dnl Intel P6 mpn_mul_basecase -- multiply two mpn numbers.
dnl Copyright 1999-2003 Free Software Foundation, Inc.
dnl This file is part of the GNU MP Library.
dnl
dnl The GNU MP Library is free software; you can redistribute it and/or modify
dnl it under the terms of either:
dnl
dnl * the GNU Lesser General Public License as published by the Free
dnl Software Foundation; either version 3 of the License, or (at your
dnl option) any later version.
dnl
dnl or
dnl
dnl * the GNU General Public License as published by the Free Software
dnl Foundation; either version 2 of the License, or (at your option) any
dnl later version.
dnl
dnl or both in parallel, as here.
dnl
dnl The GNU MP Library is distributed in the hope that it will be useful, but
dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
dnl for more details.
dnl
dnl You should have received copies of the GNU General Public License and the
dnl GNU Lesser General Public License along with the GNU MP Library. If not,
dnl see https://www.gnu.org/licenses/.
include(`../config.m4')
C P6: approx 6.5 cycles per cross product (16 limbs/loop unrolling).
dnl P6 UNROLL_COUNT cycles/product (approx)
dnl 8 7
dnl 16 6.5
dnl 32 6.4
dnl Maximum possible with the current code is 32.
deflit(UNROLL_COUNT, 16)
C void mpn_mul_basecase (mp_ptr wp,
C mp_srcptr xp, mp_size_t xsize,
C mp_srcptr yp, mp_size_t ysize);
C
C This routine is essentially the same as mpn/generic/mul_basecase.c, but
C it's faster because it does most of the mpn_addmul_1() startup
C calculations only once.
ifdef(`PIC',`
deflit(UNROLL_THRESHOLD, 5)
',`
deflit(UNROLL_THRESHOLD, 5)
')
defframe(PARAM_YSIZE,20)
defframe(PARAM_YP, 16)
defframe(PARAM_XSIZE,12)
defframe(PARAM_XP, 8)
defframe(PARAM_WP, 4)
TEXT
ALIGN(16)
PROLOGUE(mpn_mul_basecase)
deflit(`FRAME',0)
movl PARAM_XSIZE, %ecx
movl PARAM_YP, %eax
movl PARAM_XP, %edx
movl (%eax), %eax C yp[0]
cmpl $2, %ecx
ja L(xsize_more_than_two)
je L(two_by_something)
C one limb by one limb
mull (%edx)
movl PARAM_WP, %ecx
movl %eax, (%ecx)
movl %edx, 4(%ecx)
ret
C -----------------------------------------------------------------------------
L(two_by_something):
deflit(`FRAME',0)
dnl re-use parameter space
define(SAVE_EBX, `PARAM_XSIZE')
define(SAVE_ESI, `PARAM_YSIZE')
movl %ebx, SAVE_EBX
cmpl $1, PARAM_YSIZE
movl %eax, %ecx C yp[0]
movl %esi, SAVE_ESI C save esi
movl PARAM_WP, %ebx
movl %edx, %esi C xp
movl (%edx), %eax C xp[0]
jne L(two_by_two)
C two limbs by one limb
C
C eax xp[0]
C ebx wp
C ecx yp[0]
C edx
C esi xp
mull %ecx
movl %eax, (%ebx)
movl 4(%esi), %eax
movl %edx, %esi C carry
