Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
/* Schoenhage's fast multiplication modulo 2^N+1.

   Contributed by Paul Zimmermann.

   THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY
   SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
   GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.

Copyright 1998-2010, 2012, 2013 Free Software Foundation, Inc.

This file is part of the GNU MP Library.

The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of either:

  * the GNU Lesser General Public License as published by the Free
    Software Foundation; either version 3 of the License, or (at your
    option) any later version.

or

  * the GNU General Public License as published by the Free Software
    Foundation; either version 2 of the License, or (at your option) any
    later version.

or both in parallel, as here.

The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the GNU MP Library.  If not,
see https://www.gnu.org/licenses/.  */


/* References:

   Schnelle Multiplikation grosser Zahlen, by Arnold Schoenhage and Volker
   Strassen, Computing 7, p. 281-292, 1971.

   Asymptotically fast algorithms for the numerical multiplication and division
   of polynomials with complex coefficients, by Arnold Schoenhage, Computer
   Algebra, EUROCAM'82, LNCS 144, p. 3-15, 1982.

   Tapes versus Pointers, a study in implementing fast algorithms, by Arnold
   Schoenhage, Bulletin of the EATCS, 30, p. 23-32, 1986.

   TODO:

   Implement some of the tricks published at ISSAC'2007 by Gaudry, Kruppa, and
   Zimmermann.

   It might be possible to avoid a small number of MPN_COPYs by using a
   rotating temporary or two.

   Cleanup and simplify the code!
*/

#ifdef TRACE
#undef TRACE
#define TRACE(x) x
#include <stdio.h>
#else
#define TRACE(x)
#endif

#include "gmp.h"
#include "gmp-impl.h"

#ifdef WANT_ADDSUB
#include "generic/add_n_sub_n.c"
#define HAVE_NATIVE_mpn_add_n_sub_n 1
#endif

static mp_limb_t mpn_mul_fft_internal (mp_ptr, mp_size_t, int, mp_ptr *,
				       mp_ptr *, mp_ptr, mp_ptr, mp_size_t,
				       mp_size_t, mp_size_t, int **, mp_ptr, int);
static void mpn_mul_fft_decompose (mp_ptr, mp_ptr *, mp_size_t, mp_size_t, mp_srcptr,
				   mp_size_t, mp_size_t, mp_size_t, mp_ptr);


/* Find the best k to use for a mod 2^(m*GMP_NUMB_BITS)+1 FFT for m >= n.
   We have sqr=0 if for a multiply, sqr=1 for a square.
   There are three generations of this code; we keep the old ones as long as
   some gmp-mparam.h is not updated.  */


/*****************************************************************************/

#if TUNE_PROGRAM_BUILD || (defined (MUL_FFT_TABLE3) && defined (SQR_FFT_TABLE3))

#ifndef FFT_TABLE3_SIZE		/* When tuning this is defined in gmp-impl.h */
#if defined (MUL_FFT_TABLE3_SIZE) && defined (SQR_FFT_TABLE3_SIZE)
#if MUL_FFT_TABLE3_SIZE > SQR_FFT_TABLE3_SIZE
#define FFT_TABLE3_SIZE MUL_FFT_TABLE3_SIZE
#else
#define FFT_TABLE3_SIZE SQR_FFT_TABLE3_SIZE
#endif
#endif
#endif

#ifndef FFT_TABLE3_SIZE
#define FFT_TABLE3_SIZE 200
#endif

FFT_TABLE_ATTRS struct fft_table_nk mpn_fft_table3[2][FFT_TABLE3_SIZE] =
{
  MUL_FFT_TABLE3,
  SQR_FFT_TABLE3
};

int
mpn_fft_best_k (mp_size_t n, int sqr)
{
  const struct fft_table_nk *fft_tab, *tab;
  mp_size_t tab_n, thres;
  int last_k;

  fft_tab = mpn_fft_table3[sqr];
  last_k = fft_tab->k;
  for (tab = fft_tab + 1; ; tab++)
    {
      tab_n = tab->n;
      thres = tab_n << last_k;
      if (n <= thres)
	break;
      last_k = tab->k;
    }
  return last_k;
}

#define MPN_FFT_BEST_READY 1
#endif

/*****************************************************************************/

#if ! defined (MPN_FFT_BEST_READY)
FFT_TABLE_ATTRS mp_size_t mpn_fft_table[2][MPN_FFT_TABLE_SIZE] =
{
  MUL_FFT_TABLE,
  SQR_FFT_TABLE
};

int
mpn_fft_best_k (mp_size_t n, int sqr)
{
  int i;

  for (i = 0; mpn_fft_table[sqr][i] != 0; i++)
    if (n < mpn_fft_table[sqr][i])
      return i + FFT_FIRST_K;

  /* treat 4*last as one further entry */
  if (i == 0 || n < 4 * mpn_fft_table[sqr][i - 1])
    return i + FFT_FIRST_K;
  else
    return i + FFT_FIRST_K + 1;
}
#endif

/*****************************************************************************/


/* Returns smallest possible number of limbs >= pl for a fft of size 2^k,
   i.e. smallest multiple of 2^k >= pl.

