Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
// The template and inlines for the -*- C++ -*- complex number classes.

// Copyright (C) 1997-2017 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file include/complex
 *  This is a Standard C++ Library header.
 */

//
// ISO C++ 14882: 26.2  Complex Numbers
// Note: this is not a conforming implementation.
// Initially implemented by Ulrich Drepper <drepper@cygnus.com>
// Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>
//

#ifndef _GLIBCXX_COMPLEX
#define _GLIBCXX_COMPLEX 1

#pragma GCC system_header

#include <bits/c++config.h>
#include <bits/cpp_type_traits.h>
#include <ext/type_traits.h>
#include <cmath>
#include <sstream>

#if _GLIBCXX_USE_C99_COMPLEX
// This is disgusting; we can't include ccomplex because that requires c++11
// and we can't use the builtins because those point to the wrong
// ABI-wise cabs/cabsf so we manually declare those here and use
// them directly.
extern "C" float __c99_cabsf(_Complex float);
extern "C" double __c99_cabs(_Complex double);
extern "C" long double __c99_cabsl(_Complex long double);
#endif

// Get rid of a macro possibly defined in <complex.h>
#undef complex

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  /**
   * @defgroup complex_numbers Complex Numbers
   * @ingroup numerics
   *
   * Classes and functions for complex numbers.
   * @{
   */

  // Forward declarations.
  template<typename _Tp> class complex;
  template<> class complex<float>;
  template<> class complex<double>;
  template<> class complex<long double>;

  ///  Return magnitude of @a z.
  template<typename _Tp> _Tp abs(const complex<_Tp>&);
  ///  Return phase angle of @a z.
  template<typename _Tp> _Tp arg(const complex<_Tp>&);
  ///  Return @a z magnitude squared.
  template<typename _Tp> _Tp norm(const complex<_Tp>&);

  ///  Return complex conjugate of @a z.
  template<typename _Tp> complex<_Tp> conj(const complex<_Tp>&);
  ///  Return complex with magnitude @a rho and angle @a theta.
  template<typename _Tp> complex<_Tp> polar(const _Tp&, const _Tp& = 0);

  // Transcendentals:
  /// Return complex cosine of @a z.
  template<typename _Tp> complex<_Tp> cos(const complex<_Tp>&);
  /// Return complex hyperbolic cosine of @a z.
  template<typename _Tp> complex<_Tp> cosh(const complex<_Tp>&);
  /// Return complex base e exponential of @a z.
  template<typename _Tp> complex<_Tp> exp(const complex<_Tp>&);
  /// Return complex natural logarithm of @a z.
  template<typename _Tp> complex<_Tp> log(const complex<_Tp>&);
  /// Return complex base 10 logarithm of @a z.
  template<typename _Tp> complex<_Tp> log10(const complex<_Tp>&);
  /// Return @a x to the @a y'th power.
  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, int);
  /// Return @a x to the @a y'th power.
  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const _Tp&);
  /// Return @a x to the @a y'th power.
  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&,
                                          const complex<_Tp>&);
  /// Return @a x to the @a y'th power.
  template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&);
  /// Return complex sine of @a z.
  template<typename _Tp> complex<_Tp> sin(const complex<_Tp>&);
  /// Return complex hyperbolic sine of @a z.
  template<typename _Tp> complex<_Tp> sinh(const complex<_Tp>&);
  /// Return complex square root of @a z.
  template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>&);
  /// Return complex tangent of @a z.
  template<typename _Tp> complex<_Tp> tan(const complex<_Tp>&);
  /// Return complex hyperbolic tangent of @a z.
  template<typename _Tp> complex<_Tp> tanh(const complex<_Tp>&);


  // 26.2.2  Primary template class complex
  /**
   *  Template to represent complex numbers.
   *
   *  Specializations for float, double, and long double are part of the
   *  library.  Results with any other type are not guaranteed.
   *
   *  @param  Tp  Type of real and imaginary values.
  */
  template<typename _Tp>
    struct complex
    {
      /// Value typedef.
      typedef _Tp value_type;

      ///  Default constructor.  First parameter is x, second parameter is y.
      ///  Unspecified parameters default to 0.
      _GLIBCXX_CONSTEXPR complex(const _Tp& __r = _Tp(), const _Tp& __i = _Tp())
      : _M_real(__r), _M_imag(__i) { }

      // Let the compiler synthesize the copy constructor
#if __cplusplus >= 201103L
      constexpr complex(const complex&) = default;
#endif

      ///  Converting constructor.
      template<typename _Up>
        _GLIBCXX_CONSTEXPR complex(const complex<_Up>& __z)
	: _M_real(__z.real()), _M_imag(__z.imag()) { }

#if __cplusplus >= 201103L
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 387. std::complex over-encapsulated.
      _GLIBCXX_ABI_TAG_CXX11
      constexpr _Tp
      real() const { return _M_real; }

      _GLIBCXX_ABI_TAG_CXX11
      constexpr _Tp
      imag() const { return _M_imag; }
#else
      ///  Return real part of complex number.
      _Tp&
      real() { return _M_real; }

      ///  Return real part of complex number.
      const _Tp&
      real() const { return _M_real; }

      ///  Return imaginary part of complex number.
      _Tp&
      imag() { return _M_imag; }

      ///  Return imaginary part of complex number.
      const _Tp&
      imag() const { return _M_imag; }
#endif

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 387. std::complex over-encapsulated.
      void
      real(_Tp __val) { _M_real = __val; }

      void
      imag(_Tp __val) { _M_imag = __val; }

      /// Assign a scalar to this complex number.
      complex<_Tp>& operator=(const _Tp&);

      /// Add a scalar to this complex number.
      // 26.2.5/1
      complex<_Tp>&
      operator+=(const _Tp& __t)
      {
	_M_real += __t;
	return *this;
      }

      /// Subtract a scalar from this complex number.
      // 26.2.5/3
      complex<_Tp>&
      operator-=(const _Tp& __t)
      {
	_M_real -= __t;
	return *this;
      }

      /// Multiply this complex number by a scalar.
      complex<_Tp>& operator*=(const _Tp&);
      /// Divide this complex number by a scalar.
      complex<_Tp>& operator/=(const _Tp&);

      // Let the compiler synthesize the copy assignment operator
#if __cplusplus >= 201103L
      complex& operator=(const complex&) = default;
#endif

      /// Assign another complex number to this one.
      template<typename _Up>
        complex<_Tp>& operator=(const complex<_Up>&);
      /// Add another complex number to this one.
      template<typename _Up>
        complex<_Tp>& operator+=(const complex<_Up>&);
      /// Subtract another complex number from this one.
      template<typename _Up>
        complex<_Tp>& operator-=(const complex<_Up>&);
      /// Multiply this complex number by another.
      template<typename _Up>
        complex<_Tp>& operator*=(const complex<_Up>&);
      /// Divide this complex number by another.
      template<typename _Up>
        complex<_Tp>& operator/=(const complex<_Up>&);

      _GLIBCXX_CONSTEXPR complex __rep() const
      { return *this; }

    private:
      _Tp _M_real;
      _Tp _M_imag;
    };

  template<typename _Tp>
    complex<_Tp>&
    complex<_Tp>::operator=(const _Tp& __t)
    {
     _M_real = __t;
     _M_imag = _Tp();
     return *this;
    }