mull %ecx
addl %eax, %esi
movl %esi, 4(%ebx)
movl SAVE_ESI, %esi
adcl $0, %edx
movl %edx, 8(%ebx)
movl SAVE_EBX, %ebx
ret
C -----------------------------------------------------------------------------
ALIGN(16)
L(two_by_two):
C eax xp[0]
C ebx wp
C ecx yp[0]
C edx
C esi xp
C edi
C ebp
dnl more parameter space re-use
define(SAVE_EDI, `PARAM_WP')
mull %ecx C xp[0] * yp[0]
movl %edi, SAVE_EDI
movl %edx, %edi C carry, for wp[1]
movl %eax, (%ebx)
movl 4(%esi), %eax
mull %ecx C xp[1] * yp[0]
addl %eax, %edi
movl PARAM_YP, %ecx
adcl $0, %edx
movl 4(%ecx), %ecx C yp[1]
movl %edi, 4(%ebx)
movl 4(%esi), %eax C xp[1]
movl %edx, %edi C carry, for wp[2]
mull %ecx C xp[1] * yp[1]
addl %eax, %edi
movl (%esi), %eax C xp[0]
adcl $0, %edx
movl %edx, %esi C carry, for wp[3]
mull %ecx C xp[0] * yp[1]
addl %eax, 4(%ebx)
movl %esi, %eax
adcl %edx, %edi
movl SAVE_ESI, %esi
movl %edi, 8(%ebx)
adcl $0, %eax
movl SAVE_EDI, %edi
movl %eax, 12(%ebx)
movl SAVE_EBX, %ebx
ret
C -----------------------------------------------------------------------------
ALIGN(16)
L(xsize_more_than_two):
C The first limb of yp is processed with a simple mpn_mul_1 loop running at
C about 6.2 c/l. Unrolling this doesn't seem worthwhile since it's only run
C once (whereas the addmul_1 below is run ysize-1 many times). A call to
C mpn_mul_1 would be slowed down by the parameter pushing and popping etc,
C and doesn't seem likely to be worthwhile on the typical sizes reaching
C here from the Karatsuba code.
C eax yp[0]
C ebx
C ecx xsize
C edx xp
C esi
C edi
C ebp
defframe(`SAVE_EBX', -4)
defframe(`SAVE_ESI', -8)
defframe(`SAVE_EDI', -12)
defframe(`SAVE_EBP', -16)
defframe(VAR_COUNTER, -20) dnl for use in the unroll case
defframe(VAR_ADJUST, -24)
defframe(VAR_JMP, -28)
defframe(VAR_SWAP, -32)
defframe(VAR_XP_LOW, -36)
deflit(STACK_SPACE, 36)
subl $STACK_SPACE, %esp
deflit(`FRAME',STACK_SPACE)
movl %edi, SAVE_EDI
movl PARAM_WP, %edi
movl %ebx, SAVE_EBX
movl %ebp, SAVE_EBP
movl %eax, %ebp
movl %esi, SAVE_ESI
xorl %ebx, %ebx
leal (%edx,%ecx,4), %esi C xp end
leal (%edi,%ecx,4), %edi C wp end of mul1
negl %ecx
L(mul1):
C eax scratch
C ebx carry
C ecx counter, negative
C edx scratch
C esi xp end
C edi wp end of mul1
C ebp multiplier
movl (%esi,%ecx,4), %eax
mull %ebp
addl %ebx, %eax
movl %eax, (%edi,%ecx,4)
movl $0, %ebx
adcl %edx, %ebx
incl %ecx
jnz L(mul1)
movl PARAM_YSIZE, %edx
movl %ebx, (%edi) C final carry
movl PARAM_XSIZE, %ecx
decl %edx
jz L(done) C if ysize==1
cmpl $UNROLL_THRESHOLD, %ecx
movl PARAM_YP, %eax
jae L(unroll)
C -----------------------------------------------------------------------------