   Don't declare static: needed by tuneup.
*/

mp_size_t
mpn_fft_next_size (mp_size_t pl, int k)
{
  pl = 1 + ((pl - 1) >> k); /* ceil (pl/2^k) */
  return pl << k;
}


/* Initialize l[i][j] with bitrev(j) */
static void
mpn_fft_initl (int **l, int k)
{
  int i, j, K;
  int *li;

  l[0][0] = 0;
  for (i = 1, K = 1; i <= k; i++, K *= 2)
    {
      li = l[i];
      for (j = 0; j < K; j++)
	{
	  li[j] = 2 * l[i - 1][j];
	  li[K + j] = 1 + li[j];
	}
    }
}


/* r <- a*2^d mod 2^(n*GMP_NUMB_BITS)+1 with a = {a, n+1}
   Assumes a is semi-normalized, i.e. a[n] <= 1.
   r and a must have n+1 limbs, and not overlap.
*/
static void
mpn_fft_mul_2exp_modF (mp_ptr r, mp_srcptr a, mp_bitcnt_t d, mp_size_t n)
{
  unsigned int sh;
  mp_size_t m;
  mp_limb_t cc, rd;

  sh = d % GMP_NUMB_BITS;
  m = d / GMP_NUMB_BITS;

  if (m >= n)			/* negate */
    {
      /* r[0..m-1]  <-- lshift(a[n-m]..a[n-1], sh)
	 r[m..n-1]  <-- -lshift(a[0]..a[n-m-1],  sh) */

      m -= n;
      if (sh != 0)
	{
	  /* no out shift below since a[n] <= 1 */
	  mpn_lshift (r, a + n - m, m + 1, sh);
	  rd = r[m];
	  cc = mpn_lshiftc (r + m, a, n - m, sh);
	}
      else
	{
	  MPN_COPY (r, a + n - m, m);
	  rd = a[n];
	  mpn_com (r + m, a, n - m);
	  cc = 0;
	}

      /* add cc to r[0], and add rd to r[m] */

      /* now add 1 in r[m], subtract 1 in r[n], i.e. add 1 in r[0] */

      r[n] = 0;
      /* cc < 2^sh <= 2^(GMP_NUMB_BITS-1) thus no overflow here */
      cc++;
      mpn_incr_u (r, cc);

      rd++;
      /* rd might overflow when sh=GMP_NUMB_BITS-1 */
      cc = (rd == 0) ? 1 : rd;
      r = r + m + (rd == 0);
      mpn_incr_u (r, cc);
    }
  else
    {
      /* r[0..m-1]  <-- -lshift(a[n-m]..a[n-1], sh)
	 r[m..n-1]  <-- lshift(a[0]..a[n-m-1],  sh)  */
      if (sh != 0)
	{
	  /* no out bits below since a[n] <= 1 */
	  mpn_lshiftc (r, a + n - m, m + 1, sh);
	  rd = ~r[m];
	  /* {r, m+1} = {a+n-m, m+1} << sh */
	  cc = mpn_lshift (r + m, a, n - m, sh); /* {r+m, n-m} = {a, n-m}<<sh */
	}
      else
	{
	  /* r[m] is not used below, but we save a test for m=0 */
	  mpn_com (r, a + n - m, m + 1);
	  rd = a[n];
	  MPN_COPY (r + m, a, n - m);
	  cc = 0;
	}

      /* now complement {r, m}, subtract cc from r[0], subtract rd from r[m] */

      /* if m=0 we just have r[0]=a[n] << sh */
      if (m != 0)
	{
	  /* now add 1 in r[0], subtract 1 in r[m] */
	  if (cc-- == 0) /* then add 1 to r[0] */
	    cc = mpn_add_1 (r, r, n, CNST_LIMB(1));
	  cc = mpn_sub_1 (r, r, m, cc) + 1;
	  /* add 1 to cc instead of rd since rd might overflow */
	}

      /* now subtract cc and rd from r[m..n] */

      r[n] = -mpn_sub_1 (r + m, r + m, n - m, cc);
      r[n] -= mpn_sub_1 (r + m, r + m, n - m, rd);
      if (r[n] & GMP_LIMB_HIGHBIT)
	r[n] = mpn_add_1 (r, r, n, CNST_LIMB(1));
    }
}


/* r <- a+b mod 2^(n*GMP_NUMB_BITS)+1.
   Assumes a and b are semi-normalized.
*/
static inline void
mpn_fft_add_modF (mp_ptr r, mp_srcptr a, mp_srcptr b, mp_size_t n)
{
  mp_limb_t c, x;

  c = a[n] + b[n] + mpn_add_n (r, a, b, n);
  /* 0 <= c <= 3 */

#if 1
  /* GCC 4.1 outsmarts most expressions here, and generates a 50% branch.  The
     result is slower code, of course.  But the following outsmarts GCC.  */
  x = (c - 1) & -(c != 0);
  r[n] = c - x;
  MPN_DECR_U (r, n + 1, x);
#endif
#if 0
  if (c > 1)
    {
      r[n] = 1;                       /* r[n] - c = 1 */
      MPN_DECR_U (r, n + 1, c - 1);
    }
  else
    {
      r[n] = c;
    }
#endif
}

