Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
//===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements a simple loop unroller.  It works best when loops have
// been canonicalized by the -indvars pass, allowing it to determine the trip
// counts of loops easily.
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/LoopUnrollAnalyzer.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <limits>
#include <string>
#include <tuple>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "loop-unroll"

static cl::opt<unsigned>
    UnrollThreshold("unroll-threshold", cl::Hidden,
                    cl::desc("The cost threshold for loop unrolling"));

static cl::opt<unsigned> UnrollPartialThreshold(
    "unroll-partial-threshold", cl::Hidden,
    cl::desc("The cost threshold for partial loop unrolling"));

static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
    "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
    cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
             "to the threshold when aggressively unrolling a loop due to the "
             "dynamic cost savings. If completely unrolling a loop will reduce "
             "the total runtime from X to Y, we boost the loop unroll "
             "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
             "X/Y). This limit avoids excessive code bloat."));

static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
    "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
    cl::desc("Don't allow loop unrolling to simulate more than this number of"
             "iterations when checking full unroll profitability"));

static cl::opt<unsigned> UnrollCount(
    "unroll-count", cl::Hidden,
    cl::desc("Use this unroll count for all loops including those with "
             "unroll_count pragma values, for testing purposes"));

static cl::opt<unsigned> UnrollMaxCount(
    "unroll-max-count", cl::Hidden,
    cl::desc("Set the max unroll count for partial and runtime unrolling, for"
             "testing purposes"));

static cl::opt<unsigned> UnrollFullMaxCount(
    "unroll-full-max-count", cl::Hidden,
    cl::desc(
        "Set the max unroll count for full unrolling, for testing purposes"));

static cl::opt<unsigned> UnrollPeelCount(
    "unroll-peel-count", cl::Hidden,
    cl::desc("Set the unroll peeling count, for testing purposes"));

static cl::opt<bool>
    UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
                       cl::desc("Allows loops to be partially unrolled until "
                                "-unroll-threshold loop size is reached."));

static cl::opt<bool> UnrollAllowRemainder(
    "unroll-allow-remainder", cl::Hidden,
    cl::desc("Allow generation of a loop remainder (extra iterations) "
             "when unrolling a loop."));

static cl::opt<bool>
    UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
                  cl::desc("Unroll loops with run-time trip counts"));

static cl::opt<unsigned> UnrollMaxUpperBound(
    "unroll-max-upperbound", cl::init(8), cl::Hidden,
    cl::desc(
        "The max of trip count upper bound that is considered in unrolling"));

static cl::opt<unsigned> PragmaUnrollThreshold(
    "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
    cl::desc("Unrolled size limit for loops with an unroll(full) or "
             "unroll_count pragma."));

static cl::opt<unsigned> FlatLoopTripCountThreshold(
    "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
    cl::desc("If the runtime tripcount for the loop is lower than the "
             "threshold, the loop is considered as flat and will be less "
             "aggressively unrolled."));

static cl::opt<bool>
    UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
                       cl::desc("Allows loops to be peeled when the dynamic "
                                "trip count is known to be low."));

static cl::opt<bool> UnrollUnrollRemainder(
  "unroll-remainder", cl::Hidden,
  cl::desc("Allow the loop remainder to be unrolled."));

// This option isn't ever intended to be enabled, it serves to allow
// experiments to check the assumptions about when this kind of revisit is
// necessary.
static cl::opt<bool> UnrollRevisitChildLoops(
    "unroll-revisit-child-loops", cl::Hidden,
    cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
             "This shouldn't typically be needed as child loops (or their "
             "clones) were already visited."));

/// A magic value for use with the Threshold parameter to indicate
/// that the loop unroll should be performed regardless of how much
/// code expansion would result.
static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();

/// Gather the various unrolling parameters based on the defaults, compiler
/// flags, TTI overrides and user specified parameters.
TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
    Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, int OptLevel,
    Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
    Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
    Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) {
  TargetTransformInfo::UnrollingPreferences UP;

  // Set up the defaults
  UP.Threshold = OptLevel > 2 ? 300 : 150;
  UP.MaxPercentThresholdBoost = 400;
  UP.OptSizeThreshold = 0;
  UP.PartialThreshold = 150;
  UP.PartialOptSizeThreshold = 0;
  UP.Count = 0;
  UP.PeelCount = 0;
  UP.DefaultUnrollRuntimeCount = 8;
  UP.MaxCount = std::numeric_limits<unsigned>::max();
  UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
  UP.BEInsns = 2;
  UP.Partial = false;
  UP.Runtime = false;
  UP.AllowRemainder = true;
  UP.UnrollRemainder = false;
  UP.AllowExpensiveTripCount = false;
  UP.Force = false;
  UP.UpperBound = false;
  UP.AllowPeeling = true;
  UP.UnrollAndJam = false;
  UP.UnrollAndJamInnerLoopThreshold = 60;

  // Override with any target specific settings
  TTI.getUnrollingPreferences(L, SE, UP);

  // Apply size attributes
  if (L->getHeader()->getParent()->optForSize()) {
    UP.Threshold = UP.OptSizeThreshold;
    UP.PartialThreshold = UP.PartialOptSizeThreshold;
  }