  // 26.2.5/5
  template<typename _Tp>
    complex<_Tp>&
    complex<_Tp>::operator*=(const _Tp& __t)
    {
      _M_real *= __t;
      _M_imag *= __t;
      return *this;
    }

  // 26.2.5/7
  template<typename _Tp>
    complex<_Tp>&
    complex<_Tp>::operator/=(const _Tp& __t)
    {
      _M_real /= __t;
      _M_imag /= __t;
      return *this;
    }

  template<typename _Tp>
    template<typename _Up>
    complex<_Tp>&
    complex<_Tp>::operator=(const complex<_Up>& __z)
    {
      _M_real = __z.real();
      _M_imag = __z.imag();
      return *this;
    }

  // 26.2.5/9
  template<typename _Tp>
    template<typename _Up>
    complex<_Tp>&
    complex<_Tp>::operator+=(const complex<_Up>& __z)
    {
      _M_real += __z.real();
      _M_imag += __z.imag();
      return *this;
    }

  // 26.2.5/11
  template<typename _Tp>
    template<typename _Up>
    complex<_Tp>&
    complex<_Tp>::operator-=(const complex<_Up>& __z)
    {
      _M_real -= __z.real();
      _M_imag -= __z.imag();
      return *this;
    }

  // 26.2.5/13
  // XXX: This is a grammar school implementation.
  template<typename _Tp>
    template<typename _Up>
    complex<_Tp>&
    complex<_Tp>::operator*=(const complex<_Up>& __z)
    {
      const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag();
      _M_imag = _M_real * __z.imag() + _M_imag * __z.real();
      _M_real = __r;
      return *this;
    }

  // 26.2.5/15
  // XXX: This is a grammar school implementation.
  template<typename _Tp>
    template<typename _Up>
    complex<_Tp>&
    complex<_Tp>::operator/=(const complex<_Up>& __z)
    {
      const _Tp __r =  _M_real * __z.real() + _M_imag * __z.imag();
      const _Tp __n = std::norm(__z);
      _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n;
      _M_real = __r / __n;
      return *this;
    }

  // Operators:
  //@{
  ///  Return new complex value @a x plus @a y.
  template<typename _Tp>
    inline complex<_Tp>
    operator+(const complex<_Tp>& __x, const complex<_Tp>& __y)
    {
      complex<_Tp> __r = __x;
      __r += __y;
      return __r;
    }

  template<typename _Tp>
    inline complex<_Tp>
    operator+(const complex<_Tp>& __x, const _Tp& __y)
    {
      complex<_Tp> __r = __x;
      __r += __y;
      return __r;
    }

  template<typename _Tp>
    inline complex<_Tp>
    operator+(const _Tp& __x, const complex<_Tp>& __y)
    {
      complex<_Tp> __r = __y;
      __r += __x;
      return __r;
    }
  //@}

  //@{
  ///  Return new complex value @a x minus @a y.
  template<typename _Tp>
    inline complex<_Tp>
    operator-(const complex<_Tp>& __x, const complex<_Tp>& __y)
    {
      complex<_Tp> __r = __x;
      __r -= __y;
      return __r;
    }

  template<typename _Tp>
    inline complex<_Tp>
    operator-(const complex<_Tp>& __x, const _Tp& __y)
    {
      complex<_Tp> __r = __x;
      __r -= __y;
      return __r;
    }

  template<typename _Tp>
    inline complex<_Tp>
    operator-(const _Tp& __x, const complex<_Tp>& __y)
    {
      complex<_Tp> __r(__x, -__y.imag());
      __r -= __y.real();
      return __r;
    }
  //@}

  //@{
  ///  Return new complex value @a x times @a y.
  template<typename _Tp>
    inline complex<_Tp>
    operator*(const complex<_Tp>& __x, const complex<_Tp>& __y)
    {
      complex<_Tp> __r = __x;
      __r *= __y;
      return __r;
    }

  template<typename _Tp>
    inline complex<_Tp>
    operator*(const complex<_Tp>& __x, const _Tp& __y)
    {
      complex<_Tp> __r = __x;
      __r *= __y;
      return __r;
    }

  template<typename _Tp>
    inline complex<_Tp>
    operator*(const _Tp& __x, const complex<_Tp>& __y)
    {
      complex<_Tp> __r = __y;
      __r *= __x;
      return __r;
    }
  //@}

  //@{
  ///  Return new complex value @a x divided by @a y.
  template<typename _Tp>
    inline complex<_Tp>
    operator/(const complex<_Tp>& __x, const complex<_Tp>& __y)
    {
      complex<_Tp> __r = __x;
      __r /= __y;
      return __r;
    }

  template<typename _Tp>
    inline complex<_Tp>
    operator/(const complex<_Tp>& __x, const _Tp& __y)
    {
      complex<_Tp> __r = __x;
      __r /= __y;
      return __r;
    }

  template<typename _Tp>
    inline complex<_Tp>
    operator/(const _Tp& __x, const complex<_Tp>& __y)
    {
      complex<_Tp> __r = __x;
      __r /= __y;
      return __r;
    }
  //@}

  ///  Return @a x.
  template<typename _Tp>
    inline complex<_Tp>
    operator+(const complex<_Tp>& __x)
    { return __x; }

  ///  Return complex negation of @a x.
  template<typename _Tp>
    inline complex<_Tp>
    operator-(const complex<_Tp>& __x)
    {  return complex<_Tp>(-__x.real(), -__x.imag()); }

  //@{
  ///  Return true if @a x is equal to @a y.
  template<typename _Tp>
    inline _GLIBCXX_CONSTEXPR bool
    operator==(const complex<_Tp>& __x, const complex<_Tp>& __y)
    { return __x.real() == __y.real() && __x.imag() == __y.imag(); }

  template<typename _Tp>
    inline _GLIBCXX_CONSTEXPR bool
    operator==(const complex<_Tp>& __x, const _Tp& __y)
    { return __x.real() == __y && __x.imag() == _Tp(); }

  template<typename _Tp>
    inline _GLIBCXX_CONSTEXPR bool
    operator==(const _Tp& __x, const complex<_Tp>& __y)
    { return __x == __y.real() && _Tp() == __y.imag(); }
  //@}

  //@{
  ///  Return false if @a x is equal to @a y.
  template<typename _Tp>
    inline _GLIBCXX_CONSTEXPR bool
    operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y)
    { return __x.real() != __y.real() || __x.imag() != __y.imag(); }

  template<typename _Tp>
    inline _GLIBCXX_CONSTEXPR bool
    operator!=(const complex<_Tp>& __x, const _Tp& __y)
    { return __x.real() != __y || __x.imag() != _Tp(); }

  template<typename _Tp>
    inline _GLIBCXX_CONSTEXPR bool
    operator!=(const _Tp& __x, const complex<_Tp>& __y)
    { return __x != __y.real() || _Tp() != __y.imag(); }
  //@}