/* r <- a-b mod 2^(n*GMP_NUMB_BITS)+1.
   Assumes a and b are semi-normalized.
*/
static inline void
mpn_fft_sub_modF (mp_ptr r, mp_srcptr a, mp_srcptr b, mp_size_t n)
{
  mp_limb_t c, x;

  c = a[n] - b[n] - mpn_sub_n (r, a, b, n);
  /* -2 <= c <= 1 */

#if 1
  /* GCC 4.1 outsmarts most expressions here, and generates a 50% branch.  The
     result is slower code, of course.  But the following outsmarts GCC.  */
  x = (-c) & -((c & GMP_LIMB_HIGHBIT) != 0);
  r[n] = x + c;
  MPN_INCR_U (r, n + 1, x);
#endif
#if 0
  if ((c & GMP_LIMB_HIGHBIT) != 0)
    {
      r[n] = 0;
      MPN_INCR_U (r, n + 1, -c);
    }
  else
    {
      r[n] = c;
    }
#endif
}

/* input: A[0] ... A[inc*(K-1)] are residues mod 2^N+1 where
	  N=n*GMP_NUMB_BITS, and 2^omega is a primitive root mod 2^N+1
   output: A[inc*l[k][i]] <- \sum (2^omega)^(ij) A[inc*j] mod 2^N+1 */

static void
mpn_fft_fft (mp_ptr *Ap, mp_size_t K, int **ll,
	     mp_size_t omega, mp_size_t n, mp_size_t inc, mp_ptr tp)
{
  if (K == 2)
    {
      mp_limb_t cy;
#if HAVE_NATIVE_mpn_add_n_sub_n
      cy = mpn_add_n_sub_n (Ap[0], Ap[inc], Ap[0], Ap[inc], n + 1) & 1;
#else
      MPN_COPY (tp, Ap[0], n + 1);
      mpn_add_n (Ap[0], Ap[0], Ap[inc], n + 1);
      cy = mpn_sub_n (Ap[inc], tp, Ap[inc], n + 1);
#endif
      if (Ap[0][n] > 1) /* can be 2 or 3 */
	Ap[0][n] = 1 - mpn_sub_1 (Ap[0], Ap[0], n, Ap[0][n] - 1);
      if (cy) /* Ap[inc][n] can be -1 or -2 */
	Ap[inc][n] = mpn_add_1 (Ap[inc], Ap[inc], n, ~Ap[inc][n] + 1);
    }
  else
    {
      mp_size_t j, K2 = K >> 1;
      int *lk = *ll;

      mpn_fft_fft (Ap,     K2, ll-1, 2 * omega, n, inc * 2, tp);
      mpn_fft_fft (Ap+inc, K2, ll-1, 2 * omega, n, inc * 2, tp);
      /* A[2*j*inc]   <- A[2*j*inc] + omega^l[k][2*j*inc] A[(2j+1)inc]
	 A[(2j+1)inc] <- A[2*j*inc] + omega^l[k][(2j+1)inc] A[(2j+1)inc] */
      for (j = 0; j < K2; j++, lk += 2, Ap += 2 * inc)
	{
	  /* Ap[inc] <- Ap[0] + Ap[inc] * 2^(lk[1] * omega)
	     Ap[0]   <- Ap[0] + Ap[inc] * 2^(lk[0] * omega) */
	  mpn_fft_mul_2exp_modF (tp, Ap[inc], lk[0] * omega, n);
	  mpn_fft_sub_modF (Ap[inc], Ap[0], tp, n);
	  mpn_fft_add_modF (Ap[0],   Ap[0], tp, n);
	}
    }
}

/* input: A[0] ... A[inc*(K-1)] are residues mod 2^N+1 where
	  N=n*GMP_NUMB_BITS, and 2^omega is a primitive root mod 2^N+1
   output: A[inc*l[k][i]] <- \sum (2^omega)^(ij) A[inc*j] mod 2^N+1
   tp must have space for 2*(n+1) limbs.
*/


/* Given ap[0..n] with ap[n]<=1, reduce it modulo 2^(n*GMP_NUMB_BITS)+1,
   by subtracting that modulus if necessary.

   If ap[0..n] is exactly 2^(n*GMP_NUMB_BITS) then mpn_sub_1 produces a
   borrow and the limbs must be zeroed out again.  This will occur very
   infrequently.  */

static inline void
mpn_fft_normalize (mp_ptr ap, mp_size_t n)
{
  if (ap[n] != 0)
    {
      MPN_DECR_U (ap, n + 1, CNST_LIMB(1));
      if (ap[n] == 0)
	{
	  /* This happens with very low probability; we have yet to trigger it,
	     and thereby make sure this code is correct.  */
	  MPN_ZERO (ap, n);
	  ap[n] = 1;
	}
      else
	ap[n] = 0;
    }
}

/* a[i] <- a[i]*b[i] mod 2^(n*GMP_NUMB_BITS)+1 for 0 <= i < K */
static void
mpn_fft_mul_modF_K (mp_ptr *ap, mp_ptr *bp, mp_size_t n, mp_size_t K)
{
  int i;
  int sqr = (ap == bp);
  TMP_DECL;

  TMP_MARK;

  if (n >= (sqr ? SQR_FFT_MODF_THRESHOLD : MUL_FFT_MODF_THRESHOLD))
    {
      mp_size_t K2, nprime2, Nprime2, M2, maxLK, l, Mp2;
      int k;
      int **fft_l, *tmp;
      mp_ptr *Ap, *Bp, A, B, T;

      k = mpn_fft_best_k (n, sqr);
      K2 = (mp_size_t) 1 << k;
      ASSERT_ALWAYS((n & (K2 - 1)) == 0);
      maxLK = (K2 > GMP_NUMB_BITS) ? K2 : GMP_NUMB_BITS;
      M2 = n * GMP_NUMB_BITS >> k;
      l = n >> k;
      Nprime2 = ((2 * M2 + k + 2 + maxLK) / maxLK) * maxLK;
      /* Nprime2 = ceil((2*M2+k+3)/maxLK)*maxLK*/
      nprime2 = Nprime2 / GMP_NUMB_BITS;

