/* mpc_atan -- arctangent of a complex number.
Copyright (C) 2009, 2010, 2011, 2012, 2013, 2017 INRIA
This file is part of GNU MPC.
GNU MPC is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
*/
#include <stdio.h>
#include "mpc-impl.h"
/* set rop to
-pi/2 if s < 0
+pi/2 else
rounded in the direction rnd
*/
int
set_pi_over_2 (mpfr_ptr rop, int s, mpfr_rnd_t rnd)
{
int inex;
inex = mpfr_const_pi (rop, s < 0 ? INV_RND (rnd) : rnd);
mpfr_div_2ui (rop, rop, 1, MPFR_RNDN);
if (s < 0)
{
inex = -inex;
mpfr_neg (rop, rop, MPFR_RNDN);
}
return inex;
}
int
mpc_atan (mpc_ptr rop, mpc_srcptr op, mpc_rnd_t rnd)
{
int s_re;
int s_im;
int inex_re;
int inex_im;
int inex;
inex_re = 0;
inex_im = 0;
s_re = mpfr_signbit (mpc_realref (op));
s_im = mpfr_signbit (mpc_imagref (op));
/* special values */
if (mpfr_nan_p (mpc_realref (op)) || mpfr_nan_p (mpc_imagref (op)))
{
if (mpfr_nan_p (mpc_realref (op)))
{
mpfr_set_nan (mpc_realref (rop));
if (mpfr_zero_p (mpc_imagref (op)) || mpfr_inf_p (mpc_imagref (op)))
{
mpfr_set_ui (mpc_imagref (rop), 0, MPFR_RNDN);
if (s_im)
mpc_conj (rop, rop, MPC_RNDNN);
}
else
mpfr_set_nan (mpc_imagref (rop));
}
else
{
if (mpfr_inf_p (mpc_realref (op)))
{
inex_re = set_pi_over_2 (mpc_realref (rop), -s_re, MPC_RND_RE (rnd));
mpfr_set_ui (mpc_imagref (rop), 0, MPFR_RNDN);
}
else
{
mpfr_set_nan (mpc_realref (rop));
mpfr_set_nan (mpc_imagref (rop));
}
}
return MPC_INEX (inex_re, 0);
}
if (mpfr_inf_p (mpc_realref (op)) || mpfr_inf_p (mpc_imagref (op)))
{
inex_re = set_pi_over_2 (mpc_realref (rop), -s_re, MPC_RND_RE (rnd));
mpfr_set_ui (mpc_imagref (rop), 0, MPFR_RNDN);
if (s_im)
mpc_conj (rop, rop, MPFR_RNDN);
return MPC_INEX (inex_re, 0);
}
/* pure real argument */
if (mpfr_zero_p (mpc_imagref (op)))
{
inex_re = mpfr_atan (mpc_realref (rop), mpc_realref (op), MPC_RND_RE (rnd));
mpfr_set_ui (mpc_imagref (rop), 0, MPFR_RNDN);
if (s_im)
mpc_conj (rop, rop, MPFR_RNDN);
return MPC_INEX (inex_re, 0);
}
/* pure imaginary argument */
if (mpfr_zero_p (mpc_realref (op)))
{
int cmp_1;
if (s_im)
cmp_1 = -mpfr_cmp_si (mpc_imagref (op), -1);
else
cmp_1 = mpfr_cmp_ui (mpc_imagref (op), +1);
if (cmp_1 < 0)
{
/* atan(+0+iy) = +0 +i*atanh(y), if |y| < 1
atan(-0+iy) = -0 +i*atanh(y), if |y| < 1 */
mpfr_set_ui (mpc_realref (rop), 0, MPFR_RNDN);
if (s_re)
mpfr_neg (mpc_realref (rop), mpc_realref (rop), MPFR_RNDN);
inex_im = mpfr_atanh (mpc_imagref (rop), mpc_imagref (op), MPC_RND_IM (rnd));
}
else if (cmp_1 == 0)
{
/* atan(+/-0 +i) = +/-0 +i*inf
atan(+/-0 -i) = +/-0 -i*inf */
mpfr_set_zero (mpc_realref (rop), s_re ? -1 : +1);
mpfr_set_inf (mpc_imagref (rop), s_im ? -1 : +1);
}
else
{
/* atan(+0+iy) = +pi/2 +i*atanh(1/y), if |y| > 1
atan(-0+iy) = -pi/2 +i*atanh(1/y), if |y| > 1 */
mpfr_rnd_t rnd_im, rnd_away;
mpfr_t y, z;
mpfr_prec_t p, p_im;
int ok;
rnd_im = MPC_RND_IM (rnd);
mpfr_init (y);
mpfr_init (z);
p_im = mpfr_get_prec (mpc_imagref (rop));
p = p_im;
/* a = o(1/y) with error(a) < ulp(a), rounded away
b = o(atanh(a)) with error(b) < ulp(b) + 1/|a^2-1|*ulp(a),
since if a = 1/y + eps, then atanh(a) = atanh(1/y) + eps * atanh'(t)
with t in (1/y, a). Since a is rounded away, we have 1/y <= a <= 1
if y > 1, and -1 <= a <= 1/y if y < -1, thus |atanh'(t)| =
1/|t^2-1| <= 1/|a^2-1|.