  // Apply any user values specified by cl::opt
  if (UnrollThreshold.getNumOccurrences() > 0)
    UP.Threshold = UnrollThreshold;
  if (UnrollPartialThreshold.getNumOccurrences() > 0)
    UP.PartialThreshold = UnrollPartialThreshold;
  if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
    UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
  if (UnrollMaxCount.getNumOccurrences() > 0)
    UP.MaxCount = UnrollMaxCount;
  if (UnrollFullMaxCount.getNumOccurrences() > 0)
    UP.FullUnrollMaxCount = UnrollFullMaxCount;
  if (UnrollPeelCount.getNumOccurrences() > 0)
    UP.PeelCount = UnrollPeelCount;
  if (UnrollAllowPartial.getNumOccurrences() > 0)
    UP.Partial = UnrollAllowPartial;
  if (UnrollAllowRemainder.getNumOccurrences() > 0)
    UP.AllowRemainder = UnrollAllowRemainder;
  if (UnrollRuntime.getNumOccurrences() > 0)
    UP.Runtime = UnrollRuntime;
  if (UnrollMaxUpperBound == 0)
    UP.UpperBound = false;
  if (UnrollAllowPeeling.getNumOccurrences() > 0)
    UP.AllowPeeling = UnrollAllowPeeling;
  if (UnrollUnrollRemainder.getNumOccurrences() > 0)
    UP.UnrollRemainder = UnrollUnrollRemainder;

  // Apply user values provided by argument
  if (UserThreshold.hasValue()) {
    UP.Threshold = *UserThreshold;
    UP.PartialThreshold = *UserThreshold;
  }
  if (UserCount.hasValue())
    UP.Count = *UserCount;
  if (UserAllowPartial.hasValue())
    UP.Partial = *UserAllowPartial;
  if (UserRuntime.hasValue())
    UP.Runtime = *UserRuntime;
  if (UserUpperBound.hasValue())
    UP.UpperBound = *UserUpperBound;
  if (UserAllowPeeling.hasValue())
    UP.AllowPeeling = *UserAllowPeeling;

  return UP;
}

namespace {

/// A struct to densely store the state of an instruction after unrolling at
/// each iteration.
///
/// This is designed to work like a tuple of <Instruction *, int> for the
/// purposes of hashing and lookup, but to be able to associate two boolean
/// states with each key.
struct UnrolledInstState {
  Instruction *I;
  int Iteration : 30;
  unsigned IsFree : 1;
  unsigned IsCounted : 1;
};

/// Hashing and equality testing for a set of the instruction states.
struct UnrolledInstStateKeyInfo {
  using PtrInfo = DenseMapInfo<Instruction *>;
  using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;

  static inline UnrolledInstState getEmptyKey() {
    return {PtrInfo::getEmptyKey(), 0, 0, 0};
  }

  static inline UnrolledInstState getTombstoneKey() {
    return {PtrInfo::getTombstoneKey(), 0, 0, 0};
  }

  static inline unsigned getHashValue(const UnrolledInstState &S) {
    return PairInfo::getHashValue({S.I, S.Iteration});
  }

  static inline bool isEqual(const UnrolledInstState &LHS,
                             const UnrolledInstState &RHS) {
    return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
  }
};

struct EstimatedUnrollCost {
  /// The estimated cost after unrolling.
  unsigned UnrolledCost;

  /// The estimated dynamic cost of executing the instructions in the
  /// rolled form.
  unsigned RolledDynamicCost;
};

} // end anonymous namespace

/// Figure out if the loop is worth full unrolling.
///
/// Complete loop unrolling can make some loads constant, and we need to know
/// if that would expose any further optimization opportunities.  This routine
/// estimates this optimization.  It computes cost of unrolled loop
/// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
/// dynamic cost we mean that we won't count costs of blocks that are known not
/// to be executed (i.e. if we have a branch in the loop and we know that at the
/// given iteration its condition would be resolved to true, we won't add up the
/// cost of the 'false'-block).
/// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
/// the analysis failed (no benefits expected from the unrolling, or the loop is
/// too big to analyze), the returned value is None.
static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
    const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
    const SmallPtrSetImpl<const Value *> &EphValues,
    const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) {
  // We want to be able to scale offsets by the trip count and add more offsets
  // to them without checking for overflows, and we already don't want to
  // analyze *massive* trip counts, so we force the max to be reasonably small.
  assert(UnrollMaxIterationsCountToAnalyze <
             (unsigned)(std::numeric_limits<int>::max() / 2) &&
         "The unroll iterations max is too large!");

  // Only analyze inner loops. We can't properly estimate cost of nested loops
  // and we won't visit inner loops again anyway.
  if (!L->empty())
    return None;

  // Don't simulate loops with a big or unknown tripcount
  if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
      TripCount > UnrollMaxIterationsCountToAnalyze)
    return None;

  SmallSetVector<BasicBlock *, 16> BBWorklist;
  SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
  DenseMap<Value *, Constant *> SimplifiedValues;
  SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;

  // The estimated cost of the unrolled form of the loop. We try to estimate
  // this by simplifying as much as we can while computing the estimate.
  unsigned UnrolledCost = 0;

  // We also track the estimated dynamic (that is, actually executed) cost in
  // the rolled form. This helps identify cases when the savings from unrolling
  // aren't just exposing dead control flows, but actual reduced dynamic
  // instructions due to the simplifications which we expect to occur after
  // unrolling.
  unsigned RolledDynamicCost = 0;

  // We track the simplification of each instruction in each iteration. We use
  // this to recursively merge costs into the unrolled cost on-demand so that
  // we don't count the cost of any dead code. This is essentially a map from
  // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
  DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;

  // A small worklist used to accumulate cost of instructions from each
  // observable and reached root in the loop.
  SmallVector<Instruction *, 16> CostWorklist;

  // PHI-used worklist used between iterations while accumulating cost.
  SmallVector<Instruction *, 4> PHIUsedList;