      /* we should ensure that nprime2 is a multiple of the next K */
      if (nprime2 >= (sqr ? SQR_FFT_MODF_THRESHOLD : MUL_FFT_MODF_THRESHOLD))
	{
	  mp_size_t K3;
	  for (;;)
	    {
	      K3 = (mp_size_t) 1 << mpn_fft_best_k (nprime2, sqr);
	      if ((nprime2 & (K3 - 1)) == 0)
		break;
	      nprime2 = (nprime2 + K3 - 1) & -K3;
	      Nprime2 = nprime2 * GMP_LIMB_BITS;
	      /* warning: since nprime2 changed, K3 may change too! */
	    }
	}
      ASSERT_ALWAYS(nprime2 < n); /* otherwise we'll loop */

      Mp2 = Nprime2 >> k;

      Ap = TMP_BALLOC_MP_PTRS (K2);
      Bp = TMP_BALLOC_MP_PTRS (K2);
      A = TMP_BALLOC_LIMBS (2 * (nprime2 + 1) << k);
      T = TMP_BALLOC_LIMBS (2 * (nprime2 + 1));
      B = A + ((nprime2 + 1) << k);
      fft_l = TMP_BALLOC_TYPE (k + 1, int *);
      tmp = TMP_BALLOC_TYPE ((size_t) 2 << k, int);
      for (i = 0; i <= k; i++)
	{
	  fft_l[i] = tmp;
	  tmp += (mp_size_t) 1 << i;
	}

      mpn_fft_initl (fft_l, k);

      TRACE (printf ("recurse: %ldx%ld limbs -> %ld times %ldx%ld (%1.2f)\n", n,
		    n, K2, nprime2, nprime2, 2.0*(double)n/nprime2/K2));
      for (i = 0; i < K; i++, ap++, bp++)
	{
	  mp_limb_t cy;
	  mpn_fft_normalize (*ap, n);
	  if (!sqr)
	    mpn_fft_normalize (*bp, n);

	  mpn_mul_fft_decompose (A, Ap, K2, nprime2, *ap, (l << k) + 1, l, Mp2, T);
	  if (!sqr)
	    mpn_mul_fft_decompose (B, Bp, K2, nprime2, *bp, (l << k) + 1, l, Mp2, T);

	  cy = mpn_mul_fft_internal (*ap, n, k, Ap, Bp, A, B, nprime2,
				     l, Mp2, fft_l, T, sqr);
	  (*ap)[n] = cy;
	}
    }
  else
    {
      mp_ptr a, b, tp, tpn;
      mp_limb_t cc;
      mp_size_t n2 = 2 * n;
      tp = TMP_BALLOC_LIMBS (n2);
      tpn = tp + n;
      TRACE (printf ("  mpn_mul_n %ld of %ld limbs\n", K, n));
      for (i = 0; i < K; i++)
	{
	  a = *ap++;
	  b = *bp++;
	  if (sqr)
	    mpn_sqr (tp, a, n);
	  else
	    mpn_mul_n (tp, b, a, n);
	  if (a[n] != 0)
	    cc = mpn_add_n (tpn, tpn, b, n);
	  else
	    cc = 0;
	  if (b[n] != 0)
	    cc += mpn_add_n (tpn, tpn, a, n) + a[n];
	  if (cc != 0)
	    {
	      /* FIXME: use MPN_INCR_U here, since carry is not expected.  */
	      cc = mpn_add_1 (tp, tp, n2, cc);
	      ASSERT (cc == 0);
	    }
	  a[n] = mpn_sub_n (a, tp, tpn, n) && mpn_add_1 (a, a, n, CNST_LIMB(1));
	}
    }
  TMP_FREE;
}


/* input: A^[l[k][0]] A^[l[k][1]] ... A^[l[k][K-1]]
   output: K*A[0] K*A[K-1] ... K*A[1].
   Assumes the Ap[] are pseudo-normalized, i.e. 0 <= Ap[][n] <= 1.
   This condition is also fulfilled at exit.
*/
static void
mpn_fft_fftinv (mp_ptr *Ap, mp_size_t K, mp_size_t omega, mp_size_t n, mp_ptr tp)
{
  if (K == 2)
    {
      mp_limb_t cy;
#if HAVE_NATIVE_mpn_add_n_sub_n
      cy = mpn_add_n_sub_n (Ap[0], Ap[1], Ap[0], Ap[1], n + 1) & 1;
#else
      MPN_COPY (tp, Ap[0], n + 1);
      mpn_add_n (Ap[0], Ap[0], Ap[1], n + 1);
      cy = mpn_sub_n (Ap[1], tp, Ap[1], n + 1);
#endif
      if (Ap[0][n] > 1) /* can be 2 or 3 */
	Ap[0][n] = 1 - mpn_sub_1 (Ap[0], Ap[0], n, Ap[0][n] - 1);
      if (cy) /* Ap[1][n] can be -1 or -2 */
	Ap[1][n] = mpn_add_1 (Ap[1], Ap[1], n, ~Ap[1][n] + 1);
    }
  else
    {
      mp_size_t j, K2 = K >> 1;