  ///  Extraction operator for complex values.
  template<typename _Tp, typename _CharT, class _Traits>
    basic_istream<_CharT, _Traits>&
    operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x)
    {
      _Tp __re_x, __im_x;
      _CharT __ch = _CharT();
      __is >> __ch;
      if (__ch == '(')
	{
	  __is >> __re_x >> __ch;
	  if (__ch == ',')
	    {
	      __is >> __im_x >> __ch;
	      if (__ch == ')')
		__x = complex<_Tp>(__re_x, __im_x);
	      else
		__is.setstate(ios_base::failbit);
	    }
	  else if (__ch == ')')
	    __x = __re_x;
	  else
	    __is.setstate(ios_base::failbit);
	}
      else if (__is)
	{
	  __is.putback(__ch);
	  if (__is >> __re_x)
	    __x = __re_x;
	  else
	    __is.setstate(ios_base::failbit);
	}
      return __is;
    }

  ///  Insertion operator for complex values.
  template<typename _Tp, typename _CharT, class _Traits>
    basic_ostream<_CharT, _Traits>&
    operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x)
    {
      basic_ostringstream<_CharT, _Traits> __s;
      __s.flags(__os.flags());
      __s.imbue(__os.getloc());
      __s.precision(__os.precision());
      __s << '(' << __x.real() << ',' << __x.imag() << ')';
      return __os << __s.str();
    }

  // Values
#if __cplusplus >= 201103L
  template<typename _Tp>
    constexpr _Tp
    real(const complex<_Tp>& __z)
    { return __z.real(); }

  template<typename _Tp>
    constexpr _Tp
    imag(const complex<_Tp>& __z)
    { return __z.imag(); }
#else
  template<typename _Tp>
    inline _Tp&
    real(complex<_Tp>& __z)
    { return __z.real(); }

  template<typename _Tp>
    inline const _Tp&
    real(const complex<_Tp>& __z)
    { return __z.real(); }

  template<typename _Tp>
    inline _Tp&
    imag(complex<_Tp>& __z)
    { return __z.imag(); }

  template<typename _Tp>
    inline const _Tp&
    imag(const complex<_Tp>& __z)
    { return __z.imag(); }
#endif

  // 26.2.7/3 abs(__z):  Returns the magnitude of __z.
  template<typename _Tp>
    inline _Tp
    __complex_abs(const complex<_Tp>& __z)
    {
      _Tp __x = __z.real();
      _Tp __y = __z.imag();
      const _Tp __s = std::max(abs(__x), abs(__y));
      if (__s == _Tp())  // well ...
        return __s;
      __x /= __s;
      __y /= __s;
      return __s * sqrt(__x * __x + __y * __y);
    }

#if _GLIBCXX_USE_C99_COMPLEX
  // XXX: We can't use __builtin_cabs* because they are broken
  inline float
  __complex_abs(__complex__ float __z) { return __c99_cabsf(__z); }

  inline double
  __complex_abs(__complex__ double __z) { return __c99_cabs(__z); }

  inline long double
  __complex_abs(const __complex__ long double& __z)
  { return __c99_cabsl(__z); }

  template<typename _Tp>
    inline _Tp
    abs(const complex<_Tp>& __z) { return __complex_abs(__z.__rep()); }
#else
  template<typename _Tp>
    inline _Tp
    abs(const complex<_Tp>& __z) { return __complex_abs(__z); }
#endif


  // 26.2.7/4: arg(__z): Returns the phase angle of __z.
  template<typename _Tp>
    inline _Tp
    __complex_arg(const complex<_Tp>& __z)
    { return  atan2(__z.imag(), __z.real()); }

#if _GLIBCXX_USE_C99_COMPLEX
  inline float
  __complex_arg(__complex__ float __z) { return __builtin_cargf(__z); }

  inline double
  __complex_arg(__complex__ double __z) { return __builtin_carg(__z); }

  inline long double
  __complex_arg(const __complex__ long double& __z)
  { return __builtin_cargl(__z); }

  template<typename _Tp>
    inline _Tp
    arg(const complex<_Tp>& __z) { return __complex_arg(__z.__rep()); }
#else
  template<typename _Tp>
    inline _Tp
    arg(const complex<_Tp>& __z) { return __complex_arg(__z); }
#endif

  // 26.2.7/5: norm(__z) returns the squared magnitude of __z.
  //     As defined, norm() is -not- a norm is the common mathematical
  //     sense used in numerics.  The helper class _Norm_helper<> tries to
  //     distinguish between builtin floating point and the rest, so as
  //     to deliver an answer as close as possible to the real value.
  template<bool>
    struct _Norm_helper
    {
      template<typename _Tp>
        static inline _Tp _S_do_it(const complex<_Tp>& __z)
        {
          const _Tp __x = __z.real();
          const _Tp __y = __z.imag();
          return __x * __x + __y * __y;
        }
    };

  template<>
    struct _Norm_helper<true>
    {
      template<typename _Tp>
        static inline _Tp _S_do_it(const complex<_Tp>& __z)
        {
          _Tp __res = std::abs(__z);
          return __res * __res;
        }
    };

  template<typename _Tp>
    inline _Tp
    norm(const complex<_Tp>& __z)
    {
      return _Norm_helper<__is_floating<_Tp>::__value
	&& !_GLIBCXX_FAST_MATH>::_S_do_it(__z);
    }

  template<typename _Tp>
    inline complex<_Tp>
    polar(const _Tp& __rho, const _Tp& __theta)
    {
      __glibcxx_assert( __rho >= 0 );
      return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta));
    }

  template<typename _Tp>
    inline complex<_Tp>
    conj(const complex<_Tp>& __z)
    { return complex<_Tp>(__z.real(), -__z.imag()); }

  // Transcendentals

  // 26.2.8/1 cos(__z):  Returns the cosine of __z.
  template<typename _Tp>
    inline complex<_Tp>
    __complex_cos(const complex<_Tp>& __z)
    {
      const _Tp __x = __z.real();
      const _Tp __y = __z.imag();
      return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y));
    }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_cos(__complex__ float __z) { return __builtin_ccosf(__z); }

  inline __complex__ double
  __complex_cos(__complex__ double __z) { return __builtin_ccos(__z); }

  inline __complex__ long double
  __complex_cos(const __complex__ long double& __z)
  { return __builtin_ccosl(__z); }

  template<typename _Tp>
    inline complex<_Tp>
    cos(const complex<_Tp>& __z) { return __complex_cos(__z.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    cos(const complex<_Tp>& __z) { return __complex_cos(__z); }
#endif

  // 26.2.8/2 cosh(__z): Returns the hyperbolic cosine of __z.
  template<typename _Tp>
    inline complex<_Tp>
    __complex_cosh(const complex<_Tp>& __z)
    {
      const _Tp __x = __z.real();
      const _Tp __y = __z.imag();
      return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y));
    }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_cosh(__complex__ float __z) { return __builtin_ccoshf(__z); }

  inline __complex__ double
  __complex_cosh(__complex__ double __z) { return __builtin_ccosh(__z); }

  inline __complex__ long double
  __complex_cosh(const __complex__ long double& __z)
  { return __builtin_ccoshl(__z); }

  template<typename _Tp>
    inline complex<_Tp>
    cosh(const complex<_Tp>& __z) { return __complex_cosh(__z.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    cosh(const complex<_Tp>& __z) { return __complex_cosh(__z); }
#endif

