; // leave the ISEL as it is
      }
    } // end while
  } // end for
}

void PPCExpandISEL::handleSpecialCases(BlockISELList &BIL,
                                       MachineBasicBlock *MBB) {
  IsTrueBlockRequired = false;
  IsFalseBlockRequired = false;

  auto MI = BIL.begin();
  while (MI != BIL.end()) {
    assert(isISEL(**MI) && "Expecting an ISEL instruction");
    LLVM_DEBUG(dbgs() << "ISEL: " << **MI << "\n");

    MachineOperand &Dest = (*MI)->getOperand(0);
    MachineOperand &TrueValue = (*MI)->getOperand(1);
    MachineOperand &FalseValue = (*MI)->getOperand(2);

    // If at least one of the ISEL instructions satisfy the following
    // condition, we need the True Block:
    // The Dest Register and True Value Register are not the same
    // Similarly, if at least one of the ISEL instructions satisfy the
    // following condition, we need the False Block:
    // The Dest Register and False Value Register are not the same.
    bool IsADDIInstRequired = !useSameRegister(Dest, TrueValue);
    bool IsORIInstRequired = !useSameRegister(Dest, FalseValue);

    // Special case 1, all registers used by ISEL are the same one.
    if (!IsADDIInstRequired && !IsORIInstRequired) {
      LLVM_DEBUG(dbgs() << "Remove redudant ISEL instruction.");
      // FIXME: if the CR field used has no other uses, we could eliminate the
      // instruction that defines it. This would have to be done manually
      // since this pass runs too late to run DCE after it.
      NumRemoved++;
      (*MI)->eraseFromParent();
      // Setting MI to the erase result keeps the iterator valid and increased.
      MI = BIL.erase(MI);
      continue;
    }

    // Special case 2, the two input registers used by ISEL are the same.
    // Note 1: We favor merging ISEL expansions over folding a single one. If
    // the passed list has multiple merge-able ISEL's, we won't fold any.
    // Note 2: There is no need to test for PPC::R0/PPC::X0 because PPC::ZERO/
    // PPC::ZERO8 will be used for the first operand if the value is meant to
    // be zero. In this case, the useSameRegister method will return false,
    // thereby preventing this ISEL from being folded.
    if (useSameRegister(TrueValue, FalseValue) && (BIL.size() == 1)) {
      LLVM_DEBUG(
          dbgs() << "Fold the ISEL instruction to an unconditonal copy.");
      NumFolded++;
      // Note: we're using both the TrueValue and FalseValue operands so as
      // not to lose the kill flag if it is set on either of them.
      BuildMI(*MBB, (*MI), dl, TII->get(isISEL8(**MI) ? PPC::OR8 : PPC::OR))
          .add(Dest)
          .add(TrueValue)
          .add(FalseValue);
      (*MI)->eraseFromParent();
      // Setting MI to the erase result keeps the iterator valid and increased.
      MI = BIL.erase(MI);
      continue;
    }

    IsTrueBlockRequired |= IsADDIInstRequired;
    IsFalseBlockRequired |= IsORIInstRequired;
    MI++;
  }
}

void PPCExpandISEL::reorganizeBlockLayout(BlockISELList &BIL,
                                          MachineBasicBlock *MBB) {
  if (BIL.empty())
    return;

  assert((IsTrueBlockRequired || IsFalseBlockRequired) &&
         "Should have been handled by special cases earlier!");

  MachineBasicBlock *Successor = nullptr;
  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
  MachineBasicBlock::iterator MBBI = (*BIL.back());
  NewSuccessor = (MBBI != MBB->getLastNonDebugInstr() || !MBB->canFallThrough())
                     // Another BB is needed to move the instructions that
                     // follow this ISEL.  If the ISEL is the last instruction
                     // in a block that can't fall through, we also need a block
                     // to branch to.
                     ? MF->CreateMachineBasicBlock(LLVM_BB)
                     : nullptr;

  MachineFunction::iterator It = MBB->getIterator();
  ++It; // Point to the successor block of MBB.

  // If NewSuccessor is NULL then the last ISEL in this group is the last
  // non-debug instruction in this block. Find the fall-through successor
  // of this block to use when updating the CFG below.
  if (!NewSuccessor) {
    for (auto &Succ : MBB->successors()) {
      if (MBB->isLayoutSuccessor(Succ)) {
        Successor = Succ;
        break;
      }
    }
  } else
    Successor = NewSuccessor;

  // The FalseBlock and TrueBlock are inserted after the MBB block but before
  // its successor.
  // Note this need to be done *after* the above setting the Successor code.
  if (IsFalseBlockRequired) {
    FalseBlock = MF->CreateMachineBasicBlock(LLVM_BB);
    MF->insert(It, FalseBlock);
  }

  if (IsTrueBlockRequired) {
    TrueBlock = MF->CreateMachineBasicBlock(LLVM_BB);
    MF->insert(It, TrueBlock);
  }

  if (NewSuccessor) {
    MF->insert(It, NewSuccessor);

    // Transfer the rest of this block into the new successor block.
    NewSuccessor->splice(NewSuccessor->end(), MBB,
                         std::next(MachineBasicBlock::iterator(BIL.back())),
                         MBB->end());
    NewSuccessor->transferSuccessorsAndUpdatePHIs(MBB);

    // Copy the original liveIns of MBB to NewSuccessor.
    for (auto &LI : MBB->liveins())
      NewSuccessor->addLiveIn(LI);