      mpn_fft_fftinv (Ap,      K2, 2 * omega, n, tp);
      mpn_fft_fftinv (Ap + K2, K2, 2 * omega, n, tp);
      /* A[j]     <- A[j] + omega^j A[j+K/2]
	 A[j+K/2] <- A[j] + omega^(j+K/2) A[j+K/2] */
      for (j = 0; j < K2; j++, Ap++)
	{
	  /* Ap[K2] <- Ap[0] + Ap[K2] * 2^((j + K2) * omega)
	     Ap[0]  <- Ap[0] + Ap[K2] * 2^(j * omega) */
	  mpn_fft_mul_2exp_modF (tp, Ap[K2], j * omega, n);
	  mpn_fft_sub_modF (Ap[K2], Ap[0], tp, n);
	  mpn_fft_add_modF (Ap[0],  Ap[0], tp, n);
	}
    }
}


/* R <- A/2^k mod 2^(n*GMP_NUMB_BITS)+1 */
static void
mpn_fft_div_2exp_modF (mp_ptr r, mp_srcptr a, mp_bitcnt_t k, mp_size_t n)
{
  mp_bitcnt_t i;

  ASSERT (r != a);
  i = (mp_bitcnt_t) 2 * n * GMP_NUMB_BITS - k;
  mpn_fft_mul_2exp_modF (r, a, i, n);
  /* 1/2^k = 2^(2nL-k) mod 2^(n*GMP_NUMB_BITS)+1 */
  /* normalize so that R < 2^(n*GMP_NUMB_BITS)+1 */
  mpn_fft_normalize (r, n);
}


/* {rp,n} <- {ap,an} mod 2^(n*GMP_NUMB_BITS)+1, n <= an <= 3*n.
   Returns carry out, i.e. 1 iff {ap,an} = -1 mod 2^(n*GMP_NUMB_BITS)+1,
   then {rp,n}=0.
*/
static mp_size_t
mpn_fft_norm_modF (mp_ptr rp, mp_size_t n, mp_ptr ap, mp_size_t an)
{
  mp_size_t l, m, rpn;
  mp_limb_t cc;

  ASSERT ((n <= an) && (an <= 3 * n));
  m = an - 2 * n;
  if (m > 0)
    {
      l = n;
      /* add {ap, m} and {ap+2n, m} in {rp, m} */
      cc = mpn_add_n (rp, ap, ap + 2 * n, m);
      /* copy {ap+m, n-m} to {rp+m, n-m} */
      rpn = mpn_add_1 (rp + m, ap + m, n - m, cc);
    }
  else
    {
      l = an - n; /* l <= n */
      MPN_COPY (rp, ap, n);
      rpn = 0;
    }

  /* remains to subtract {ap+n, l} from {rp, n+1} */
  cc = mpn_sub_n (rp, rp, ap + n, l);
  rpn -= mpn_sub_1 (rp + l, rp + l, n - l, cc);
  if (rpn < 0) /* necessarily rpn = -1 */
    rpn = mpn_add_1 (rp, rp, n, CNST_LIMB(1));
  return rpn;
}

/* store in A[0..nprime] the first M bits from {n, nl},
   in A[nprime+1..] the following M bits, ...
   Assumes M is a multiple of GMP_NUMB_BITS (M = l * GMP_NUMB_BITS).
   T must have space for at least (nprime + 1) limbs.
   We must have nl <= 2*K*l.
*/
static void
mpn_mul_fft_decompose (mp_ptr A, mp_ptr *Ap, mp_size_t K, mp_size_t nprime,
		       mp_srcptr n, mp_size_t nl, mp_size_t l, mp_size_t Mp,
		       mp_ptr T)
{
  mp_size_t i, j;
  mp_ptr tmp;
  mp_size_t Kl = K * l;
  TMP_DECL;
  TMP_MARK;

  if (nl > Kl) /* normalize {n, nl} mod 2^(Kl*GMP_NUMB_BITS)+1 */
    {
      mp_size_t dif = nl - Kl;
      mp_limb_signed_t cy;

      tmp = TMP_BALLOC_LIMBS(Kl + 1);

      if (dif > Kl)
	{
	  int subp = 0;

	  cy = mpn_sub_n (tmp, n, n + Kl, Kl);
	  n += 2 * Kl;
	  dif -= Kl;