C simple addmul looping
C
C eax yp
C ebx
C ecx xsize
C edx ysize-1
C esi xp end
C edi wp end of mul1
C ebp
leal 4(%eax,%edx,4), %ebp C yp end
negl %ecx
negl %edx
movl %edx, PARAM_YSIZE C -(ysize-1)
movl (%esi,%ecx,4), %eax C xp low limb
incl %ecx
movl %ecx, PARAM_XSIZE C -(xsize-1)
xorl %ebx, %ebx C initial carry
movl %ebp, PARAM_YP
movl (%ebp,%edx,4), %ebp C yp second lowest limb - multiplier
jmp L(simple_outer_entry)
L(simple_outer_top):
C ebp ysize counter, negative
movl PARAM_YP, %edx
movl PARAM_XSIZE, %ecx C -(xsize-1)
xorl %ebx, %ebx C carry
movl %ebp, PARAM_YSIZE
addl $4, %edi C next position in wp
movl (%edx,%ebp,4), %ebp C yp limb - multiplier
movl -4(%esi,%ecx,4), %eax C xp low limb
L(simple_outer_entry):
L(simple_inner_top):
C eax xp limb
C ebx carry limb
C ecx loop counter (negative)
C edx scratch
C esi xp end
C edi wp end
C ebp multiplier
mull %ebp
addl %eax, %ebx
adcl $0, %edx
addl %ebx, (%edi,%ecx,4)
movl (%esi,%ecx,4), %eax
adcl $0, %edx
incl %ecx
movl %edx, %ebx
jnz L(simple_inner_top)
C separate code for last limb so outer loop counter handling can be
C interleaved
mull %ebp
movl PARAM_YSIZE, %ebp
addl %eax, %ebx
adcl $0, %edx
addl %ebx, (%edi)
adcl $0, %edx
incl %ebp
movl %edx, 4(%edi)
jnz L(simple_outer_top)
L(done):
movl SAVE_EBX, %ebx
movl SAVE_ESI, %esi
movl SAVE_EDI, %edi
movl SAVE_EBP, %ebp
addl $FRAME, %esp
ret
C -----------------------------------------------------------------------------
C
C The unrolled loop is the same as in mpn_addmul_1, see that code for some
C comments.
C
C VAR_ADJUST is the negative of how many limbs the leals in the inner loop
C increment xp and wp. This is used to adjust xp and wp, and is rshifted to
C given an initial VAR_COUNTER at the top of the outer loop.
C
C VAR_COUNTER is for the unrolled loop, running from VAR_ADJUST/UNROLL_COUNT
C up to -1, inclusive.
C
C VAR_JMP is the computed jump into the unrolled loop.
C
C VAR_SWAP is 0 if xsize odd or 0xFFFFFFFF if xsize even, used to swap the
C initial ebx and ecx on entry to the unrolling.
C
C VAR_XP_LOW is the least significant limb of xp, which is needed at the
C start of the unrolled loop.
C
C PARAM_YSIZE is the outer loop counter, going from -(ysize-1) up to -1,
C inclusive.
C
C PARAM_YP is offset appropriately so that the PARAM_YSIZE counter can be
C added to give the location of the next limb of yp, which is the multiplier
C in the unrolled loop.
C
C The trick with the VAR_ADJUST value means it's only necessary to do one
C fetch in the outer loop to take care of xp, wp and the inner loop counter.