  // Helper function to accumulate cost for instructions in the loop.
  auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
    assert(Iteration >= 0 && "Cannot have a negative iteration!");
    assert(CostWorklist.empty() && "Must start with an empty cost list");
    assert(PHIUsedList.empty() && "Must start with an empty phi used list");
    CostWorklist.push_back(&RootI);
    for (;; --Iteration) {
      do {
        Instruction *I = CostWorklist.pop_back_val();

        // InstCostMap only uses I and Iteration as a key, the other two values
        // don't matter here.
        auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
        if (CostIter == InstCostMap.end())
          // If an input to a PHI node comes from a dead path through the loop
          // we may have no cost data for it here. What that actually means is
          // that it is free.
          continue;
        auto &Cost = *CostIter;
        if (Cost.IsCounted)
          // Already counted this instruction.
          continue;

        // Mark that we are counting the cost of this instruction now.
        Cost.IsCounted = true;

        // If this is a PHI node in the loop header, just add it to the PHI set.
        if (auto *PhiI = dyn_cast<PHINode>(I))
          if (PhiI->getParent() == L->getHeader()) {
            assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
                                  "inherently simplify during unrolling.");
            if (Iteration == 0)
              continue;

            // Push the incoming value from the backedge into the PHI used list
            // if it is an in-loop instruction. We'll use this to populate the
            // cost worklist for the next iteration (as we count backwards).
            if (auto *OpI = dyn_cast<Instruction>(
                    PhiI->getIncomingValueForBlock(L->getLoopLatch())))
              if (L->contains(OpI))
                PHIUsedList.push_back(OpI);
            continue;
          }

        // First accumulate the cost of this instruction.
        if (!Cost.IsFree) {
          UnrolledCost += TTI.getUserCost(I);
          LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
                            << Iteration << "): ");
          LLVM_DEBUG(I->dump());
        }

        // We must count the cost of every operand which is not free,
        // recursively. If we reach a loop PHI node, simply add it to the set
        // to be considered on the next iteration (backwards!).
        for (Value *Op : I->operands()) {
          // Check whether this operand is free due to being a constant or
          // outside the loop.
          auto *OpI = dyn_cast<Instruction>(Op);
          if (!OpI || !L->contains(OpI))
            continue;

          // Otherwise accumulate its cost.
          CostWorklist.push_back(OpI);
        }
      } while (!CostWorklist.empty());

      if (PHIUsedList.empty())
        // We've exhausted the search.
        break;

      assert(Iteration > 0 &&
             "Cannot track PHI-used values past the first iteration!");
      CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
      PHIUsedList.clear();
    }
  };

  // Ensure that we don't violate the loop structure invariants relied on by
  // this analysis.
  assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
  assert(L->isLCSSAForm(DT) &&
         "Must have loops in LCSSA form to track live-out values.");

  LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");

  // Simulate execution of each iteration of the loop counting instructions,
  // which would be simplified.
  // Since the same load will take different values on different iterations,
  // we literally have to go through all loop's iterations.
  for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
    LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");

    // Prepare for the iteration by collecting any simplified entry or backedge
    // inputs.
    for (Instruction &I : *L->getHeader()) {
      auto *PHI = dyn_cast<PHINode>(&I);
      if (!PHI)
        break;

      // The loop header PHI nodes must have exactly two input: one from the
      // loop preheader and one from the loop latch.
      assert(
          PHI->getNumIncomingValues() == 2 &&
          "Must have an incoming value only for the preheader and the latch.");

      Value *V = PHI->getIncomingValueForBlock(
          Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
      Constant *C = dyn_cast<Constant>(V);
      if (Iteration != 0 && !C)
        C = SimplifiedValues.lookup(V);
      if (C)
        SimplifiedInputValues.push_back({PHI, C});
    }

    // Now clear and re-populate the map for the next iteration.
    SimplifiedValues.clear();
    while (!SimplifiedInputValues.empty())
      SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());

    UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);

    BBWorklist.clear();
    BBWorklist.insert(L->getHeader());
    // Note that we *must not* cache the size, this loop grows the worklist.
    for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
      BasicBlock *BB = BBWorklist[Idx];

      // Visit all instructions in the given basic block and try to simplify
      // it.  We don't change the actual IR, just count optimization
      // opportunities.
      for (Instruction &I : *BB) {
        // These won't get into the final code - don't even try calculating the
        // cost for them.
        if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
          continue;

        // Track this instruction's expected baseline cost when executing the
        // rolled loop form.
        RolledDynamicCost += TTI.getUserCost(&I);

        // Visit the instruction to analyze its loop cost after unrolling,
        // and if the visitor returns true, mark the instruction as free after
        // unrolling and continue.
        bool IsFree = Analyzer.visit(I);
        bool Inserted = InstCostMap.insert({&I, (int)Iteration,
                                           (unsigned)IsFree,
                                           /*IsCounted*/ false}).second;
        (void)Inserted;
        assert(Inserted && "Cannot have a state for an unvisited instruction!");

        if (IsFree)
          continue;

        // Can't properly model a cost of a call.
        // FIXME: With a proper cost model we should be able to do it.
        if (auto *CI = dyn_cast<CallInst>(&I)) {
          const Function *Callee = CI->getCalledFunction();
          if (!Callee || TTI.isLoweredToCall(Callee)) {
            LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
            return None;
          }
        }

        // If the instruction might have a side-effect recursively account for
        // the cost of it and all the instructions leading up to it.
        if (I.mayHaveSideEffects())
          AddCostRecursively(I, Iteration);