	  /* now dif > 0 */
	  while (dif > Kl)
	    {
	      if (subp)
		cy += mpn_sub_n (tmp, tmp, n, Kl);
	      else
		cy -= mpn_add_n (tmp, tmp, n, Kl);
	      subp ^= 1;
	      n += Kl;
	      dif -= Kl;
	    }
	  /* now dif <= Kl */
	  if (subp)
	    cy += mpn_sub (tmp, tmp, Kl, n, dif);
	  else
	    cy -= mpn_add (tmp, tmp, Kl, n, dif);
	  if (cy >= 0)
	    cy = mpn_add_1 (tmp, tmp, Kl, cy);
	  else
	    cy = mpn_sub_1 (tmp, tmp, Kl, -cy);
	}
      else /* dif <= Kl, i.e. nl <= 2 * Kl */
	{
	  cy = mpn_sub (tmp, n, Kl, n + Kl, dif);
	  cy = mpn_add_1 (tmp, tmp, Kl, cy);
	}
      tmp[Kl] = cy;
      nl = Kl + 1;
      n = tmp;
    }
  for (i = 0; i < K; i++)
    {
      Ap[i] = A;
      /* store the next M bits of n into A[0..nprime] */
      if (nl > 0) /* nl is the number of remaining limbs */
	{
	  j = (l <= nl && i < K - 1) ? l : nl; /* store j next limbs */
	  nl -= j;
	  MPN_COPY (T, n, j);
	  MPN_ZERO (T + j, nprime + 1 - j);
	  n += l;
	  mpn_fft_mul_2exp_modF (A, T, i * Mp, nprime);
	}
      else
	MPN_ZERO (A, nprime + 1);
      A += nprime + 1;
    }
  ASSERT_ALWAYS (nl == 0);
  TMP_FREE;
}

/* op <- n*m mod 2^N+1 with fft of size 2^k where N=pl*GMP_NUMB_BITS
   op is pl limbs, its high bit is returned.
   One must have pl = mpn_fft_next_size (pl, k).
   T must have space for 2 * (nprime + 1) limbs.
*/

static mp_limb_t
mpn_mul_fft_internal (mp_ptr op, mp_size_t pl, int k,
		      mp_ptr *Ap, mp_ptr *Bp, mp_ptr A, mp_ptr B,
		      mp_size_t nprime, mp_size_t l, mp_size_t Mp,
		      int **fft_l, mp_ptr T, int sqr)
{
  mp_size_t K, i, pla, lo, sh, j;
  mp_ptr p;
  mp_limb_t cc;

  K = (mp_size_t) 1 << k;

  /* direct fft's */
  mpn_fft_fft (Ap, K, fft_l + k, 2 * Mp, nprime, 1, T);
  if (!sqr)
    mpn_fft_fft (Bp, K, fft_l + k, 2 * Mp, nprime, 1, T);

  /* term to term multiplications */
  mpn_fft_mul_modF_K (Ap, sqr ? Ap : Bp, nprime, K);

  /* inverse fft's */
  mpn_fft_fftinv (Ap, K, 2 * Mp, nprime, T);

  /* division of terms after inverse fft */
  Bp[0] = T + nprime + 1;
  mpn_fft_div_2exp_modF (Bp[0], Ap[0], k, nprime);
  for (i = 1; i < K; i++)
    {
      Bp[i] = Ap[i - 1];
      mpn_fft_div_2exp_modF (Bp[i], Ap[i], k + (K - i) * Mp, nprime);
    }

  /* addition of terms in result p */
  MPN_ZERO (T, nprime + 1);
  pla = l * (K - 1) + nprime + 1; /* number of required limbs for p */
  p = B; /* B has K*(n' + 1) limbs, which is >= pla, i.e. enough */
  MPN_ZERO (p, pla);
  cc = 0; /* will accumulate the (signed) carry at p[pla] */
  for (i = K - 1, lo = l * i + nprime,sh = l * i; i >= 0; i--,lo -= l,sh -= l)
    {
      mp_ptr n = p + sh;

      j = (K - i) & (K - 1);

      if (mpn_add_n (n, n, Bp[j], nprime + 1))
	cc += mpn_add_1 (n + nprime + 1, n + nprime + 1,
			  pla - sh - nprime - 1, CNST_LIMB(1));
      T[2 * l] = i + 1; /* T = (i + 1)*2^(2*M) */
      if (mpn_cmp (Bp[j], T, nprime + 1) > 0)
	{ /* subtract 2^N'+1 */
	  cc -= mpn_sub_1 (n, n, pla - sh, CNST_LIMB(1));
	  cc -= mpn_sub_1 (p + lo, p + lo, pla - lo, CNST_LIMB(1));
	}
    }
  if (cc == -CNST_LIMB(1))
    {
      if ((cc = mpn_add_1 (p + pla - pl, p + pla - pl, pl, CNST_LIMB(1))))
	{
	  /* p[pla-pl]...p[pla-1] are all zero */
	  mpn_sub_1 (p + pla - pl - 1, p + pla - pl - 1, pl + 1, CNST_LIMB(1));
	  mpn_sub_1 (p + pla - 1, p + pla - 1, 1, CNST_LIMB(1));
	}
    }
  else if (cc == 1)
    {
      if (pla >= 2 * pl)
	{
	  while ((cc = mpn_add_1 (p + pla - 2 * pl, p + pla - 2 * pl, 2 * pl, cc)))
	    ;
	}
      else
	{
	  cc = mpn_sub_1 (p + pla - pl, p + pla - pl, pl, cc);
	  ASSERT (cc == 0);
	}
    }
  else
    ASSERT (cc == 0);

  /* here p < 2^(2M) [K 2^(M(K-1)) + (K-1) 2^(M(K-2)) + ... ]
     < K 2^(2M) [2^(M(K-1)) + 2^(M(K-2)) + ... ]
     < K 2^(2M) 2^(M(K-1))*2 = 2^(M*K+M+k+1) */
  return mpn_fft_norm_modF (op, pl, p, pla);
}

