Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
dnl  Intel P6 mpn_mul_basecase -- multiply two mpn numbers.

dnl  Copyright 1999-2003 Free Software Foundation, Inc.

dnl  This file is part of the GNU MP Library.
dnl
dnl  The GNU MP Library is free software; you can redistribute it and/or modify
dnl  it under the terms of either:
dnl
dnl    * the GNU Lesser General Public License as published by the Free
dnl      Software Foundation; either version 3 of the License, or (at your
dnl      option) any later version.
dnl
dnl  or
dnl
dnl    * the GNU General Public License as published by the Free Software
dnl      Foundation; either version 2 of the License, or (at your option) any
dnl      later version.
dnl
dnl  or both in parallel, as here.
dnl
dnl  The GNU MP Library is distributed in the hope that it will be useful, but
dnl  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
dnl  for more details.
dnl
dnl  You should have received copies of the GNU General Public License and the
dnl  GNU Lesser General Public License along with the GNU MP Library.  If not,
dnl  see https://www.gnu.org/licenses/.

include(`../config.m4')


C P6: approx 6.5 cycles per cross product (16 limbs/loop unrolling).


dnl  P6 UNROLL_COUNT cycles/product (approx)
dnl           8           7
dnl          16           6.5
dnl          32           6.4
dnl  Maximum possible with the current code is 32.

deflit(UNROLL_COUNT, 16)


C void mpn_mul_basecase (mp_ptr wp,
C                        mp_srcptr xp, mp_size_t xsize,
C                        mp_srcptr yp, mp_size_t ysize);
C
C This routine is essentially the same as mpn/generic/mul_basecase.c, but
C it's faster because it does most of the mpn_addmul_1() startup
C calculations only once.

ifdef(`PIC',`
deflit(UNROLL_THRESHOLD, 5)
',`
deflit(UNROLL_THRESHOLD, 5)
')

defframe(PARAM_YSIZE,20)
defframe(PARAM_YP,   16)
defframe(PARAM_XSIZE,12)
defframe(PARAM_XP,   8)
defframe(PARAM_WP,   4)

	TEXT
	ALIGN(16)

PROLOGUE(mpn_mul_basecase)
deflit(`FRAME',0)

	movl	PARAM_XSIZE, %ecx

	movl	PARAM_YP, %eax

	movl	PARAM_XP, %edx

	movl	(%eax), %eax		C yp[0]
	cmpl	$2, %ecx
	ja	L(xsize_more_than_two)
	je	L(two_by_something)


	C one limb by one limb

	mull	(%edx)

	movl	PARAM_WP, %ecx
	movl	%eax, (%ecx)
	movl	%edx, 4(%ecx)
	ret


C -----------------------------------------------------------------------------
L(two_by_something):
deflit(`FRAME',0)

dnl  re-use parameter space
define(SAVE_EBX, `PARAM_XSIZE')
define(SAVE_ESI, `PARAM_YSIZE')

	movl	%ebx, SAVE_EBX
	cmpl	$1, PARAM_YSIZE
	movl	%eax, %ecx		C yp[0]

	movl	%esi, SAVE_ESI		C save esi
	movl	PARAM_WP, %ebx
	movl	%edx, %esi		C xp

	movl	(%edx), %eax		C xp[0]
	jne	L(two_by_two)


	C two limbs by one limb
	C
	C eax	xp[0]
	C ebx	wp
	C ecx	yp[0]
	C edx
	C esi	xp

	mull	%ecx

	movl	%eax, (%ebx)
	movl	4(%esi), %eax
	movl	%edx, %esi		C carry

	mull	%ecx

	addl	%eax, %esi

	movl	%esi, 4(%ebx)
	movl	SAVE_ESI, %esi

	adcl	$0, %edx

	movl	%edx, 8(%ebx)
	movl	SAVE_EBX, %ebx

	ret



C -----------------------------------------------------------------------------

	ALIGN(16)
L(two_by_two):
	C eax	xp[0]
	C ebx	wp
	C ecx	yp[0]
	C edx
	C esi	xp
	C edi
	C ebp

dnl  more parameter space re-use
define(SAVE_EDI, `PARAM_WP')

	mull	%ecx		C xp[0] * yp[0]

	movl	%edi, SAVE_EDI
	movl	%edx, %edi	C carry, for wp[1]