        // If unrolled body turns out to be too big, bail out.
        if (UnrolledCost > MaxUnrolledLoopSize) {
          LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
                            << "  UnrolledCost: " << UnrolledCost
                            << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
                            << "\n");
          return None;
        }
      }

      TerminatorInst *TI = BB->getTerminator();

      // Add in the live successors by first checking whether we have terminator
      // that may be simplified based on the values simplified by this call.
      BasicBlock *KnownSucc = nullptr;
      if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
        if (BI->isConditional()) {
          if (Constant *SimpleCond =
                  SimplifiedValues.lookup(BI->getCondition())) {
            // Just take the first successor if condition is undef
            if (isa<UndefValue>(SimpleCond))
              KnownSucc = BI->getSuccessor(0);
            else if (ConstantInt *SimpleCondVal =
                         dyn_cast<ConstantInt>(SimpleCond))
              KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
          }
        }
      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
        if (Constant *SimpleCond =
                SimplifiedValues.lookup(SI->getCondition())) {
          // Just take the first successor if condition is undef
          if (isa<UndefValue>(SimpleCond))
            KnownSucc = SI->getSuccessor(0);
          else if (ConstantInt *SimpleCondVal =
                       dyn_cast<ConstantInt>(SimpleCond))
            KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
        }
      }
      if (KnownSucc) {
        if (L->contains(KnownSucc))
          BBWorklist.insert(KnownSucc);
        else
          ExitWorklist.insert({BB, KnownSucc});
        continue;
      }

      // Add BB's successors to the worklist.
      for (BasicBlock *Succ : successors(BB))
        if (L->contains(Succ))
          BBWorklist.insert(Succ);
        else
          ExitWorklist.insert({BB, Succ});
      AddCostRecursively(*TI, Iteration);
    }

    // If we found no optimization opportunities on the first iteration, we
    // won't find them on later ones too.
    if (UnrolledCost == RolledDynamicCost) {
      LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
                        << "  UnrolledCost: " << UnrolledCost << "\n");
      return None;
    }
  }

  while (!ExitWorklist.empty()) {
    BasicBlock *ExitingBB, *ExitBB;
    std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();

    for (Instruction &I : *ExitBB) {
      auto *PN = dyn_cast<PHINode>(&I);
      if (!PN)
        break;

      Value *Op = PN->getIncomingValueForBlock(ExitingBB);
      if (auto *OpI = dyn_cast<Instruction>(Op))
        if (L->contains(OpI))
          AddCostRecursively(*OpI, TripCount - 1);
    }
  }

  LLVM_DEBUG(dbgs() << "Analysis finished:\n"
                    << "UnrolledCost: " << UnrolledCost << ", "
                    << "RolledDynamicCost: " << RolledDynamicCost << "\n");
  return {{UnrolledCost, RolledDynamicCost}};
}

/// ApproximateLoopSize - Approximate the size of the loop.
unsigned llvm::ApproximateLoopSize(
    const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
    const TargetTransformInfo &TTI,
    const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
  CodeMetrics Metrics;
  for (BasicBlock *BB : L->blocks())
    Metrics.analyzeBasicBlock(BB, TTI, EphValues);
  NumCalls = Metrics.NumInlineCandidates;
  NotDuplicatable = Metrics.notDuplicatable;
  Convergent = Metrics.convergent;

  unsigned LoopSize = Metrics.NumInsts;

  // Don't allow an estimate of size zero.  This would allows unrolling of loops
  // with huge iteration counts, which is a compile time problem even if it's
  // not a problem for code quality. Also, the code using this size may assume
  // that each loop has at least three instructions (likely a conditional
  // branch, a comparison feeding that branch, and some kind of loop increment
  // feeding that comparison instruction).
  LoopSize = std::max(LoopSize, BEInsns + 1);

  return LoopSize;
}

// Returns the loop hint metadata node with the given name (for example,
// "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
// returned.
static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
  if (MDNode *LoopID = L->getLoopID())
    return GetUnrollMetadata(LoopID, Name);
  return nullptr;
}

// Returns true if the loop has an unroll(full) pragma.
static bool HasUnrollFullPragma(const Loop *L) {
  return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
}

// Returns true if the loop has an unroll(enable) pragma. This metadata is used
// for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
static bool HasUnrollEnablePragma(const Loop *L) {
  return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
}

// Returns true if the loop has an unroll(disable) pragma.
static bool HasUnrollDisablePragma(const Loop *L) {
  return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
}

// Returns true if the loop has an runtime unroll(disable) pragma.
static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
  return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
}

// If loop has an unroll_count pragma return the (necessarily
// positive) value from the pragma.  Otherwise return 0.
static unsigned UnrollCountPragmaValue(const Loop *L) {
  MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
  if (MD) {
    assert(MD->getNumOperands() == 2 &&
           "Unroll count hint metadata should have two operands.");
    unsigned Count =
        mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
    assert(Count >= 1 && "Unroll count must be positive.");
    return Count;
  }
  return 0;
}

// Computes the boosting factor for complete unrolling.
// If fully unrolling the loop would save a lot of RolledDynamicCost, it would
// be beneficial to fully unroll the loop even if unrolledcost is large. We
// use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
// the unroll threshold.
static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
                                            unsigned MaxPercentThresholdBoost) {
  if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
    return 100;
  else if (Cost.UnrolledCost != 0)
    // The boosting factor is RolledDynamicCost / UnrolledCost
    return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
                    MaxPercentThresholdBoost);
  else
    return MaxPercentThresholdBoost;
}

// Returns loop size estimation for unrolled loop.
static uint64_t getUnrolledLoopSize(
    unsigned LoopSize,
    TargetTransformInfo::UnrollingPreferences &UP) {
  assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
  return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
}