/* return the lcm of a and 2^k */
static mp_bitcnt_t
mpn_mul_fft_lcm (mp_bitcnt_t a, int k)
{
  mp_bitcnt_t l = k;

  while (a % 2 == 0 && k > 0)
    {
      a >>= 1;
      k --;
    }
  return a << l;
}


mp_limb_t
mpn_mul_fft (mp_ptr op, mp_size_t pl,
	     mp_srcptr n, mp_size_t nl,
	     mp_srcptr m, mp_size_t ml,
	     int k)
{
  int i;
  mp_size_t K, maxLK;
  mp_size_t N, Nprime, nprime, M, Mp, l;
  mp_ptr *Ap, *Bp, A, T, B;
  int **fft_l, *tmp;
  int sqr = (n == m && nl == ml);
  mp_limb_t h;
  TMP_DECL;

  TRACE (printf ("\nmpn_mul_fft pl=%ld nl=%ld ml=%ld k=%d\n", pl, nl, ml, k));
  ASSERT_ALWAYS (mpn_fft_next_size (pl, k) == pl);

  TMP_MARK;
  N = pl * GMP_NUMB_BITS;
  fft_l = TMP_BALLOC_TYPE (k + 1, int *);
  tmp = TMP_BALLOC_TYPE ((size_t) 2 << k, int);
  for (i = 0; i <= k; i++)
    {
      fft_l[i] = tmp;
      tmp += (mp_size_t) 1 << i;
    }

  mpn_fft_initl (fft_l, k);
  K = (mp_size_t) 1 << k;
  M = N >> k;	/* N = 2^k M */
  l = 1 + (M - 1) / GMP_NUMB_BITS;
  maxLK = mpn_mul_fft_lcm (GMP_NUMB_BITS, k); /* lcm (GMP_NUMB_BITS, 2^k) */

  Nprime = (1 + (2 * M + k + 2) / maxLK) * maxLK;
  /* Nprime = ceil((2*M+k+3)/maxLK)*maxLK; */
  nprime = Nprime / GMP_NUMB_BITS;
  TRACE (printf ("N=%ld K=%ld, M=%ld, l=%ld, maxLK=%ld, Np=%ld, np=%ld\n",
		 N, K, M, l, maxLK, Nprime, nprime));
  /* we should ensure that recursively, nprime is a multiple of the next K */
  if (nprime >= (sqr ? SQR_FFT_MODF_THRESHOLD : MUL_FFT_MODF_THRESHOLD))
    {
      mp_size_t K2;
      for (;;)
	{
	  K2 = (mp_size_t) 1 << mpn_fft_best_k (nprime, sqr);
	  if ((nprime & (K2 - 1)) == 0)
	    break;
	  nprime = (nprime + K2 - 1) & -K2;
	  Nprime = nprime * GMP_LIMB_BITS;
	  /* warning: since nprime changed, K2 may change too! */
	}
      TRACE (printf ("new maxLK=%ld, Np=%ld, np=%ld\n", maxLK, Nprime, nprime));
    }
  ASSERT_ALWAYS (nprime < pl); /* otherwise we'll loop */

  T = TMP_BALLOC_LIMBS (2 * (nprime + 1));
  Mp = Nprime >> k;

  TRACE (printf ("%ldx%ld limbs -> %ld times %ldx%ld limbs (%1.2f)\n",
		pl, pl, K, nprime, nprime, 2.0 * (double) N / Nprime / K);
	 printf ("   temp space %ld\n", 2 * K * (nprime + 1)));

  A = TMP_BALLOC_LIMBS (K * (nprime + 1));
  Ap = TMP_BALLOC_MP_PTRS (K);
  mpn_mul_fft_decompose (A, Ap, K, nprime, n, nl, l, Mp, T);
  if (sqr)
    {
      mp_size_t pla;
      pla = l * (K - 1) + nprime + 1; /* number of required limbs for p */
      B = TMP_BALLOC_LIMBS (pla);
      Bp = TMP_BALLOC_MP_PTRS (K);
    }
  else
    {
      B = TMP_BALLOC_LIMBS (K * (nprime + 1));
      Bp = TMP_BALLOC_MP_PTRS (K);
      mpn_mul_fft_decompose (B, Bp, K, nprime, m, ml, l, Mp, T);
    }
  h = mpn_mul_fft_internal (op, pl, k, Ap, Bp, A, B, nprime, l, Mp, fft_l, T, sqr);

  TMP_FREE;
  return h;
}

#if WANT_OLD_FFT_FULL
/* multiply {n, nl} by {m, ml}, and put the result in {op, nl+ml} */
void
mpn_mul_fft_full (mp_ptr op,
		  mp_srcptr n, mp_size_t nl,
		  mp_srcptr m, mp_size_t ml)
{
  mp_ptr pad_op;
  mp_size_t pl, pl2, pl3, l;
  mp_size_t cc, c2, oldcc;
  int k2, k3;
  int sqr = (n == m && nl == ml);

  pl = nl + ml; /* total number of limbs of the result */

  /* perform a fft mod 2^(2N)+1 and one mod 2^(3N)+1.
     We must have pl3 = 3/2 * pl2, with pl2 a multiple of 2^k2, and
     pl3 a multiple of 2^k3. Since k3 >= k2, both are multiples of 2^k2,
     and pl2 must be an even multiple of 2^k2. Thus (pl2,pl3) =
     (2*j*2^k2,3*j*2^k2), which works for 3*j <= pl/2^k2 <= 5*j.
     We need that consecutive intervals overlap, i.e. 5*j >= 3*(j+1),
     which requires j>=2. Thus this scheme requires pl >= 6 * 2^FFT_FIRST_K. */