    // After splitting the NewSuccessor block, Regs defined but not killed
    // in MBB should be treated as liveins of NewSuccessor.
    // Note: Cannot use stepBackward instead since we are using the Reg
    // liveness state at the end of MBB (liveOut of MBB) as the liveIn for
    // NewSuccessor. Otherwise, will cause cyclic dependence.
    LivePhysRegs LPR(*MF->getSubtarget<PPCSubtarget>().getRegisterInfo());
    SmallVector<std::pair<unsigned, const MachineOperand *>, 2> Clobbers;
    for (MachineInstr &MI : *MBB)
      LPR.stepForward(MI, Clobbers);
    for (auto &LI : LPR)
      NewSuccessor->addLiveIn(LI);
  } else {
    // Remove successor from MBB.
    MBB->removeSuccessor(Successor);
  }

  // Note that this needs to be done *after* transfering the successors from MBB
  // to the NewSuccessor block, otherwise these blocks will also be transferred
  // as successors!
  MBB->addSuccessor(IsTrueBlockRequired ? TrueBlock : Successor);
  MBB->addSuccessor(IsFalseBlockRequired ? FalseBlock : Successor);

  if (IsTrueBlockRequired) {
    TrueBlockI = TrueBlock->begin();
    TrueBlock->addSuccessor(Successor);
  }

  if (IsFalseBlockRequired) {
    FalseBlockI = FalseBlock->begin();
    FalseBlock->addSuccessor(Successor);
  }

  // Conditional branch to the TrueBlock or Successor
  BuildMI(*MBB, BIL.back(), dl, TII->get(PPC::BC))
      .add(BIL.back()->getOperand(3))
      .addMBB(IsTrueBlockRequired ? TrueBlock : Successor);

  // Jump over the true block to the new successor if the condition is false.
  BuildMI(*(IsFalseBlockRequired ? FalseBlock : MBB),
          (IsFalseBlockRequired ? FalseBlockI : BIL.back()), dl,
          TII->get(PPC::B))
      .addMBB(Successor);

  if (IsFalseBlockRequired)
    FalseBlockI = FalseBlock->begin(); // get the position of PPC::B
}

void PPCExpandISEL::populateBlocks(BlockISELList &BIL) {
  for (auto &MI : BIL) {
    assert(isISEL(*MI) && "Expecting an ISEL instruction");

    MachineOperand &Dest = MI->getOperand(0);       // location to store to
    MachineOperand &TrueValue = MI->getOperand(1);  // Value to store if
                                                       // condition is true
    MachineOperand &FalseValue = MI->getOperand(2); // Value to store if
                                                       // condition is false
    MachineOperand &ConditionRegister = MI->getOperand(3); // Condition

    LLVM_DEBUG(dbgs() << "Dest: " << Dest << "\n");
    LLVM_DEBUG(dbgs() << "TrueValue: " << TrueValue << "\n");
    LLVM_DEBUG(dbgs() << "FalseValue: " << FalseValue << "\n");
    LLVM_DEBUG(dbgs() << "ConditionRegister: " << ConditionRegister << "\n");

    // If the Dest Register and True Value Register are not the same one, we
    // need the True Block.
    bool IsADDIInstRequired = !useSameRegister(Dest, TrueValue);
    bool IsORIInstRequired = !useSameRegister(Dest, FalseValue);

    if (IsADDIInstRequired) {
      // Copy the result into the destination if the condition is true.
      BuildMI(*TrueBlock, TrueBlockI, dl,
              TII->get(isISEL8(*MI) ? PPC::ADDI8 : PPC::ADDI))
          .add(Dest)
          .add(TrueValue)
          .add(MachineOperand::CreateImm(0));

      // Add the LiveIn registers required by true block.
      TrueBlock->addLiveIn(TrueValue.getReg());
    }

    if (IsORIInstRequired) {
      // Add the LiveIn registers required by false block.
      FalseBlock->addLiveIn(FalseValue.getReg());
    }

    if (NewSuccessor) {
      // Add the LiveIn registers required by NewSuccessor block.
      NewSuccessor->addLiveIn(Dest.getReg());
      NewSuccessor->addLiveIn(TrueValue.getReg());
      NewSuccessor->addLiveIn(FalseValue.getReg());
      NewSuccessor->addLiveIn(ConditionRegister.getReg());
    }

    // Copy the value into the destination if the condition is false.
    if (IsORIInstRequired)
      BuildMI(*FalseBlock, FalseBlockI, dl,
              TII->get(isISEL8(*MI) ? PPC::ORI8 : PPC::ORI))
          .add(Dest)
          .add(FalseValue)
          .add(MachineOperand::CreateImm(0));

    MI->eraseFromParent(); // Remove the ISEL instruction.

    NumExpanded++;
  }
}

void PPCExpandISEL::expandMergeableISELs(BlockISELList &BIL) {
  // At this stage all the ISELs of BIL are in the same MBB.
  MachineBasicBlock *MBB = BIL.back()->getParent();

  handleSpecialCases(BIL, MBB);
  reorganizeBlockLayout(BIL, MBB);
  populateBlocks(BIL);
}

INITIALIZE_PASS(PPCExpandISEL, DEBUG_TYPE, "PowerPC Expand ISEL Generation",
                false, false)
char PPCExpandISEL::ID = 0;

FunctionPass *llvm::createPPCExpandISELPass() { return new PPCExpandISEL(); }