	movl	%eax, (%ebx)
	movl	4(%esi), %eax

	mull	%ecx		C xp[1] * yp[0]

	addl	%eax, %edi
	movl	PARAM_YP, %ecx

	adcl	$0, %edx
	movl	4(%ecx), %ecx	C yp[1]

	movl	%edi, 4(%ebx)
	movl	4(%esi), %eax	C xp[1]
	movl	%edx, %edi	C carry, for wp[2]

	mull	%ecx		C xp[1] * yp[1]

	addl	%eax, %edi
	movl	(%esi), %eax	C xp[0]

	adcl	$0, %edx
	movl	%edx, %esi	C carry, for wp[3]

	mull	%ecx		C xp[0] * yp[1]

	addl	%eax, 4(%ebx)
	movl	%esi, %eax

	adcl	%edx, %edi
	movl	SAVE_ESI, %esi

	movl	%edi, 8(%ebx)

	adcl	$0, %eax
	movl	SAVE_EDI, %edi

	movl	%eax, 12(%ebx)
	movl	SAVE_EBX, %ebx

	ret


C -----------------------------------------------------------------------------
	ALIGN(16)
L(xsize_more_than_two):

C The first limb of yp is processed with a simple mpn_mul_1 loop running at
C about 6.2 c/l.  Unrolling this doesn't seem worthwhile since it's only run
C once (whereas the addmul_1 below is run ysize-1 many times).  A call to
C mpn_mul_1 would be slowed down by the parameter pushing and popping etc,
C and doesn't seem likely to be worthwhile on the typical sizes reaching
C here from the Karatsuba code.

	C eax	yp[0]
	C ebx
	C ecx	xsize
	C edx	xp
	C esi
	C edi
	C ebp

defframe(`SAVE_EBX',    -4)
defframe(`SAVE_ESI',    -8)
defframe(`SAVE_EDI',   -12)
defframe(`SAVE_EBP',   -16)
defframe(VAR_COUNTER,  -20)  dnl for use in the unroll case
defframe(VAR_ADJUST,   -24)
defframe(VAR_JMP,      -28)
defframe(VAR_SWAP,     -32)
defframe(VAR_XP_LOW,   -36)
deflit(STACK_SPACE, 36)

	subl	$STACK_SPACE, %esp
deflit(`FRAME',STACK_SPACE)

	movl	%edi, SAVE_EDI
	movl	PARAM_WP, %edi

	movl	%ebx, SAVE_EBX

	movl	%ebp, SAVE_EBP
	movl	%eax, %ebp

	movl	%esi, SAVE_ESI
	xorl	%ebx, %ebx
	leal	(%edx,%ecx,4), %esi	C xp end

	leal	(%edi,%ecx,4), %edi	C wp end of mul1
	negl	%ecx


L(mul1):
	C eax	scratch
	C ebx	carry
	C ecx	counter, negative
	C edx	scratch
	C esi	xp end
	C edi	wp end of mul1
	C ebp	multiplier

	movl	(%esi,%ecx,4), %eax

	mull	%ebp

	addl	%ebx, %eax
	movl	%eax, (%edi,%ecx,4)
	movl	$0, %ebx

	adcl	%edx, %ebx
	incl	%ecx
	jnz	L(mul1)


	movl	PARAM_YSIZE, %edx

	movl	%ebx, (%edi)		C final carry
	movl	PARAM_XSIZE, %ecx
	decl	%edx

	jz	L(done)			C if ysize==1

	cmpl	$UNROLL_THRESHOLD, %ecx
	movl	PARAM_YP, %eax
	jae	L(unroll)


C -----------------------------------------------------------------------------
	C simple addmul looping
	C
	C eax	yp
	C ebx
	C ecx	xsize
	C edx	ysize-1
	C esi	xp end
	C edi	wp end of mul1
	C ebp

	leal	4(%eax,%edx,4), %ebp	C yp end
	negl	%ecx
	negl	%edx

	movl	%edx, PARAM_YSIZE	C -(ysize-1)
	movl	(%esi,%ecx,4), %eax	C xp low limb
	incl	%ecx

	movl	%ecx, PARAM_XSIZE	C -(xsize-1)
	xorl	%ebx, %ebx		C initial carry

	movl	%ebp, PARAM_YP
	movl	(%ebp,%edx,4), %ebp	C yp second lowest limb - multiplier
	jmp	L(simple_outer_entry)