  /*  ASSERT_ALWAYS(pl >= 6 * (1 << FFT_FIRST_K)); */

  pl2 = (2 * pl - 1) / 5; /* ceil (2pl/5) - 1 */
  do
    {
      pl2++;
      k2 = mpn_fft_best_k (pl2, sqr); /* best fft size for pl2 limbs */
      pl2 = mpn_fft_next_size (pl2, k2);
      pl3 = 3 * pl2 / 2; /* since k>=FFT_FIRST_K=4, pl2 is a multiple of 2^4,
			    thus pl2 / 2 is exact */
      k3 = mpn_fft_best_k (pl3, sqr);
    }
  while (mpn_fft_next_size (pl3, k3) != pl3);

  TRACE (printf ("mpn_mul_fft_full nl=%ld ml=%ld -> pl2=%ld pl3=%ld k=%d\n",
		 nl, ml, pl2, pl3, k2));

  ASSERT_ALWAYS(pl3 <= pl);
  cc = mpn_mul_fft (op, pl3, n, nl, m, ml, k3);     /* mu */
  ASSERT(cc == 0);
  pad_op = __GMP_ALLOCATE_FUNC_LIMBS (pl2);
  cc = mpn_mul_fft (pad_op, pl2, n, nl, m, ml, k2); /* lambda */
  cc = -cc + mpn_sub_n (pad_op, pad_op, op, pl2);    /* lambda - low(mu) */
  /* 0 <= cc <= 1 */
  ASSERT(0 <= cc && cc <= 1);
  l = pl3 - pl2; /* l = pl2 / 2 since pl3 = 3/2 * pl2 */
  c2 = mpn_add_n (pad_op, pad_op, op + pl2, l);
  cc = mpn_add_1 (pad_op + l, pad_op + l, l, (mp_limb_t) c2) - cc;
  ASSERT(-1 <= cc && cc <= 1);
  if (cc < 0)
    cc = mpn_add_1 (pad_op, pad_op, pl2, (mp_limb_t) -cc);
  ASSERT(0 <= cc && cc <= 1);
  /* now lambda-mu = {pad_op, pl2} - cc mod 2^(pl2*GMP_NUMB_BITS)+1 */
  oldcc = cc;
#if HAVE_NATIVE_mpn_add_n_sub_n
  c2 = mpn_add_n_sub_n (pad_op + l, pad_op, pad_op, pad_op + l, l);
  /* c2 & 1 is the borrow, c2 & 2 is the carry */
  cc += c2 >> 1; /* carry out from high <- low + high */
  c2 = c2 & 1; /* borrow out from low <- low - high */
#else
  {
    mp_ptr tmp;
    TMP_DECL;

    TMP_MARK;
    tmp = TMP_BALLOC_LIMBS (l);
    MPN_COPY (tmp, pad_op, l);
    c2 = mpn_sub_n (pad_op,      pad_op, pad_op + l, l);
    cc += mpn_add_n (pad_op + l, tmp,    pad_op + l, l);
    TMP_FREE;
  }
#endif
  c2 += oldcc;
  /* first normalize {pad_op, pl2} before dividing by 2: c2 is the borrow
     at pad_op + l, cc is the carry at pad_op + pl2 */
  /* 0 <= cc <= 2 */
  cc -= mpn_sub_1 (pad_op + l, pad_op + l, l, (mp_limb_t) c2);
  /* -1 <= cc <= 2 */
  if (cc > 0)
    cc = -mpn_sub_1 (pad_op, pad_op, pl2, (mp_limb_t) cc);
  /* now -1 <= cc <= 0 */
  if (cc < 0)
    cc = mpn_add_1 (pad_op, pad_op, pl2, (mp_limb_t) -cc);
  /* now {pad_op, pl2} is normalized, with 0 <= cc <= 1 */
  if (pad_op[0] & 1) /* if odd, add 2^(pl2*GMP_NUMB_BITS)+1 */
    cc += 1 + mpn_add_1 (pad_op, pad_op, pl2, CNST_LIMB(1));
  /* now 0 <= cc <= 2, but cc=2 cannot occur since it would give a carry
     out below */
  mpn_rshift (pad_op, pad_op, pl2, 1); /* divide by two */
  if (cc) /* then cc=1 */
    pad_op [pl2 - 1] |= (mp_limb_t) 1 << (GMP_NUMB_BITS - 1);
  /* now {pad_op,pl2}-cc = (lambda-mu)/(1-2^(l*GMP_NUMB_BITS))
     mod 2^(pl2*GMP_NUMB_BITS) + 1 */
  c2 = mpn_add_n (op, op, pad_op, pl2); /* no need to add cc (is 0) */
  /* since pl2+pl3 >= pl, necessary the extra limbs (including cc) are zero */
  MPN_COPY (op + pl3, pad_op, pl - pl3);
  ASSERT_MPN_ZERO_P (pad_op + pl - pl3, pl2 + pl3 - pl);
  __GMP_FREE_FUNC_LIMBS (pad_op, pl2);
  /* since the final result has at most pl limbs, no carry out below */
  mpn_add_1 (op + pl2, op + pl2, pl - pl2, (mp_limb_t) c2);
}
#endif