  // 26.2.8/3 exp(__z): Returns the complex base e exponential of x
  template<typename _Tp>
    inline complex<_Tp>
    __complex_exp(const complex<_Tp>& __z)
    { return std::polar<_Tp>(exp(__z.real()), __z.imag()); }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_exp(__complex__ float __z) { return __builtin_cexpf(__z); }

  inline __complex__ double
  __complex_exp(__complex__ double __z) { return __builtin_cexp(__z); }

  inline __complex__ long double
  __complex_exp(const __complex__ long double& __z)
  { return __builtin_cexpl(__z); }

  template<typename _Tp>
    inline complex<_Tp>
    exp(const complex<_Tp>& __z) { return __complex_exp(__z.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    exp(const complex<_Tp>& __z) { return __complex_exp(__z); }
#endif

  // 26.2.8/5 log(__z): Returns the natural complex logarithm of __z.
  //                    The branch cut is along the negative axis.
  template<typename _Tp>
    inline complex<_Tp>
    __complex_log(const complex<_Tp>& __z)
    { return complex<_Tp>(log(std::abs(__z)), std::arg(__z)); }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_log(__complex__ float __z) { return __builtin_clogf(__z); }

  inline __complex__ double
  __complex_log(__complex__ double __z) { return __builtin_clog(__z); }

  inline __complex__ long double
  __complex_log(const __complex__ long double& __z)
  { return __builtin_clogl(__z); }

  template<typename _Tp>
    inline complex<_Tp>
    log(const complex<_Tp>& __z) { return __complex_log(__z.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    log(const complex<_Tp>& __z) { return __complex_log(__z); }
#endif

  template<typename _Tp>
    inline complex<_Tp>
    log10(const complex<_Tp>& __z)
    { return std::log(__z) / log(_Tp(10.0)); }

  // 26.2.8/10 sin(__z): Returns the sine of __z.
  template<typename _Tp>
    inline complex<_Tp>
    __complex_sin(const complex<_Tp>& __z)
    {
      const _Tp __x = __z.real();
      const _Tp __y = __z.imag();
      return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y));
    }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_sin(__complex__ float __z) { return __builtin_csinf(__z); }

  inline __complex__ double
  __complex_sin(__complex__ double __z) { return __builtin_csin(__z); }

  inline __complex__ long double
  __complex_sin(const __complex__ long double& __z)
  { return __builtin_csinl(__z); }

  template<typename _Tp>
    inline complex<_Tp>
    sin(const complex<_Tp>& __z) { return __complex_sin(__z.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    sin(const complex<_Tp>& __z) { return __complex_sin(__z); }
#endif

  // 26.2.8/11 sinh(__z): Returns the hyperbolic sine of __z.
  template<typename _Tp>
    inline complex<_Tp>
    __complex_sinh(const complex<_Tp>& __z)
    {
      const _Tp __x = __z.real();
      const _Tp  __y = __z.imag();
      return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y));
    }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_sinh(__complex__ float __z) { return __builtin_csinhf(__z); }

  inline __complex__ double
  __complex_sinh(__complex__ double __z) { return __builtin_csinh(__z); }

  inline __complex__ long double
  __complex_sinh(const __complex__ long double& __z)
  { return __builtin_csinhl(__z); }

  template<typename _Tp>
    inline complex<_Tp>
    sinh(const complex<_Tp>& __z) { return __complex_sinh(__z.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    sinh(const complex<_Tp>& __z) { return __complex_sinh(__z); }
#endif

  // 26.2.8/13 sqrt(__z): Returns the complex square root of __z.
  //                     The branch cut is on the negative axis.
  template<typename _Tp>
    complex<_Tp>
    __complex_sqrt(const complex<_Tp>& __z)
    {
      _Tp __x = __z.real();
      _Tp __y = __z.imag();

      if (__x == _Tp())
        {
          _Tp __t = sqrt(abs(__y) / 2);
          return complex<_Tp>(__t, __y < _Tp() ? -__t : __t);
        }
      else
        {
          _Tp __t = sqrt(2 * (std::abs(__z) + abs(__x)));
          _Tp __u = __t / 2;
          return __x > _Tp()
            ? complex<_Tp>(__u, __y / __t)
            : complex<_Tp>(abs(__y) / __t, __y < _Tp() ? -__u : __u);
        }
    }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_sqrt(__complex__ float __z) { return __builtin_csqrtf(__z); }

  inline __complex__ double
  __complex_sqrt(__complex__ double __z) { return __builtin_csqrt(__z); }

  inline __complex__ long double
  __complex_sqrt(const __complex__ long double& __z)
  { return __builtin_csqrtl(__z); }

  template<typename _Tp>
    inline complex<_Tp>
    sqrt(const complex<_Tp>& __z) { return __complex_sqrt(__z.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    sqrt(const complex<_Tp>& __z) { return __complex_sqrt(__z); }
#endif

  // 26.2.8/14 tan(__z):  Return the complex tangent of __z.

  template<typename _Tp>
    inline complex<_Tp>
    __complex_tan(const complex<_Tp>& __z)
    { return std::sin(__z) / std::cos(__z); }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_tan(__complex__ float __z) { return __builtin_ctanf(__z); }

  inline __complex__ double
  __complex_tan(__complex__ double __z) { return __builtin_ctan(__z); }

  inline __complex__ long double
  __complex_tan(const __complex__ long double& __z)
  { return __builtin_ctanl(__z); }

  template<typename _Tp>
    inline complex<_Tp>
    tan(const complex<_Tp>& __z) { return __complex_tan(__z.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    tan(const complex<_Tp>& __z) { return __complex_tan(__z); }
#endif


  // 26.2.8/15 tanh(__z):  Returns the hyperbolic tangent of __z.

  template<typename _Tp>
    inline complex<_Tp>
    __complex_tanh(const complex<_Tp>& __z)
    { return std::sinh(__z) / std::cosh(__z); }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_tanh(__complex__ float __z) { return __builtin_ctanhf(__z); }

  inline __complex__ double
  __complex_tanh(__complex__ double __z) { return __builtin_ctanh(__z); }

  inline __complex__ long double
  __complex_tanh(const __complex__ long double& __z)
  { return __builtin_ctanhl(__z); }

  template<typename _Tp>
    inline complex<_Tp>
    tanh(const complex<_Tp>& __z) { return __complex_tanh(__z.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    tanh(const complex<_Tp>& __z) { return __complex_tanh(__z); }
#endif