L(simple_outer_top):
	C ebp	ysize counter, negative

	movl	PARAM_YP, %edx

	movl	PARAM_XSIZE, %ecx	C -(xsize-1)
	xorl	%ebx, %ebx		C carry

	movl	%ebp, PARAM_YSIZE
	addl	$4, %edi		C next position in wp

	movl	(%edx,%ebp,4), %ebp	C yp limb - multiplier

	movl	-4(%esi,%ecx,4), %eax	C xp low limb


L(simple_outer_entry):

L(simple_inner_top):
	C eax	xp limb
	C ebx	carry limb
	C ecx	loop counter (negative)
	C edx	scratch
	C esi	xp end
	C edi	wp end
	C ebp	multiplier

	mull	%ebp

	addl	%eax, %ebx
	adcl	$0, %edx

	addl	%ebx, (%edi,%ecx,4)
	movl	(%esi,%ecx,4), %eax
	adcl	$0, %edx

	incl	%ecx
	movl	%edx, %ebx
	jnz	L(simple_inner_top)


	C separate code for last limb so outer loop counter handling can be
	C interleaved

	mull	%ebp

	movl	PARAM_YSIZE, %ebp
	addl	%eax, %ebx

	adcl	$0, %edx

	addl	%ebx, (%edi)

	adcl	$0, %edx
	incl	%ebp

	movl	%edx, 4(%edi)
	jnz	L(simple_outer_top)


L(done):
	movl	SAVE_EBX, %ebx

	movl	SAVE_ESI, %esi

	movl	SAVE_EDI, %edi

	movl	SAVE_EBP, %ebp
	addl	$FRAME, %esp

	ret



C -----------------------------------------------------------------------------
C
C The unrolled loop is the same as in mpn_addmul_1, see that code for some
C comments.
C
C VAR_ADJUST is the negative of how many limbs the leals in the inner loop
C increment xp and wp.  This is used to adjust xp and wp, and is rshifted to
C given an initial VAR_COUNTER at the top of the outer loop.
C
C VAR_COUNTER is for the unrolled loop, running from VAR_ADJUST/UNROLL_COUNT
C up to -1, inclusive.
C
C VAR_JMP is the computed jump into the unrolled loop.
C
C VAR_SWAP is 0 if xsize odd or 0xFFFFFFFF if xsize even, used to swap the
C initial ebx and ecx on entry to the unrolling.
C
C VAR_XP_LOW is the least significant limb of xp, which is needed at the
C start of the unrolled loop.
C
C PARAM_YSIZE is the outer loop counter, going from -(ysize-1) up to -1,
C inclusive.
C
C PARAM_YP is offset appropriately so that the PARAM_YSIZE counter can be
C added to give the location of the next limb of yp, which is the multiplier
C in the unrolled loop.
C
C The trick with the VAR_ADJUST value means it's only necessary to do one
C fetch in the outer loop to take care of xp, wp and the inner loop counter.


L(unroll):
	C eax	yp
	C ebx
	C ecx	xsize
	C edx	ysize-1
	C esi	xp end
	C edi	wp end of mul1
	C ebp

	movl	PARAM_XP, %esi

	movl	4(%eax), %ebp		C multiplier (yp second limb)
	leal	4(%eax,%edx,4), %eax	C yp adjust for ysize indexing

	movl	%eax, PARAM_YP
	movl	PARAM_WP, %edi
	negl	%edx

	movl	%edx, PARAM_YSIZE
	leal	UNROLL_COUNT-2(%ecx), %ebx	C (xsize-1)+UNROLL_COUNT-1
	decl	%ecx				C xsize-1

	movl	(%esi), %eax		C xp low limb
	andl	$-UNROLL_MASK-1, %ebx
	negl	%ecx			C -(xsize-1)

	negl	%ebx
	andl	$UNROLL_MASK, %ecx

	movl	%ebx, VAR_ADJUST
	movl	%ecx, %edx
	shll	$4, %ecx

	movl	%eax, VAR_XP_LOW
	sarl	$UNROLL_LOG2, %ebx
	negl	%edx

	C 15 code bytes per limb
ifdef(`PIC',`
	call	L(pic_calc)
L(unroll_here):
',`
	leal	L(unroll_inner_entry) (%ecx,%edx,1), %ecx
')