// Returns true if unroll count was set explicitly.
// Calculates unroll count and writes it to UP.Count.
bool llvm::computeUnrollCount(
    Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
    ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
    OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
    unsigned &TripMultiple, unsigned LoopSize,
    TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
  // Check for explicit Count.
  // 1st priority is unroll count set by "unroll-count" option.
  bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
  if (UserUnrollCount) {
    UP.Count = UnrollCount;
    UP.AllowExpensiveTripCount = true;
    UP.Force = true;
    if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
      return true;
  }

  // 2nd priority is unroll count set by pragma.
  unsigned PragmaCount = UnrollCountPragmaValue(L);
  if (PragmaCount > 0) {
    UP.Count = PragmaCount;
    UP.Runtime = true;
    UP.AllowExpensiveTripCount = true;
    UP.Force = true;
    if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
        getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
      return true;
  }
  bool PragmaFullUnroll = HasUnrollFullPragma(L);
  if (PragmaFullUnroll && TripCount != 0) {
    UP.Count = TripCount;
    if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
      return false;
  }

  bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
  bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
                        PragmaEnableUnroll || UserUnrollCount;

  if (ExplicitUnroll && TripCount != 0) {
    // If the loop has an unrolling pragma, we want to be more aggressive with
    // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
    // value which is larger than the default limits.
    UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
    UP.PartialThreshold =
        std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
  }

  // 3rd priority is full unroll count.
  // Full unroll makes sense only when TripCount or its upper bound could be
  // statically calculated.
  // Also we need to check if we exceed FullUnrollMaxCount.
  // If using the upper bound to unroll, TripMultiple should be set to 1 because
  // we do not know when loop may exit.
  // MaxTripCount and ExactTripCount cannot both be non zero since we only
  // compute the former when the latter is zero.
  unsigned ExactTripCount = TripCount;
  assert((ExactTripCount == 0 || MaxTripCount == 0) &&
         "ExtractTripCount and MaxTripCount cannot both be non zero.");
  unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount;
  UP.Count = FullUnrollTripCount;
  if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
    // When computing the unrolled size, note that BEInsns are not replicated
    // like the rest of the loop body.
    if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
      UseUpperBound = (MaxTripCount == FullUnrollTripCount);
      TripCount = FullUnrollTripCount;
      TripMultiple = UP.UpperBound ? 1 : TripMultiple;
      return ExplicitUnroll;
    } else {
      // The loop isn't that small, but we still can fully unroll it if that
      // helps to remove a significant number of instructions.
      // To check that, run additional analysis on the loop.
      if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
              L, FullUnrollTripCount, DT, SE, EphValues, TTI,
              UP.Threshold * UP.MaxPercentThresholdBoost / 100)) {
        unsigned Boost =
            getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
        if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
          UseUpperBound = (MaxTripCount == FullUnrollTripCount);
          TripCount = FullUnrollTripCount;
          TripMultiple = UP.UpperBound ? 1 : TripMultiple;
          return ExplicitUnroll;
        }
      }
    }
  }

  // 4th priority is loop peeling
  computePeelCount(L, LoopSize, UP, TripCount, SE);
  if (UP.PeelCount) {
    UP.Runtime = false;
    UP.Count = 1;
    return ExplicitUnroll;
  }

  // 5th priority is partial unrolling.
  // Try partial unroll only when TripCount could be statically calculated.
  if (TripCount) {
    UP.Partial |= ExplicitUnroll;
    if (!UP.Partial) {
      LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
                        << "-unroll-allow-partial not given\n");
      UP.Count = 0;
      return false;
    }
    if (UP.Count == 0)
      UP.Count = TripCount;
    if (UP.PartialThreshold != NoThreshold) {
      // Reduce unroll count to be modulo of TripCount for partial unrolling.
      if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
        UP.Count =
            (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
            (LoopSize - UP.BEInsns);
      if (UP.Count > UP.MaxCount)
        UP.Count = UP.MaxCount;
      while (UP.Count != 0 && TripCount % UP.Count != 0)
        UP.Count--;
      if (UP.AllowRemainder && UP.Count <= 1) {
        // If there is no Count that is modulo of TripCount, set Count to
        // largest power-of-two factor that satisfies the threshold limit.
        // As we'll create fixup loop, do the type of unrolling only if
        // remainder loop is allowed.
        UP.Count = UP.DefaultUnrollRuntimeCount;
        while (UP.Count != 0 &&
               getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
          UP.Count >>= 1;
      }
      if (UP.Count < 2) {
        if (PragmaEnableUnroll)
          ORE->emit([&]() {
            return OptimizationRemarkMissed(DEBUG_TYPE,
                                            "UnrollAsDirectedTooLarge",
                                            L->getStartLoc(), L->getHeader())
                   << "Unable to unroll loop as directed by unroll(enable) "
                      "pragma "
                      "because unrolled size is too large.";
          });
        UP.Count = 0;
      }
    } else {
      UP.Count = TripCount;
    }
    if (UP.Count > UP.MaxCount)
      UP.Count = UP.MaxCount;
    if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
        UP.Count != TripCount)
      ORE->emit([&]() {
        return OptimizationRemarkMissed(DEBUG_TYPE,
                                        "FullUnrollAsDirectedTooLarge",
                                        L->getStartLoc(), L->getHeader())
               << "Unable to fully unroll loop as directed by unroll pragma "
                  "because "
                  "unrolled size is too large.";
      });
    return ExplicitUnroll;
  }
  assert(TripCount == 0 &&
         "All cases when TripCount is constant should be covered here.");
  if (PragmaFullUnroll)
    ORE->emit([&]() {
      return OptimizationRemarkMissed(
                 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
                 L->getStartLoc(), L->getHeader())
             << "Unable to fully unroll loop as directed by unroll(full) "
                "pragma "
                "because loop has a runtime trip count.";
    });