  // 26.2.8/9  pow(__x, __y): Returns the complex power base of __x
  //                          raised to the __y-th power.  The branch
  //                          cut is on the negative axis.
  template<typename _Tp>
    complex<_Tp>
    __complex_pow_unsigned(complex<_Tp> __x, unsigned __n)
    {
      complex<_Tp> __y = __n % 2 ? __x : complex<_Tp>(1);

      while (__n >>= 1)
        {
          __x *= __x;
          if (__n % 2)
            __y *= __x;
        }

      return __y;
    }

  // In C++11 mode we used to implement the resolution of
  // DR 844. complex pow return type is ambiguous.
  // thus the following overload was disabled in that mode.  However, doing
  // that causes all sorts of issues, see, for example:
  //   http://gcc.gnu.org/ml/libstdc++/2013-01/msg00058.html
  // and also PR57974.
  template<typename _Tp>
    inline complex<_Tp>
    pow(const complex<_Tp>& __z, int __n)
    {
      return __n < 0
	? complex<_Tp>(1) / std::__complex_pow_unsigned(__z, -(unsigned)__n)
        : std::__complex_pow_unsigned(__z, __n);
    }

  template<typename _Tp>
    complex<_Tp>
    pow(const complex<_Tp>& __x, const _Tp& __y)
    {
#if ! _GLIBCXX_USE_C99_COMPLEX
      if (__x == _Tp())
	return _Tp();
#endif
      if (__x.imag() == _Tp() && __x.real() > _Tp())
        return pow(__x.real(), __y);

      complex<_Tp> __t = std::log(__x);
      return std::polar<_Tp>(exp(__y * __t.real()), __y * __t.imag());
    }

  template<typename _Tp>
    inline complex<_Tp>
    __complex_pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
    { return __x == _Tp() ? _Tp() : std::exp(__y * std::log(__x)); }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_pow(__complex__ float __x, __complex__ float __y)
  { return __builtin_cpowf(__x, __y); }

  inline __complex__ double
  __complex_pow(__complex__ double __x, __complex__ double __y)
  { return __builtin_cpow(__x, __y); }

  inline __complex__ long double
  __complex_pow(const __complex__ long double& __x,
		const __complex__ long double& __y)
  { return __builtin_cpowl(__x, __y); }

  template<typename _Tp>
    inline complex<_Tp>
    pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
    { return __complex_pow(__x.__rep(), __y.__rep()); }
#else
  template<typename _Tp>
    inline complex<_Tp>
    pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
    { return __complex_pow(__x, __y); }
#endif

  template<typename _Tp>
    inline complex<_Tp>
    pow(const _Tp& __x, const complex<_Tp>& __y)
    {
      return __x > _Tp() ? std::polar<_Tp>(pow(__x, __y.real()),
					   __y.imag() * log(__x))
	                 : std::pow(complex<_Tp>(__x), __y);
    }

  /// 26.2.3  complex specializations
  /// complex<float> specialization
  template<>
    struct complex<float>
    {
      typedef float value_type;
      typedef __complex__ float _ComplexT;

      _GLIBCXX_CONSTEXPR complex(_ComplexT __z) : _M_value(__z) { }

      _GLIBCXX_CONSTEXPR complex(float __r = 0.0f, float __i = 0.0f)
#if __cplusplus >= 201103L
      : _M_value{ __r, __i } { }
#else
      {
	__real__ _M_value = __r;
	__imag__ _M_value = __i;
      }
#endif

      explicit _GLIBCXX_CONSTEXPR complex(const complex<double>&);
      explicit _GLIBCXX_CONSTEXPR complex(const complex<long double>&);

#if __cplusplus >= 201103L
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 387. std::complex over-encapsulated.
      __attribute ((__abi_tag__ ("cxx11")))
      constexpr float
      real() const { return __real__ _M_value; }

      __attribute ((__abi_tag__ ("cxx11")))
      constexpr float
      imag() const { return __imag__ _M_value; }
#else
      float&
      real() { return __real__ _M_value; }

      const float&
      real() const { return __real__ _M_value; }

      float&
      imag() { return __imag__ _M_value; }

      const float&
      imag() const { return __imag__ _M_value; }
#endif

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 387. std::complex over-encapsulated.
      void
      real(float __val) { __real__ _M_value = __val; }

      void
      imag(float __val) { __imag__ _M_value = __val; }

      complex&
      operator=(float __f)
      {
	_M_value = __f;
	return *this;
      }

      complex&
      operator+=(float __f)
      {
	_M_value += __f;
	return *this;
      }

      complex&
      operator-=(float __f)
      {
	_M_value -= __f;
	return *this;
      }

      complex&
      operator*=(float __f)
      {
	_M_value *= __f;
	return *this;
      }

      complex&
      operator/=(float __f)
      {
	_M_value /= __f;
	return *this;
      }

      // Let the compiler synthesize the copy and assignment
      // operator.  It always does a pretty good job.
      // complex& operator=(const complex&);

      template<typename _Tp>
        complex&
        operator=(const complex<_Tp>&  __z)
	{
	  __real__ _M_value = __z.real();
	  __imag__ _M_value = __z.imag();
	  return *this;
	}

      template<typename _Tp>
        complex&
        operator+=(const complex<_Tp>& __z)
	{
	  __real__ _M_value += __z.real();
	  __imag__ _M_value += __z.imag();
	  return *this;
	}

      template<class _Tp>
        complex&
        operator-=(const complex<_Tp>& __z)
	{
	  __real__ _M_value -= __z.real();
	  __imag__ _M_value -= __z.imag();
	  return *this;
	}

      template<class _Tp>
        complex&
        operator*=(const complex<_Tp>& __z)
	{
	  _ComplexT __t;
	  __real__ __t = __z.real();
	  __imag__ __t = __z.imag();
	  _M_value *= __t;
	  return *this;
	}

      template<class _Tp>
        complex&
        operator/=(const complex<_Tp>& __z)
	{
	  _ComplexT __t;
	  __real__ __t = __z.real();
	  __imag__ __t = __z.imag();
	  _M_value /= __t;
	  return *this;
	}

      _GLIBCXX_CONSTEXPR _ComplexT __rep() const { return _M_value; }

    private:
      _ComplexT _M_value;
    };

  /// 26.2.3  complex specializations
  /// complex<double> specialization
  template<>
    struct complex<double>
    {
      typedef double value_type;
      typedef __complex__ double _ComplexT;

      _GLIBCXX_CONSTEXPR complex(_ComplexT __z) : _M_value(__z) { }

      _GLIBCXX_CONSTEXPR complex(double __r = 0.0, double __i = 0.0)
#if __cplusplus >= 201103L
      : _M_value{ __r, __i } { }
#else
      {
	__real__ _M_value = __r;
	__imag__ _M_value = __i;
      }
#endif

      _GLIBCXX_CONSTEXPR complex(const complex<float>& __z)
      : _M_value(__z.__rep()) { }

      explicit _GLIBCXX_CONSTEXPR complex(const complex<long double>&);

#if __cplusplus >= 201103L
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 387. std::complex over-encapsulated.
      __attribute ((__abi_tag__ ("cxx11")))
      constexpr double
      real() const { return __real__ _M_value; }

      __attribute ((__abi_tag__ ("cxx11")))
      constexpr double
      imag() const { return __imag__ _M_value; }
#else
      double&
      real() { return __real__ _M_value; }

      const double&
      real() const { return __real__ _M_value; }

      double&
      imag() { return __imag__ _M_value; }

      const double&
      imag() const { return __imag__ _M_value; }
#endif

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 387. std::complex over-encapsulated.
      void
      real(double __val) { __real__ _M_value = __val; }

      void
      imag(double __val) { __imag__ _M_value = __val; }

      complex&
      operator=(double __d)
      {
	_M_value = __d;
	return *this;
      }

      complex&
      operator+=(double __d)
      {
	_M_value += __d;
	return *this;
      }

      complex&
      operator-=(double __d)
      {
	_M_value -= __d;
	return *this;
      }

      complex&
      operator*=(double __d)
      {
	_M_value *= __d;
	return *this;
      }

      complex&
      operator/=(double __d)
      {
	_M_value /= __d;
	return *this;
      }