L(unroll):
C eax yp
C ebx
C ecx xsize
C edx ysize-1
C esi xp end
C edi wp end of mul1
C ebp
movl PARAM_XP, %esi
movl 4(%eax), %ebp C multiplier (yp second limb)
leal 4(%eax,%edx,4), %eax C yp adjust for ysize indexing
movl %eax, PARAM_YP
movl PARAM_WP, %edi
negl %edx
movl %edx, PARAM_YSIZE
leal UNROLL_COUNT-2(%ecx), %ebx C (xsize-1)+UNROLL_COUNT-1
decl %ecx C xsize-1
movl (%esi), %eax C xp low limb
andl $-UNROLL_MASK-1, %ebx
negl %ecx C -(xsize-1)
negl %ebx
andl $UNROLL_MASK, %ecx
movl %ebx, VAR_ADJUST
movl %ecx, %edx
shll $4, %ecx
movl %eax, VAR_XP_LOW
sarl $UNROLL_LOG2, %ebx
negl %edx
C 15 code bytes per limb
ifdef(`PIC',`
call L(pic_calc)
L(unroll_here):
',`
leal L(unroll_inner_entry) (%ecx,%edx,1), %ecx
')
movl %ecx, VAR_JMP
movl %edx, %ecx
shll $31, %edx
sarl $31, %edx C 0 or -1 as xsize odd or even
leal 4(%edi,%ecx,4), %edi C wp and xp, adjust for unrolling,
leal 4(%esi,%ecx,4), %esi C and start at second limb
movl %edx, VAR_SWAP
jmp L(unroll_outer_entry)
ifdef(`PIC',`
L(pic_calc):
C See mpn/x86/README about old gas bugs
leal (%ecx,%edx,1), %ecx
addl $L(unroll_inner_entry)-L(unroll_here), %ecx
addl (%esp), %ecx
ret_internal
')
C --------------------------------------------------------------------------
ALIGN(16)
L(unroll_outer_top):
C eax
C ebx
C ecx
C edx
C esi xp + offset
C edi wp + offset
C ebp ysize counter, negative
movl VAR_ADJUST, %ebx
movl PARAM_YP, %edx
movl VAR_XP_LOW, %eax
movl %ebp, PARAM_YSIZE C store incremented ysize counter
leal eval(UNROLL_BYTES + 4) (%edi,%ebx,4), %edi
leal (%esi,%ebx,4), %esi
sarl $UNROLL_LOG2, %ebx
movl (%edx,%ebp,4), %ebp C yp next multiplier
L(unroll_outer_entry):
mull %ebp
movl %ebx, VAR_COUNTER
movl %edx, %ebx C carry high
movl %eax, %ecx C carry low
xorl %edx, %eax
movl VAR_JMP, %edx
andl VAR_SWAP, %eax
xorl %eax, %ebx C carries other way for odd index
xorl %eax, %ecx
jmp *%edx
C -----------------------------------------------------------------------------
L(unroll_inner_top):
C eax xp limb
C ebx carry high
C ecx carry low
C edx scratch
C esi xp+8
C edi wp
C ebp yp multiplier limb
C
C VAR_COUNTER loop counter, negative
C
C 15 bytes each limb
addl $UNROLL_BYTES, %edi
L(unroll_inner_entry):
deflit(CHUNK_COUNT,2)
forloop(`i', 0, UNROLL_COUNT/CHUNK_COUNT-1, `
deflit(`disp0', eval(i*CHUNK_COUNT*4 ifelse(UNROLL_BYTES,256,-128)))
deflit(`disp1', eval(disp0 + 4))
Zdisp( movl, disp0,(%esi), %eax)
mull %ebp
Zdisp( addl, %ecx, disp0,(%edi))
adcl %eax, %ebx C new carry low
movl %edx, %ecx
adcl $0, %ecx C new carry high
movl disp1(%esi), %eax
mull %ebp
addl %ebx, disp1(%edi)
adcl %eax, %ecx C new carry low
movl %edx, %ebx
adcl $0, %ebx C new carry high
')
incl VAR_COUNTER
leal UNROLL_BYTES(%esi), %esi
jnz L(unroll_inner_top)
C eax
C ebx carry high
C ecx carry low
C edx
C esi
C edi wp, pointing at second last limb)
C ebp
deflit(`disp0', eval(UNROLL_BYTES ifelse(UNROLL_BYTES,256,-128)))
deflit(`disp1', eval(disp0 + 4))
movl PARAM_YSIZE, %ebp
addl %ecx, disp0(%edi) C carry low
adcl $0, %ebx
incl %ebp
movl %ebx, disp1(%edi) C carry high
jnz L(unroll_outer_top)
movl SAVE_ESI, %esi
movl SAVE_EBP, %ebp
movl SAVE_EDI, %edi
movl SAVE_EBX, %ebx
addl $FRAME, %esp
ret
EPILOGUE()