  // 6th priority is runtime unrolling.
  // Don't unroll a runtime trip count loop when it is disabled.
  if (HasRuntimeUnrollDisablePragma(L)) {
    UP.Count = 0;
    return false;
  }
  
  // Check if the runtime trip count is too small when profile is available.
  if (L->getHeader()->getParent()->hasProfileData()) {
    if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
      if (*ProfileTripCount < FlatLoopTripCountThreshold)
        return false;
      else
        UP.AllowExpensiveTripCount = true;
    }
  }  

  // Reduce count based on the type of unrolling and the threshold values.
  UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
  if (!UP.Runtime) {
    LLVM_DEBUG(
        dbgs() << "  will not try to unroll loop with runtime trip count "
               << "-unroll-runtime not given\n");
    UP.Count = 0;
    return false;
  }
  if (UP.Count == 0)
    UP.Count = UP.DefaultUnrollRuntimeCount;

  // Reduce unroll count to be the largest power-of-two factor of
  // the original count which satisfies the threshold limit.
  while (UP.Count != 0 &&
         getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
    UP.Count >>= 1;

#ifndef NDEBUG
  unsigned OrigCount = UP.Count;
#endif

  if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
    while (UP.Count != 0 && TripMultiple % UP.Count != 0)
      UP.Count >>= 1;
    LLVM_DEBUG(
        dbgs() << "Remainder loop is restricted (that could architecture "
                  "specific or because the loop contains a convergent "
                  "instruction), so unroll count must divide the trip "
                  "multiple, "
               << TripMultiple << ".  Reducing unroll count from " << OrigCount
               << " to " << UP.Count << ".\n");

    using namespace ore;

    if (PragmaCount > 0 && !UP.AllowRemainder)
      ORE->emit([&]() {
        return OptimizationRemarkMissed(DEBUG_TYPE,
                                        "DifferentUnrollCountFromDirected",
                                        L->getStartLoc(), L->getHeader())
               << "Unable to unroll loop the number of times directed by "
                  "unroll_count pragma because remainder loop is restricted "
                  "(that could architecture specific or because the loop "
                  "contains a convergent instruction) and so must have an "
                  "unroll "
                  "count that divides the loop trip multiple of "
               << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
               << NV("UnrollCount", UP.Count) << " time(s).";
      });
  }

  if (UP.Count > UP.MaxCount)
    UP.Count = UP.MaxCount;
  LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count
                    << "\n");
  if (UP.Count < 2)
    UP.Count = 0;
  return ExplicitUnroll;
}

static LoopUnrollResult tryToUnrollLoop(
    Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
    const TargetTransformInfo &TTI, AssumptionCache &AC,
    OptimizationRemarkEmitter &ORE, bool PreserveLCSSA, int OptLevel,
    Optional<unsigned> ProvidedCount, Optional<unsigned> ProvidedThreshold,
    Optional<bool> ProvidedAllowPartial, Optional<bool> ProvidedRuntime,
    Optional<bool> ProvidedUpperBound, Optional<bool> ProvidedAllowPeeling) {
  LLVM_DEBUG(dbgs() << "Loop Unroll: F["
                    << L->getHeader()->getParent()->getName() << "] Loop %"
                    << L->getHeader()->getName() << "\n");
  if (HasUnrollDisablePragma(L))
    return LoopUnrollResult::Unmodified;
  if (!L->isLoopSimplifyForm()) {
    LLVM_DEBUG(
        dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
    return LoopUnrollResult::Unmodified;
  }

  unsigned NumInlineCandidates;
  bool NotDuplicatable;
  bool Convergent;
  TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
      L, SE, TTI, OptLevel, ProvidedThreshold, ProvidedCount,
      ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
      ProvidedAllowPeeling);
  // Exit early if unrolling is disabled.
  if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0))
    return LoopUnrollResult::Unmodified;

  SmallPtrSet<const Value *, 32> EphValues;
  CodeMetrics::collectEphemeralValues(L, &AC, EphValues);

  unsigned LoopSize =
      ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
                          TTI, EphValues, UP.BEInsns);
  LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
  if (NotDuplicatable) {
    LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
                      << " instructions.\n");
    return LoopUnrollResult::Unmodified;
  }
  if (NumInlineCandidates != 0) {
    LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
    return LoopUnrollResult::Unmodified;
  }

  // Find trip count and trip multiple if count is not available
  unsigned TripCount = 0;
  unsigned MaxTripCount = 0;
  unsigned TripMultiple = 1;
  // If there are multiple exiting blocks but one of them is the latch, use the
  // latch for the trip count estimation. Otherwise insist on a single exiting
  // block for the trip count estimation.
  BasicBlock *ExitingBlock = L->getLoopLatch();
  if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
    ExitingBlock = L->getExitingBlock();
  if (ExitingBlock) {
    TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
    TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
  }

  // If the loop contains a convergent operation, the prelude we'd add
  // to do the first few instructions before we hit the unrolled loop
  // is unsafe -- it adds a control-flow dependency to the convergent
  // operation.  Therefore restrict remainder loop (try unrollig without).
  //
  // TODO: This is quite conservative.  In practice, convergent_op()
  // is likely to be called unconditionally in the loop.  In this
  // case, the program would be ill-formed (on most architectures)
  // unless n were the same on all threads in a thread group.
  // Assuming n is the same on all threads, any kind of unrolling is
  // safe.  But currently llvm's notion of convergence isn't powerful
  // enough to express this.
  if (Convergent)
    UP.AllowRemainder = false;

