Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
dnl  Intel P5 mpn_sqr_basecase -- square an mpn number.

dnl  Copyright 1999-2002 Free Software Foundation, Inc.

dnl  This file is part of the GNU MP Library.
dnl
dnl  The GNU MP Library is free software; you can redistribute it and/or modify
dnl  it under the terms of either:
dnl
dnl    * the GNU Lesser General Public License as published by the Free
dnl      Software Foundation; either version 3 of the License, or (at your
dnl      option) any later version.
dnl
dnl  or
dnl
dnl    * the GNU General Public License as published by the Free Software
dnl      Foundation; either version 2 of the License, or (at your option) any
dnl      later version.
dnl
dnl  or both in parallel, as here.
dnl
dnl  The GNU MP Library is distributed in the hope that it will be useful, but
dnl  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
dnl  for more details.
dnl
dnl  You should have received copies of the GNU General Public License and the
dnl  GNU Lesser General Public License along with the GNU MP Library.  If not,
dnl  see https://www.gnu.org/licenses/.

include(`../config.m4')


C P5: approx 8 cycles per crossproduct, or 15.5 cycles per triangular
C product at around 20x20 limbs.


C void mpn_sqr_basecase (mp_ptr dst, mp_srcptr src, mp_size_t size);
C
C Calculate src,size squared, storing the result in dst,2*size.
C
C The algorithm is basically the same as mpn/generic/sqr_basecase.c, but a
C lot of function call overheads are avoided, especially when the size is
C small.

defframe(PARAM_SIZE,12)
defframe(PARAM_SRC, 8)
defframe(PARAM_DST, 4)

	TEXT
	ALIGN(8)
PROLOGUE(mpn_sqr_basecase)
deflit(`FRAME',0)

	movl	PARAM_SIZE, %edx
	movl	PARAM_SRC, %eax

	cmpl	$2, %edx
	movl	PARAM_DST, %ecx

	je	L(two_limbs)

	movl	(%eax), %eax
	ja	L(three_or_more)

C -----------------------------------------------------------------------------
C one limb only
	C eax	src
	C ebx
	C ecx	dst
	C edx

	mull	%eax

	movl	%eax, (%ecx)
	movl	%edx, 4(%ecx)

	ret

C -----------------------------------------------------------------------------
	ALIGN(8)
L(two_limbs):
	C eax	src
	C ebx
	C ecx	dst
	C edx	size

	pushl	%ebp
	pushl	%edi

	pushl	%esi
	pushl	%ebx

	movl	%eax, %ebx
	movl	(%eax), %eax

	mull	%eax		C src[0]^2

	movl	%eax, (%ecx)	C dst[0]
	movl	%edx, %esi	C dst[1]

	movl	4(%ebx), %eax

	mull	%eax		C src[1]^2

	movl	%eax, %edi	C dst[2]
	movl	%edx, %ebp	C dst[3]

	movl	(%ebx), %eax

	mull	4(%ebx)		C src[0]*src[1]

	addl	%eax, %esi
	popl	%ebx

	adcl	%edx, %edi

	adcl	$0, %ebp
	addl	%esi, %eax

	adcl	%edi, %edx
	movl	%eax, 4(%ecx)

	adcl	$0, %ebp
	popl	%esi

	movl	%edx, 8(%ecx)
	movl	%ebp, 12(%ecx)

	popl	%edi
	popl	%ebp

	ret


C -----------------------------------------------------------------------------
	ALIGN(8)
L(three_or_more):
	C eax	src low limb
	C ebx
	C ecx	dst
	C edx	size

	cmpl	$4, %edx
	pushl	%ebx
deflit(`FRAME',4)

	movl	PARAM_SRC, %ebx
	jae	L(four_or_more)