We round atanh(1/y) away from 0.
*/
do
{
mpfr_exp_t err, exp_a;
p += mpc_ceil_log2 (p) + 2;
mpfr_set_prec (y, p);
mpfr_set_prec (z, p);
rnd_away = s_im == 0 ? MPFR_RNDU : MPFR_RNDD;
inex_im = mpfr_ui_div (y, 1, mpc_imagref (op), rnd_away);
exp_a = mpfr_get_exp (y);
/* FIXME: should we consider the case with unreasonably huge
precision prec(y)>3*exp_min, where atanh(1/Im(op)) could be
representable while 1/Im(op) underflows ?
This corresponds to |y| = 0.5*2^emin, in which case the
result may be wrong. */
/* We would like to compute a rounded-up error bound 1/|a^2-1|,
so we need to round down |a^2-1|, which means rounding up
a^2 since |a|<1. */
mpfr_sqr (z, y, MPFR_RNDU);
/* since |y| > 1, we should have |a| <= 1, thus a^2 <= 1 */
MPC_ASSERT(mpfr_cmp_ui (z, 1) <= 0);
/* in case z=1, we should try again with more precision */
if (mpfr_cmp_ui (z, 1) == 0)
continue;
/* now z < 1 */
mpfr_ui_sub (z, 1, z, MPFR_RNDZ);
/* atanh cannot underflow: |atanh(x)| > |x| for |x| < 1 */
inex_im |= mpfr_atanh (y, y, rnd_away);
/* the error is now bounded by ulp(b) + 1/z*ulp(a), thus
ulp(b) + 2^(exp(a) - exp(b) + 1 - exp(z)) * ulp(b) */
err = exp_a - mpfr_get_exp (y) + 1 - mpfr_get_exp (z);
if (err >= 0) /* 1 + 2^err <= 2^(err+1) */
err = err + 1;
else
err = 1; /* 1 + 2^err <= 2^1 */
/* the error is bounded by 2^err ulps */
ok = inex_im == 0
|| mpfr_can_round (y, p - err, rnd_away, MPFR_RNDZ,
p_im + (rnd_im == MPFR_RNDN));
} while (ok == 0);
inex_re = set_pi_over_2 (mpc_realref (rop), -s_re, MPC_RND_RE (rnd));
inex_im = mpfr_set (mpc_imagref (rop), y, rnd_im);
mpfr_clear (y);
mpfr_clear (z);
}
return MPC_INEX (inex_re, inex_im);
}
/* regular number argument */
{
mpfr_t a, b, x, y;
mpfr_prec_t prec, p;
mpfr_exp_t err, expo;
int ok = 0;
mpfr_t minus_op_re;
mpfr_exp_t op_re_exp, op_im_exp;
mpfr_rnd_t rnd1, rnd2;
mpfr_inits2 (MPFR_PREC_MIN, a, b, x, y, (mpfr_ptr) 0);
/* real part: Re(arctan(x+i*y)) = [arctan2(x,1-y) - arctan2(-x,1+y)]/2 */
minus_op_re[0] = mpc_realref (op)[0];
MPFR_CHANGE_SIGN (minus_op_re);
op_re_exp = mpfr_get_exp (mpc_realref (op));
op_im_exp = mpfr_get_exp (mpc_imagref (op));
prec = mpfr_get_prec (mpc_realref (rop)); /* result precision */
/* a = o(1-y) error(a) < 1 ulp(a)
b = o(atan2(x,a)) error(b) < [1+2^{3+Exp(x)-Exp(a)-Exp(b)}] ulp(b)
= kb ulp(b)
c = o(1+y) error(c) < 1 ulp(c)
d = o(atan2(-x,c)) error(d) < [1+2^{3+Exp(x)-Exp(c)-Exp(d)}] ulp(d)