	movl	%ecx, VAR_JMP
	movl	%edx, %ecx
	shll	$31, %edx

	sarl	$31, %edx		C 0 or -1 as xsize odd or even
	leal	4(%edi,%ecx,4), %edi	C wp and xp, adjust for unrolling,
	leal	4(%esi,%ecx,4), %esi	C  and start at second limb

	movl	%edx, VAR_SWAP
	jmp	L(unroll_outer_entry)


ifdef(`PIC',`
L(pic_calc):
	C See mpn/x86/README about old gas bugs
	leal	(%ecx,%edx,1), %ecx
	addl	$L(unroll_inner_entry)-L(unroll_here), %ecx
	addl	(%esp), %ecx
	ret_internal
')


C --------------------------------------------------------------------------
	ALIGN(16)
L(unroll_outer_top):
	C eax
	C ebx
	C ecx
	C edx
	C esi	xp + offset
	C edi	wp + offset
	C ebp	ysize counter, negative

	movl	VAR_ADJUST, %ebx
	movl	PARAM_YP, %edx

	movl	VAR_XP_LOW, %eax
	movl	%ebp, PARAM_YSIZE	C store incremented ysize counter

	leal	eval(UNROLL_BYTES + 4) (%edi,%ebx,4), %edi
	leal	(%esi,%ebx,4), %esi
	sarl	$UNROLL_LOG2, %ebx

	movl	(%edx,%ebp,4), %ebp	C yp next multiplier

L(unroll_outer_entry):
	mull	%ebp

	movl	%ebx, VAR_COUNTER
	movl	%edx, %ebx		C carry high
	movl	%eax, %ecx		C carry low

	xorl	%edx, %eax
	movl	VAR_JMP, %edx

	andl	VAR_SWAP, %eax

	xorl	%eax, %ebx		C carries other way for odd index
	xorl	%eax, %ecx

	jmp	*%edx


C -----------------------------------------------------------------------------

L(unroll_inner_top):
	C eax	xp limb
	C ebx	carry high
	C ecx	carry low
	C edx	scratch
	C esi	xp+8
	C edi	wp
	C ebp	yp multiplier limb
	C
	C VAR_COUNTER  loop counter, negative
	C
	C 15 bytes each limb

	addl	$UNROLL_BYTES, %edi

L(unroll_inner_entry):

deflit(CHUNK_COUNT,2)
forloop(`i', 0, UNROLL_COUNT/CHUNK_COUNT-1, `
	deflit(`disp0', eval(i*CHUNK_COUNT*4 ifelse(UNROLL_BYTES,256,-128)))
	deflit(`disp1', eval(disp0 + 4))

Zdisp(	movl,	disp0,(%esi), %eax)
	mull	%ebp
Zdisp(	addl,	%ecx, disp0,(%edi))
	adcl	%eax, %ebx		C new carry low
	movl	%edx, %ecx
	adcl	$0, %ecx		C new carry high

	movl	disp1(%esi), %eax
	mull	%ebp
	addl	%ebx, disp1(%edi)
	adcl	%eax, %ecx		C new carry low
	movl	%edx, %ebx
	adcl	$0, %ebx		C new carry high
')


	incl	VAR_COUNTER
	leal	UNROLL_BYTES(%esi), %esi
	jnz	L(unroll_inner_top)


	C eax
	C ebx	carry high
	C ecx	carry low
	C edx
	C esi
	C edi	wp, pointing at second last limb)
	C ebp

deflit(`disp0',	eval(UNROLL_BYTES ifelse(UNROLL_BYTES,256,-128)))
deflit(`disp1', eval(disp0 + 4))

	movl	PARAM_YSIZE, %ebp
	addl	%ecx, disp0(%edi)	C carry low

	adcl	$0, %ebx
	incl	%ebp

	movl	%ebx, disp1(%edi)	C carry high
	jnz	L(unroll_outer_top)


	movl	SAVE_ESI, %esi

	movl	SAVE_EBP, %ebp

	movl	SAVE_EDI, %edi

	movl	SAVE_EBX, %ebx
	addl	$FRAME, %esp

	ret

EPILOGUE()