C -----------------------------------------------------------------------------
C three limbs
	C eax	src low limb
	C ebx	src
	C ecx	dst
	C edx	size

	pushl	%ebp
	pushl	%edi

	mull	%eax		C src[0] ^ 2

	movl	%eax, (%ecx)
	movl	%edx, 4(%ecx)

	movl	4(%ebx), %eax
	xorl	%ebp, %ebp

	mull	%eax		C src[1] ^ 2

	movl	%eax, 8(%ecx)
	movl	%edx, 12(%ecx)

	movl	8(%ebx), %eax
	pushl	%esi		C risk of cache bank clash

	mull	%eax		C src[2] ^ 2

	movl	%eax, 16(%ecx)
	movl	%edx, 20(%ecx)

	movl	(%ebx), %eax

	mull	4(%ebx)		C src[0] * src[1]

	movl	%eax, %esi
	movl	%edx, %edi

	movl	(%ebx), %eax

	mull	8(%ebx)		C src[0] * src[2]

	addl	%eax, %edi
	movl	%edx, %ebp

	adcl	$0, %ebp
	movl	4(%ebx), %eax

	mull	8(%ebx)		C src[1] * src[2]

	xorl	%ebx, %ebx
	addl	%eax, %ebp

	C eax
	C ebx	zero, will be dst[5]
	C ecx	dst
	C edx	dst[4]
	C esi	dst[1]
	C edi	dst[2]
	C ebp	dst[3]

	adcl	$0, %edx
	addl	%esi, %esi

	adcl	%edi, %edi

	adcl	%ebp, %ebp

	adcl	%edx, %edx
	movl	4(%ecx), %eax

	adcl	$0, %ebx
	addl	%esi, %eax

	movl	%eax, 4(%ecx)
	movl	8(%ecx), %eax

	adcl	%edi, %eax
	movl	12(%ecx), %esi

	adcl	%ebp, %esi
	movl	16(%ecx), %edi

	movl	%eax, 8(%ecx)
	movl	%esi, 12(%ecx)

	adcl	%edx, %edi
	popl	%esi

	movl	20(%ecx), %eax
	movl	%edi, 16(%ecx)

	popl	%edi
	popl	%ebp

	adcl	%ebx, %eax	C no carry out of this
	popl	%ebx

	movl	%eax, 20(%ecx)

	ret


C -----------------------------------------------------------------------------
	ALIGN(8)
L(four_or_more):
	C eax	src low limb
	C ebx	src
	C ecx	dst
	C edx	size
	C esi
	C edi
	C ebp
	C
	C First multiply src[0]*src[1..size-1] and store at dst[1..size].

deflit(`FRAME',4)

	pushl	%edi
FRAME_pushl()
	pushl	%esi
FRAME_pushl()

	pushl	%ebp
FRAME_pushl()
	leal	(%ecx,%edx,4), %edi	C dst end of this mul1

	leal	(%ebx,%edx,4), %esi	C src end
	movl	%ebx, %ebp		C src

	negl	%edx			C -size
	xorl	%ebx, %ebx		C clear carry limb and carry flag

	leal	1(%edx), %ecx		C -(size-1)

L(mul1):
	C eax	scratch
	C ebx	carry
	C ecx	counter, negative
	C edx	scratch
	C esi	&src[size]
	C edi	&dst[size]
	C ebp	src

	adcl	$0, %ebx
	movl	(%esi,%ecx,4), %eax

	mull	(%ebp)

	addl	%eax, %ebx

	movl	%ebx, (%edi,%ecx,4)
	incl	%ecx

	movl	%edx, %ebx
	jnz	L(mul1)


	C Add products src[n]*src[n+1..size-1] at dst[2*n-1...], for
	C n=1..size-2.
	C
	C The last two products, which are the end corner of the product
	C triangle, are handled separately to save looping overhead.  These
	C are src[size-3]*src[size-2,size-1] and src[size-2]*src[size-1].
	C If size is 4 then it's only these that need to be done.
	C
	C In the outer loop %esi is a constant, and %edi just advances by 1
	C limb each time.  The size of the operation decreases by 1 limb
	C each time.

	C eax
	C ebx	carry (needing carry flag added)
	C ecx
	C edx
	C esi	&src[size]
	C edi	&dst[size]
	C ebp

	adcl	$0, %ebx
	movl	PARAM_SIZE, %edx

	movl	%ebx, (%edi)
	subl	$4, %edx

	negl	%edx
	jz	L(corner)