  // Try to find the trip count upper bound if we cannot find the exact trip
  // count.
  bool MaxOrZero = false;
  if (!TripCount) {
    MaxTripCount = SE.getSmallConstantMaxTripCount(L);
    MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
    // We can unroll by the upper bound amount if it's generally allowed or if
    // we know that the loop is executed either the upper bound or zero times.
    // (MaxOrZero unrolling keeps only the first loop test, so the number of
    // loop tests remains the same compared to the non-unrolled version, whereas
    // the generic upper bound unrolling keeps all but the last loop test so the
    // number of loop tests goes up which may end up being worse on targets with
    // constrained branch predictor resources so is controlled by an option.)
    // In addition we only unroll small upper bounds.
    if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) {
      MaxTripCount = 0;
    }
  }

  // computeUnrollCount() decides whether it is beneficial to use upper bound to
  // fully unroll the loop.
  bool UseUpperBound = false;
  bool IsCountSetExplicitly = computeUnrollCount(
      L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount,
      TripMultiple, LoopSize, UP, UseUpperBound);
  if (!UP.Count)
    return LoopUnrollResult::Unmodified;
  // Unroll factor (Count) must be less or equal to TripCount.
  if (TripCount && UP.Count > TripCount)
    UP.Count = TripCount;

  // Unroll the loop.
  LoopUnrollResult UnrollResult = UnrollLoop(
      L, UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
      UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder,
      LI, &SE, &DT, &AC, &ORE, PreserveLCSSA);
  if (UnrollResult == LoopUnrollResult::Unmodified)
    return LoopUnrollResult::Unmodified;

  // If loop has an unroll count pragma or unrolled by explicitly set count
  // mark loop as unrolled to prevent unrolling beyond that requested.
  // If the loop was peeled, we already "used up" the profile information
  // we had, so we don't want to unroll or peel again.
  if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
      (IsCountSetExplicitly || UP.PeelCount))
    L->setLoopAlreadyUnrolled();

  return UnrollResult;
}

namespace {

class LoopUnroll : public LoopPass {
public:
  static char ID; // Pass ID, replacement for typeid

  int OptLevel;
  Optional<unsigned> ProvidedCount;
  Optional<unsigned> ProvidedThreshold;
  Optional<bool> ProvidedAllowPartial;
  Optional<bool> ProvidedRuntime;
  Optional<bool> ProvidedUpperBound;
  Optional<bool> ProvidedAllowPeeling;

  LoopUnroll(int OptLevel = 2, Optional<unsigned> Threshold = None,
             Optional<unsigned> Count = None,
             Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
             Optional<bool> UpperBound = None,
             Optional<bool> AllowPeeling = None)
      : LoopPass(ID), OptLevel(OptLevel), ProvidedCount(std::move(Count)),
        ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
        ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
        ProvidedAllowPeeling(AllowPeeling) {
    initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
  }

  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    if (skipLoop(L))
      return false;

    Function &F = *L->getHeader()->getParent();

    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    const TargetTransformInfo &TTI =
        getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
    // pass.  Function analyses need to be preserved across loop transformations
    // but ORE cannot be preserved (see comment before the pass definition).
    OptimizationRemarkEmitter ORE(&F);
    bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);

    LoopUnrollResult Result = tryToUnrollLoop(
        L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, OptLevel, ProvidedCount,
        ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime,
        ProvidedUpperBound, ProvidedAllowPeeling);

    if (Result == LoopUnrollResult::FullyUnrolled)
      LPM.markLoopAsDeleted(*L);

    return Result != LoopUnrollResult::Unmodified;
  }

  /// This transformation requires natural loop information & requires that
  /// loop preheaders be inserted into the CFG...
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    // FIXME: Loop passes are required to preserve domtree, and for now we just
    // recreate dom info if anything gets unrolled.
    getLoopAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char LoopUnroll::ID = 0;

INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)

Pass *llvm::createLoopUnrollPass(int OptLevel, int Threshold, int Count,
                                 int AllowPartial, int Runtime, int UpperBound,
                                 int AllowPeeling) {
  // TODO: It would make more sense for this function to take the optionals
  // directly, but that's dangerous since it would silently break out of tree
  // callers.
  return new LoopUnroll(
      OptLevel, Threshold == -1 ? None : Optional<unsigned>(Threshold),
      Count == -1 ? None : Optional<unsigned>(Count),
      AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
      Runtime == -1 ? None : Optional<bool>(Runtime),
      UpperBound == -1 ? None : Optional<bool>(UpperBound),
      AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
}

Pass *llvm::createSimpleLoopUnrollPass(int OptLevel) {
  return createLoopUnrollPass(OptLevel, -1, -1, 0, 0, 0, 0);
}

PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
                                          LoopStandardAnalysisResults &AR,
                                          LPMUpdater &Updater) {
  const auto &FAM =
      AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
  Function *F = L.getHeader()->getParent();

  auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
  // FIXME: This should probably be optional rather than required.
  if (!ORE)
    report_fatal_error(
        "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
        "cached at a higher level");