= kd ulp(d)
e = o(b - d) error(e) < [1 + kb*2^{Exp(b}-Exp(e)}
+ kd*2^{Exp(d)-Exp(e)}] ulp(e)
error(e) < [1 + 2^{4+Exp(x)-Exp(a)-Exp(e)}
+ 2^{4+Exp(x)-Exp(c)-Exp(e)}] ulp(e)
because |atan(u)| < |u|
< [1 + 2^{5+Exp(x)-min(Exp(a),Exp(c))
-Exp(e)}] ulp(e)
f = e/2 exact
*/
/* p: working precision */
p = (op_im_exp > 0 || prec > SAFE_ABS (mpfr_prec_t, op_im_exp)) ? prec
: (prec - op_im_exp);
rnd1 = mpfr_sgn (mpc_realref (op)) > 0 ? MPFR_RNDD : MPFR_RNDU;
rnd2 = mpfr_sgn (mpc_realref (op)) < 0 ? MPFR_RNDU : MPFR_RNDD;
do
{
p += mpc_ceil_log2 (p) + 2;
mpfr_set_prec (a, p);
mpfr_set_prec (b, p);
mpfr_set_prec (x, p);
/* x = upper bound for atan (x/(1-y)). Since atan is increasing, we
need an upper bound on x/(1-y), i.e., a lower bound on 1-y for
x positive, and an upper bound on 1-y for x negative */
mpfr_ui_sub (a, 1, mpc_imagref (op), rnd1);
if (mpfr_sgn (a) == 0) /* y is near 1, thus 1+y is near 2, and
expo will be 1 or 2 below */
{
MPC_ASSERT (mpfr_cmp_ui (mpc_imagref(op), 1) == 0);
/* check for intermediate underflow */
err = 2; /* ensures err will be expo below */
}
else
err = mpfr_get_exp (a); /* err = Exp(a) with the notations above */
mpfr_atan2 (x, mpc_realref (op), a, MPFR_RNDU);
/* b = lower bound for atan (-x/(1+y)): for x negative, we need a
lower bound on -x/(1+y), i.e., an upper bound on 1+y */
mpfr_add_ui (a, mpc_imagref(op), 1, rnd2);
/* if a is exactly zero, i.e., Im(op) = -1, then the error on a is 0,
and we can simply ignore the terms involving Exp(a) in the error */
if (mpfr_sgn (a) == 0)
{
MPC_ASSERT (mpfr_cmp_si (mpc_imagref(op), -1) == 0);
/* check for intermediate underflow */
expo = err; /* will leave err unchanged below */
}
else
expo = mpfr_get_exp (a); /* expo = Exp(c) with the notations above */
mpfr_atan2 (b, minus_op_re, a, MPFR_RNDD);
err = err < expo ? err : expo; /* err = min(Exp(a),Exp(c)) */
mpfr_sub (x, x, b, MPFR_RNDU);
err = 5 + op_re_exp - err - mpfr_get_exp (x);
/* error is bounded by [1 + 2^err] ulp(e) */
err = err < 0 ? 1 : err + 1;
mpfr_div_2ui (x, x, 1, MPFR_RNDU);
/* Note: using RND2=RNDD guarantees that if x is exactly representable
on prec + ... bits, mpfr_can_round will return 0 */
ok = mpfr_can_round (x, p - err, MPFR_RNDU, MPFR_RNDD,
prec + (MPC_RND_RE (rnd) == MPFR_RNDN));
} while (ok == 0);
/* Imaginary part
Im(atan(x+I*y)) = 1/4 * [log(x^2+(1+y)^2) - log (x^2 +(1-y)^2)] */