      // The compiler will synthesize this, efficiently.
      // complex& operator=(const complex&);

      template<typename _Tp>
        complex&
        operator=(const complex<_Tp>& __z)
	{
	  __real__ _M_value = __z.real();
	  __imag__ _M_value = __z.imag();
	  return *this;
	}

      template<typename _Tp>
        complex&
        operator+=(const complex<_Tp>& __z)
	{
	  __real__ _M_value += __z.real();
	  __imag__ _M_value += __z.imag();
	  return *this;
	}

      template<typename _Tp>
        complex&
        operator-=(const complex<_Tp>& __z)
	{
	  __real__ _M_value -= __z.real();
	  __imag__ _M_value -= __z.imag();
	  return *this;
	}

      template<typename _Tp>
        complex&
        operator*=(const complex<_Tp>& __z)
	{
	  _ComplexT __t;
	  __real__ __t = __z.real();
	  __imag__ __t = __z.imag();
	  _M_value *= __t;
	  return *this;
	}

      template<typename _Tp>
        complex&
        operator/=(const complex<_Tp>& __z)
	{
	  _ComplexT __t;
	  __real__ __t = __z.real();
	  __imag__ __t = __z.imag();
	  _M_value /= __t;
	  return *this;
	}

      _GLIBCXX_CONSTEXPR _ComplexT __rep() const { return _M_value; }

    private:
      _ComplexT _M_value;
    };

  /// 26.2.3  complex specializations
  /// complex<long double> specialization
  template<>
    struct complex<long double>
    {
      typedef long double value_type;
      typedef __complex__ long double _ComplexT;

      _GLIBCXX_CONSTEXPR complex(_ComplexT __z) : _M_value(__z) { }

      _GLIBCXX_CONSTEXPR complex(long double __r = 0.0L,
				 long double __i = 0.0L)
#if __cplusplus >= 201103L
      : _M_value{ __r, __i } { }
#else
      {
	__real__ _M_value = __r;
	__imag__ _M_value = __i;
      }
#endif

      _GLIBCXX_CONSTEXPR complex(const complex<float>& __z)
      : _M_value(__z.__rep()) { }

      _GLIBCXX_CONSTEXPR complex(const complex<double>& __z)
      : _M_value(__z.__rep()) { }

#if __cplusplus >= 201103L
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 387. std::complex over-encapsulated.
      __attribute ((__abi_tag__ ("cxx11")))
      constexpr long double
      real() const { return __real__ _M_value; }

      __attribute ((__abi_tag__ ("cxx11")))
      constexpr long double
      imag() const { return __imag__ _M_value; }
#else
      long double&
      real() { return __real__ _M_value; }

      const long double&
      real() const { return __real__ _M_value; }

      long double&
      imag() { return __imag__ _M_value; }

      const long double&
      imag() const { return __imag__ _M_value; }
#endif

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // DR 387. std::complex over-encapsulated.
      void
      real(long double __val) { __real__ _M_value = __val; }

      void
      imag(long double __val) { __imag__ _M_value = __val; }

      complex&
      operator=(long double __r)
      {
	_M_value = __r;
	return *this;
      }

      complex&
      operator+=(long double __r)
      {
	_M_value += __r;
	return *this;
      }

      complex&
      operator-=(long double __r)
      {
	_M_value -= __r;
	return *this;
      }

      complex&
      operator*=(long double __r)
      {
	_M_value *= __r;
	return *this;
      }

      complex&
      operator/=(long double __r)
      {
	_M_value /= __r;
	return *this;
      }

      // The compiler knows how to do this efficiently
      // complex& operator=(const complex&);

      template<typename _Tp>
        complex&
        operator=(const complex<_Tp>& __z)
	{
	  __real__ _M_value = __z.real();
	  __imag__ _M_value = __z.imag();
	  return *this;
	}

      template<typename _Tp>
        complex&
	operator+=(const complex<_Tp>& __z)
	{
	  __real__ _M_value += __z.real();
	  __imag__ _M_value += __z.imag();
	  return *this;
	}

      template<typename _Tp>
        complex&
	operator-=(const complex<_Tp>& __z)
	{
	  __real__ _M_value -= __z.real();
	  __imag__ _M_value -= __z.imag();
	  return *this;
	}

      template<typename _Tp>
        complex&
	operator*=(const complex<_Tp>& __z)
	{
	  _ComplexT __t;
	  __real__ __t = __z.real();
	  __imag__ __t = __z.imag();
	  _M_value *= __t;
	  return *this;
	}

      template<typename _Tp>
        complex&
	operator/=(const complex<_Tp>& __z)
	{
	  _ComplexT __t;
	  __real__ __t = __z.real();
	  __imag__ __t = __z.imag();
	  _M_value /= __t;
	  return *this;
	}

      _GLIBCXX_CONSTEXPR _ComplexT __rep() const { return _M_value; }

    private:
      _ComplexT _M_value;
    };

  // These bits have to be at the end of this file, so that the
  // specializations have all been defined.
  inline _GLIBCXX_CONSTEXPR
  complex<float>::complex(const complex<double>& __z)
  : _M_value(__z.__rep()) { }

  inline _GLIBCXX_CONSTEXPR
  complex<float>::complex(const complex<long double>& __z)
  : _M_value(__z.__rep()) { }

  inline _GLIBCXX_CONSTEXPR
  complex<double>::complex(const complex<long double>& __z)
  : _M_value(__z.__rep()) { }

  // Inhibit implicit instantiations for required instantiations,
  // which are defined via explicit instantiations elsewhere.
  // NB:  This syntax is a GNU extension.
#if _GLIBCXX_EXTERN_TEMPLATE
  extern template istream& operator>>(istream&, complex<float>&);
  extern template ostream& operator<<(ostream&, const complex<float>&);
  extern template istream& operator>>(istream&, complex<double>&);
  extern template ostream& operator<<(ostream&, const complex<double>&);
  extern template istream& operator>>(istream&, complex<long double>&);
  extern template ostream& operator<<(ostream&, const complex<long double>&);

#ifdef _GLIBCXX_USE_WCHAR_T
  extern template wistream& operator>>(wistream&, complex<float>&);
  extern template wostream& operator<<(wostream&, const complex<float>&);
  extern template wistream& operator>>(wistream&, complex<double>&);
  extern template wostream& operator<<(wostream&, const complex<double>&);
  extern template wistream& operator>>(wistream&, complex<long double>&);
  extern template wostream& operator<<(wostream&, const complex<long double>&);
#endif
#endif

  // @} group complex_numbers

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace

namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  // See ext/type_traits.h for the primary template.
  template<typename _Tp, typename _Up>
    struct __promote_2<std::complex<_Tp>, _Up>
    {
    public:
      typedef std::complex<typename __promote_2<_Tp, _Up>::__type> __type;
    };

  template<typename _Tp, typename _Up>
    struct __promote_2<_Tp, std::complex<_Up> >
    {
    public:
      typedef std::complex<typename __promote_2<_Tp, _Up>::__type> __type;
    };

  template<typename _Tp, typename _Up>
    struct __promote_2<std::complex<_Tp>, std::complex<_Up> >
    {
    public:
      typedef std::complex<typename __promote_2<_Tp, _Up>::__type> __type;
    };