  // Keep track of the previous loop structure so we can identify new loops
  // created by unrolling.
  Loop *ParentL = L.getParentLoop();
  SmallPtrSet<Loop *, 4> OldLoops;
  if (ParentL)
    OldLoops.insert(ParentL->begin(), ParentL->end());
  else
    OldLoops.insert(AR.LI.begin(), AR.LI.end());

  std::string LoopName = L.getName();

  bool Changed =
      tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE,
                      /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None,
                      /*Threshold*/ None, /*AllowPartial*/ false,
                      /*Runtime*/ false, /*UpperBound*/ false,
                      /*AllowPeeling*/ false) != LoopUnrollResult::Unmodified;
  if (!Changed)
    return PreservedAnalyses::all();

  // The parent must not be damaged by unrolling!
#ifndef NDEBUG
  if (ParentL)
    ParentL->verifyLoop();
#endif

  // Unrolling can do several things to introduce new loops into a loop nest:
  // - Full unrolling clones child loops within the current loop but then
  //   removes the current loop making all of the children appear to be new
  //   sibling loops.
  //
  // When a new loop appears as a sibling loop after fully unrolling,
  // its nesting structure has fundamentally changed and we want to revisit
  // it to reflect that.
  //
  // When unrolling has removed the current loop, we need to tell the
  // infrastructure that it is gone.
  //
  // Finally, we support a debugging/testing mode where we revisit child loops
  // as well. These are not expected to require further optimizations as either
  // they or the loop they were cloned from have been directly visited already.
  // But the debugging mode allows us to check this assumption.
  bool IsCurrentLoopValid = false;
  SmallVector<Loop *, 4> SibLoops;
  if (ParentL)
    SibLoops.append(ParentL->begin(), ParentL->end());
  else
    SibLoops.append(AR.LI.begin(), AR.LI.end());
  erase_if(SibLoops, [&](Loop *SibLoop) {
    if (SibLoop == &L) {
      IsCurrentLoopValid = true;
      return true;
    }

    // Otherwise erase the loop from the list if it was in the old loops.
    return OldLoops.count(SibLoop) != 0;
  });
  Updater.addSiblingLoops(SibLoops);

  if (!IsCurrentLoopValid) {
    Updater.markLoopAsDeleted(L, LoopName);
  } else {
    // We can only walk child loops if the current loop remained valid.
    if (UnrollRevisitChildLoops) {
      // Walk *all* of the child loops.
      SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
      Updater.addChildLoops(ChildLoops);
    }
  }

  return getLoopPassPreservedAnalyses();
}

template <typename RangeT>
static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) {
  SmallVector<Loop *, 8> Worklist;
  // We use an internal worklist to build up the preorder traversal without
  // recursion.
  SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;

  for (Loop *RootL : Loops) {
    assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
    assert(PreOrderWorklist.empty() &&
           "Must start with an empty preorder walk worklist.");
    PreOrderWorklist.push_back(RootL);
    do {
      Loop *L = PreOrderWorklist.pop_back_val();
      PreOrderWorklist.append(L->begin(), L->end());
      PreOrderLoops.push_back(L);
    } while (!PreOrderWorklist.empty());

    Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end());
    PreOrderLoops.clear();
  }
  return Worklist;
}

PreservedAnalyses LoopUnrollPass::run(Function &F,
                                      FunctionAnalysisManager &AM) {
  auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
  auto &LI = AM.getResult<LoopAnalysis>(F);
  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);

  LoopAnalysisManager *LAM = nullptr;
  if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
    LAM = &LAMProxy->getManager();

  const ModuleAnalysisManager &MAM =
      AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
  ProfileSummaryInfo *PSI =
      MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());

  bool Changed = false;

  // The unroller requires loops to be in simplified form, and also needs LCSSA.
  // Since simplification may add new inner loops, it has to run before the
  // legality and profitability checks. This means running the loop unroller
  // will simplify all loops, regardless of whether anything end up being
  // unrolled.
  for (auto &L : LI) {
    Changed |= simplifyLoop(L, &DT, &LI, &SE, &AC, false /* PreserveLCSSA */);
    Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
  }

  SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI);

  while (!Worklist.empty()) {
    // Because the LoopInfo stores the loops in RPO, we walk the worklist
    // from back to front so that we work forward across the CFG, which
    // for unrolling is only needed to get optimization remarks emitted in
    // a forward order.
    Loop &L = *Worklist.pop_back_val();
#ifndef NDEBUG
    Loop *ParentL = L.getParentLoop();
#endif

    // The API here is quite complex to call, but there are only two interesting
    // states we support: partial and full (or "simple") unrolling. However, to
    // enable these things we actually pass "None" in for the optional to avoid
    // providing an explicit choice.
    Optional<bool> AllowPartialParam, RuntimeParam, UpperBoundParam,
        AllowPeeling;
    // Check if the profile summary indicates that the profiled application
    // has a huge working set size, in which case we disable peeling to avoid
    // bloating it further.
    if (PSI && PSI->hasHugeWorkingSetSize())
      AllowPeeling = false;
    std::string LoopName = L.getName();
    LoopUnrollResult Result =
        tryToUnrollLoop(&L, DT, &LI, SE, TTI, AC, ORE,
                        /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None,
                        /*Threshold*/ None, AllowPartialParam, RuntimeParam,
                        UpperBoundParam, AllowPeeling);
    Changed |= Result != LoopUnrollResult::Unmodified;

    // The parent must not be damaged by unrolling!
#ifndef NDEBUG
    if (Result != LoopUnrollResult::Unmodified && ParentL)
      ParentL->verifyLoop();
#endif

    // Clear any cached analysis results for L if we removed it completely.
    if (LAM && Result == LoopUnrollResult::FullyUnrolled)
      LAM->clear(L, LoopName);
  }

  if (!Changed)
    return PreservedAnalyses::all();

  return getLoopPassPreservedAnalyses();
}