prec = mpfr_get_prec (mpc_imagref (rop)); /* result precision */
/* a = o(1+y) error(a) < 1 ulp(a)
b = o(a^2) error(b) < 5 ulp(b)
c = o(x^2) error(c) < 1 ulp(c)
d = o(b+c) error(d) < 7 ulp(d)
e = o(log(d)) error(e) < [1 + 7*2^{2-Exp(e)}] ulp(e) = ke ulp(e)
f = o(1-y) error(f) < 1 ulp(f)
g = o(f^2) error(g) < 5 ulp(g)
h = o(c+f) error(h) < 7 ulp(h)
i = o(log(h)) error(i) < [1 + 7*2^{2-Exp(i)}] ulp(i) = ki ulp(i)
j = o(e-i) error(j) < [1 + ke*2^{Exp(e)-Exp(j)}
+ ki*2^{Exp(i)-Exp(j)}] ulp(j)
error(j) < [1 + 2^{Exp(e)-Exp(j)} + 2^{Exp(i)-Exp(j)}
+ 7*2^{3-Exp(j)}] ulp(j)
< [1 + 2^{max(Exp(e),Exp(i))-Exp(j)+1}
+ 7*2^{3-Exp(j)}] ulp(j)
k = j/4 exact
*/
err = 2;
p = prec; /* working precision */
do
{
p += mpc_ceil_log2 (p) + err;
mpfr_set_prec (a, p);
mpfr_set_prec (b, p);
mpfr_set_prec (y, p);
/* a = upper bound for log(x^2 + (1+y)^2) */
mpfr_add_ui (a, mpc_imagref (op), 1, MPFR_RNDA);
mpfr_sqr (a, a, MPFR_RNDU);
mpfr_sqr (y, mpc_realref (op), MPFR_RNDU);
mpfr_add (a, a, y, MPFR_RNDU);
mpfr_log (a, a, MPFR_RNDU);
/* b = lower bound for log(x^2 + (1-y)^2) */
mpfr_ui_sub (b, 1, mpc_imagref (op), MPFR_RNDZ); /* round to zero */
mpfr_sqr (b, b, MPFR_RNDZ);
/* we could write mpfr_sqr (y, mpc_realref (op), MPFR_RNDZ) but it is
more efficient to reuse the value of y (x^2) above and subtract
one ulp */
mpfr_nextbelow (y);
mpfr_add (b, b, y, MPFR_RNDZ);
mpfr_log (b, b, MPFR_RNDZ);
mpfr_sub (y, a, b, MPFR_RNDU);
if (mpfr_zero_p (y))
/* FIXME: happens when x and y have very different magnitudes;
could be handled more efficiently */
ok = 0;
else
{
expo = MPC_MAX (mpfr_get_exp (a), mpfr_get_exp (b));
expo = expo - mpfr_get_exp (y) + 1;
err = 3 - mpfr_get_exp (y);
/* error(j) <= [1 + 2^expo + 7*2^err] ulp(j) */
if (expo <= err) /* error(j) <= [1 + 2^{err+1}] ulp(j) */
err = (err < 0) ? 1 : err + 2;
else
err = (expo < 0) ? 1 : expo + 2;
mpfr_div_2ui (y, y, 2, MPFR_RNDN);
MPC_ASSERT (!mpfr_zero_p (y));
/* FIXME: underflow. Since the main term of the Taylor series
in y=0 is 1/(x^2+1) * y, this means that y is very small
and/or x very large; but then the mpfr_zero_p (y) above
should be true. This needs a proof, or better yet,
special code. */
ok = mpfr_can_round (y, p - err, MPFR_RNDU, MPFR_RNDD,
prec + (MPC_RND_IM (rnd) == MPFR_RNDN));
}
} while (ok == 0);
inex = mpc_set_fr_fr (rop, x, y, rnd);
mpfr_clears (a, b, x, y, (mpfr_ptr) 0);
return inex;
}
}