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace

#if __cplusplus >= 201103L

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  // Forward declarations.
  template<typename _Tp> std::complex<_Tp> acos(const std::complex<_Tp>&);
  template<typename _Tp> std::complex<_Tp> asin(const std::complex<_Tp>&);
  template<typename _Tp> std::complex<_Tp> atan(const std::complex<_Tp>&);

  template<typename _Tp> std::complex<_Tp> acosh(const std::complex<_Tp>&);
  template<typename _Tp> std::complex<_Tp> asinh(const std::complex<_Tp>&);
  template<typename _Tp> std::complex<_Tp> atanh(const std::complex<_Tp>&);
  // DR 595.
  template<typename _Tp> _Tp               fabs(const std::complex<_Tp>&);

  template<typename _Tp>
    inline std::complex<_Tp>
    __complex_acos(const std::complex<_Tp>& __z)
    {
      const std::complex<_Tp> __t = std::asin(__z);
      const _Tp __pi_2 = 1.5707963267948966192313216916397514L;
      return std::complex<_Tp>(__pi_2 - __t.real(), -__t.imag());
    }

#if _GLIBCXX_USE_C99_COMPLEX_TR1
  inline __complex__ float
  __complex_acos(__complex__ float __z)
  { return __builtin_cacosf(__z); }

  inline __complex__ double
  __complex_acos(__complex__ double __z)
  { return __builtin_cacos(__z); }

  inline __complex__ long double
  __complex_acos(const __complex__ long double& __z)
  { return __builtin_cacosl(__z); }

  template<typename _Tp>
    inline std::complex<_Tp>
    acos(const std::complex<_Tp>& __z)
    { return __complex_acos(__z.__rep()); }
#else
  /// acos(__z) [8.1.2].
  //  Effects:  Behaves the same as C99 function cacos, defined
  //            in subclause 7.3.5.1.
  template<typename _Tp>
    inline std::complex<_Tp>
    acos(const std::complex<_Tp>& __z)
    { return __complex_acos(__z); }
#endif

  template<typename _Tp>
    inline std::complex<_Tp>
    __complex_asin(const std::complex<_Tp>& __z)
    {
      std::complex<_Tp> __t(-__z.imag(), __z.real());
      __t = std::asinh(__t);
      return std::complex<_Tp>(__t.imag(), -__t.real());
    }

#if _GLIBCXX_USE_C99_COMPLEX_TR1
  inline __complex__ float
  __complex_asin(__complex__ float __z)
  { return __builtin_casinf(__z); }

  inline __complex__ double
  __complex_asin(__complex__ double __z)
  { return __builtin_casin(__z); }

  inline __complex__ long double
  __complex_asin(const __complex__ long double& __z)
  { return __builtin_casinl(__z); }

  template<typename _Tp>
    inline std::complex<_Tp>
    asin(const std::complex<_Tp>& __z)
    { return __complex_asin(__z.__rep()); }
#else
  /// asin(__z) [8.1.3].
  //  Effects:  Behaves the same as C99 function casin, defined
  //            in subclause 7.3.5.2.
  template<typename _Tp>
    inline std::complex<_Tp>
    asin(const std::complex<_Tp>& __z)
    { return __complex_asin(__z); }
#endif

  template<typename _Tp>
    std::complex<_Tp>
    __complex_atan(const std::complex<_Tp>& __z)
    {
      const _Tp __r2 = __z.real() * __z.real();
      const _Tp __x = _Tp(1.0) - __r2 - __z.imag() * __z.imag();

      _Tp __num = __z.imag() + _Tp(1.0);
      _Tp __den = __z.imag() - _Tp(1.0);

      __num = __r2 + __num * __num;
      __den = __r2 + __den * __den;

      return std::complex<_Tp>(_Tp(0.5) * atan2(_Tp(2.0) * __z.real(), __x),
			       _Tp(0.25) * log(__num / __den));
    }

#if _GLIBCXX_USE_C99_COMPLEX_TR1
  inline __complex__ float
  __complex_atan(__complex__ float __z)
  { return __builtin_catanf(__z); }

  inline __complex__ double
  __complex_atan(__complex__ double __z)
  { return __builtin_catan(__z); }

  inline __complex__ long double
  __complex_atan(const __complex__ long double& __z)
  { return __builtin_catanl(__z); }

  template<typename _Tp>
    inline std::complex<_Tp>
    atan(const std::complex<_Tp>& __z)
    { return __complex_atan(__z.__rep()); }
#else
  /// atan(__z) [8.1.4].
  //  Effects:  Behaves the same as C99 function catan, defined
  //            in subclause 7.3.5.3.
  template<typename _Tp>
    inline std::complex<_Tp>
    atan(const std::complex<_Tp>& __z)
    { return __complex_atan(__z); }
#endif

  template<typename _Tp>
    std::complex<_Tp>
    __complex_acosh(const std::complex<_Tp>& __z)
    {
      // Kahan's formula.
      return _Tp(2.0) * std::log(std::sqrt(_Tp(0.5) * (__z + _Tp(1.0)))
				 + std::sqrt(_Tp(0.5) * (__z - _Tp(1.0))));
    }

#if _GLIBCXX_USE_C99_COMPLEX_TR1
  inline __complex__ float
  __complex_acosh(__complex__ float __z)
  { return __builtin_cacoshf(__z); }

  inline __complex__ double
  __complex_acosh(__complex__ double __z)
  { return __builtin_cacosh(__z); }

  inline __complex__ long double
  __complex_acosh(const __complex__ long double& __z)
  { return __builtin_cacoshl(__z); }

  template<typename _Tp>
    inline std::complex<_Tp>
    acosh(const std::complex<_Tp>& __z)
    { return __complex_acosh(__z.__rep()); }
#else
  /// acosh(__z) [8.1.5].
  //  Effects:  Behaves the same as C99 function cacosh, defined
  //            in subclause 7.3.6.1.
  template<typename _Tp>
    inline std::complex<_Tp>
    acosh(const std::complex<_Tp>& __z)
    { return __complex_acosh(__z); }
#endif

  template<typename _Tp>
    std::complex<_Tp>
    __complex_asinh(const std::complex<_Tp>& __z)
    {
      std::complex<_Tp> __t((__z.real() - __z.imag())
			    * (__z.real() + __z.imag()) + _Tp(1.0),
			    _Tp(2.0) * __z.real() * __z.imag());
      __t = std::sqrt(__t);

      return std::log(__t + __z);
    }

#if _GLIBCXX_USE_C99_COMPLEX_TR1
  inline __complex__ float
  __complex_asinh(__complex__ float __z)
  { return __builtin_casinhf(__z); }

  inline __complex__ double
  __complex_asinh(__complex__ double __z)
  { return __builtin_casinh(__z); }

  inline __complex__ long double
  __complex_asinh(const __complex__ long double& __z)
  { return __builtin_casinhl(__z); }

  template<typename _Tp>
    inline std::complex<_Tp>
    asinh(const std::complex<_Tp>& __z)
    { return __complex_asinh(__z.__rep()); }
#else
  /// asinh(__z) [8.1.6].
  //  Effects:  Behaves the same as C99 function casin, defined
  //            in subclause 7.3.6.2.
  template<typename _Tp>
    inline std::complex<_Tp>
    asinh(const std::complex<_Tp>& __z)
    { return __complex_asinh(__z); }
#endif

  template<typename _Tp>
    std::complex<_Tp>
    __complex_atanh(const std::complex<_Tp>& __z)
    {
      const _Tp __i2 = __z.imag() * __z.imag();
      const _Tp __x = _Tp(1.0) - __i2 - __z.real() * __z.real();