L(outer):
	C ebx	previous carry limb to store
	C edx	outer loop counter (negative)
	C esi	&src[size]
	C edi	dst, pointing at stored carry limb of previous loop

	pushl	%edx			C new outer loop counter
	leal	-2(%edx), %ecx

	movl	%ebx, (%edi)
	addl	$4, %edi

	addl	$4, %ebp
	xorl	%ebx, %ebx		C initial carry limb, clear carry flag

L(inner):
	C eax	scratch
	C ebx	carry (needing carry flag added)
	C ecx	counter, negative
	C edx	scratch
	C esi	&src[size]
	C edi	dst end of this addmul
	C ebp	&src[j]

	adcl	$0, %ebx
	movl	(%esi,%ecx,4), %eax

	mull	(%ebp)

	addl	%ebx, %eax
	movl	(%edi,%ecx,4), %ebx

	adcl	$0, %edx
	addl	%eax, %ebx

	movl	%ebx, (%edi,%ecx,4)
	incl	%ecx

	movl	%edx, %ebx
	jnz	L(inner)


	adcl	$0, %ebx
	popl	%edx		C outer loop counter

	incl	%edx
	jnz	L(outer)


	movl	%ebx, (%edi)

L(corner):
	C esi	&src[size]
	C edi	&dst[2*size-4]

	movl	-8(%esi), %eax
	movl	-4(%edi), %ebx		C risk of data cache bank clash here

	mull	-12(%esi)		C src[size-2]*src[size-3]

	addl	%eax, %ebx
	movl	%edx, %ecx

	adcl	$0, %ecx
	movl	-4(%esi), %eax

	mull	-12(%esi)		C src[size-1]*src[size-3]

	addl	%ecx, %eax
	movl	(%edi), %ecx

	adcl	$0, %edx
	movl	%ebx, -4(%edi)

	addl	%eax, %ecx
	movl	%edx, %ebx

	adcl	$0, %ebx
	movl	-4(%esi), %eax

	mull	-8(%esi)		C src[size-1]*src[size-2]

	movl	%ecx, (%edi)
	addl	%eax, %ebx

	adcl	$0, %edx
	movl	PARAM_SIZE, %eax

	negl	%eax
	movl	%ebx, 4(%edi)

	addl	$1, %eax		C -(size-1) and clear carry
	movl	%edx, 8(%edi)


C -----------------------------------------------------------------------------
C Left shift of dst[1..2*size-2], high bit shifted out becomes dst[2*size-1].

L(lshift):
	C eax	counter, negative
	C ebx	next limb
	C ecx
	C edx
	C esi
	C edi	&dst[2*size-4]
	C ebp

	movl	12(%edi,%eax,8), %ebx

	rcll	%ebx
	movl	16(%edi,%eax,8), %ecx

	rcll	%ecx
	movl	%ebx, 12(%edi,%eax,8)

	movl	%ecx, 16(%edi,%eax,8)
	incl	%eax

	jnz	L(lshift)


	adcl	%eax, %eax		C high bit out
	movl	PARAM_SRC, %esi

	movl	PARAM_SIZE, %ecx	C risk of cache bank clash
	movl	%eax, 12(%edi)		C dst most significant limb


C -----------------------------------------------------------------------------
C Now add in the squares on the diagonal, namely src[0]^2, src[1]^2, ...,
C src[size-1]^2.  dst[0] hasn't yet been set at all yet, and just gets the
C low limb of src[0]^2.

	movl	(%esi), %eax		C src[0]
	leal	(%esi,%ecx,4), %esi	C src end

	negl	%ecx

	mull	%eax

	movl	%eax, 16(%edi,%ecx,8)	C dst[0]
	movl	%edx, %ebx

	addl	$1, %ecx		C size-1 and clear carry

L(diag):
	C eax	scratch (low product)
	C ebx	carry limb
	C ecx	counter, negative
	C edx	scratch (high product)
	C esi	&src[size]
	C edi	&dst[2*size-4]
	C ebp	scratch (fetched dst limbs)

	movl	(%esi,%ecx,4), %eax
	adcl	$0, %ebx

	mull	%eax

	movl	16-4(%edi,%ecx,8), %ebp

	addl	%ebp, %ebx
	movl	16(%edi,%ecx,8), %ebp

	adcl	%eax, %ebp
	movl	%ebx, 16-4(%edi,%ecx,8)

	movl	%ebp, 16(%edi,%ecx,8)
	incl	%ecx

	movl	%edx, %ebx
	jnz	L(diag)


	adcl	$0, %edx
	movl	16-4(%edi), %eax	C dst most significant limb

	addl	%eax, %edx
	popl	%ebp

	movl	%edx, 16-4(%edi)
	popl	%esi		C risk of cache bank clash

	popl	%edi
	popl	%ebx

	ret

EPILOGUE()