      _Tp __num = _Tp(1.0) + __z.real();
      _Tp __den = _Tp(1.0) - __z.real();

      __num = __i2 + __num * __num;
      __den = __i2 + __den * __den;

      return std::complex<_Tp>(_Tp(0.25) * (log(__num) - log(__den)),
			       _Tp(0.5) * atan2(_Tp(2.0) * __z.imag(), __x));
    }

#if _GLIBCXX_USE_C99_COMPLEX_TR1
  inline __complex__ float
  __complex_atanh(__complex__ float __z)
  { return __builtin_catanhf(__z); }

  inline __complex__ double
  __complex_atanh(__complex__ double __z)
  { return __builtin_catanh(__z); }

  inline __complex__ long double
  __complex_atanh(const __complex__ long double& __z)
  { return __builtin_catanhl(__z); }

  template<typename _Tp>
    inline std::complex<_Tp>
    atanh(const std::complex<_Tp>& __z)
    { return __complex_atanh(__z.__rep()); }
#else
  /// atanh(__z) [8.1.7].
  //  Effects:  Behaves the same as C99 function catanh, defined
  //            in subclause 7.3.6.3.
  template<typename _Tp>
    inline std::complex<_Tp>
    atanh(const std::complex<_Tp>& __z)
    { return __complex_atanh(__z); }
#endif

  template<typename _Tp>
    inline _Tp
    /// fabs(__z) [8.1.8].
    //  Effects:  Behaves the same as C99 function cabs, defined
    //            in subclause 7.3.8.1.
    fabs(const std::complex<_Tp>& __z)
    { return std::abs(__z); }

  /// Additional overloads [8.1.9].
  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    arg(_Tp __x)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
#if (_GLIBCXX11_USE_C99_MATH && !_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC)
      return std::signbit(__x) ? __type(3.1415926535897932384626433832795029L)
	                       : __type();
#else
      return std::arg(std::complex<__type>(__x));
#endif
    }

  template<typename _Tp>
    _GLIBCXX_CONSTEXPR inline typename __gnu_cxx::__promote<_Tp>::__type
    imag(_Tp)
    { return _Tp(); }

  template<typename _Tp>
    inline typename __gnu_cxx::__promote<_Tp>::__type
    norm(_Tp __x)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return __type(__x) * __type(__x);
    }

  template<typename _Tp>
    _GLIBCXX_CONSTEXPR inline typename __gnu_cxx::__promote<_Tp>::__type
    real(_Tp __x)
    { return __x; }

  template<typename _Tp, typename _Up>
    inline std::complex<typename __gnu_cxx::__promote_2<_Tp, _Up>::__type>
    pow(const std::complex<_Tp>& __x, const _Up& __y)
    {
      typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
      return std::pow(std::complex<__type>(__x), __type(__y));
    }

  template<typename _Tp, typename _Up>
    inline std::complex<typename __gnu_cxx::__promote_2<_Tp, _Up>::__type>
    pow(const _Tp& __x, const std::complex<_Up>& __y)
    {
      typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
      return std::pow(__type(__x), std::complex<__type>(__y));
    }

  template<typename _Tp, typename _Up>
    inline std::complex<typename __gnu_cxx::__promote_2<_Tp, _Up>::__type>
    pow(const std::complex<_Tp>& __x, const std::complex<_Up>& __y)
    {
      typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
      return std::pow(std::complex<__type>(__x),
		      std::complex<__type>(__y));
    }

  // Forward declarations.
  // DR 781.
  template<typename _Tp> std::complex<_Tp> proj(const std::complex<_Tp>&);

  template<typename _Tp>
    std::complex<_Tp>
    __complex_proj(const std::complex<_Tp>& __z)
    {
      const _Tp __den = (__z.real() * __z.real()
			 + __z.imag() * __z.imag() + _Tp(1.0));

      return std::complex<_Tp>((_Tp(2.0) * __z.real()) / __den,
			       (_Tp(2.0) * __z.imag()) / __den);
    }

#if _GLIBCXX_USE_C99_COMPLEX
  inline __complex__ float
  __complex_proj(__complex__ float __z)
  { return __builtin_cprojf(__z); }

  inline __complex__ double
  __complex_proj(__complex__ double __z)
  { return __builtin_cproj(__z); }

  inline __complex__ long double
  __complex_proj(const __complex__ long double& __z)
  { return __builtin_cprojl(__z); }

  template<typename _Tp>
    inline std::complex<_Tp>
    proj(const std::complex<_Tp>& __z)
    { return __complex_proj(__z.__rep()); }
#else
  template<typename _Tp>
    inline std::complex<_Tp>
    proj(const std::complex<_Tp>& __z)
    { return __complex_proj(__z); }
#endif

  template<typename _Tp>
    inline std::complex<typename __gnu_cxx::__promote<_Tp>::__type>
    proj(_Tp __x)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return std::proj(std::complex<__type>(__x));
    }

  template<typename _Tp>
    inline std::complex<typename __gnu_cxx::__promote<_Tp>::__type>
    conj(_Tp __x)
    {
      typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
      return std::complex<__type>(__x, -__type());
    }

_GLIBCXX_END_NAMESPACE_VERSION

#if __cplusplus > 201103L

inline namespace literals {
inline namespace complex_literals {
_GLIBCXX_BEGIN_NAMESPACE_VERSION

#define __cpp_lib_complex_udls 201309

  constexpr std::complex<float>
  operator""if(long double __num)
  { return std::complex<float>{0.0F, static_cast<float>(__num)}; }

  constexpr std::complex<float>
  operator""if(unsigned long long __num)
  { return std::complex<float>{0.0F, static_cast<float>(__num)}; }

  constexpr std::complex<double>
  operator""i(long double __num)
  { return std::complex<double>{0.0, static_cast<double>(__num)}; }

  constexpr std::complex<double>
  operator""i(unsigned long long __num)
  { return std::complex<double>{0.0, static_cast<double>(__num)}; }

  constexpr std::complex<long double>
  operator""il(long double __num)
  { return std::complex<long double>{0.0L, __num}; }

  constexpr std::complex<long double>
  operator""il(unsigned long long __num)
  { return std::complex<long double>{0.0L, static_cast<long double>(__num)}; }

_GLIBCXX_END_NAMESPACE_VERSION
} // inline namespace complex_literals
} // inline namespace literals

#endif // C++14

} // namespace

#endif  // C++11

#endif  /* _GLIBCXX_COMPLEX */