Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
/*	$NetBSD: n_argred.S,v 1.9 2007/04/19 00:37:20 matt Exp $	*/
/*
 * Copyright (c) 1985, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)argred.s	8.1 (Berkeley) 6/4/93
 */

#include <machine/asm.h>

/*
 *  libm$argred implements Bob Corbett's argument reduction and
 *  libm$sincos implements Peter Tang's double precision sin/cos.
 *
 *  Note: The two entry points libm$argred and libm$sincos are meant
 *        to be used only by _sin, _cos and _tan.
 *
 * method: true range reduction to [-pi/4,pi/4], P. Tang  &  B. Corbett
 * S. McDonald, April 4,  1985
 */

	.hidden	__libm_argred
ENTRY(__libm_argred, 0)
/*
 *  Compare the argument with the largest possible that can
 *  be reduced by table lookup.  %r3 := |x|  will be used in  table_lookup .
 */
	movd	%r0,%r3
	bgeq	abs1
	mnegd	%r3,%r3
abs1:
	cmpd	%r3,$0d+4.55530934770520019583e+01
	blss	small_arg
	jsb	trigred
	rsb
small_arg:
	jsb	table_lookup
	rsb
/*
 *  At this point,
 *	   %r0  contains the quadrant number, 0, 1, 2, or 3;
 *	%r2/%r1  contains the reduced argument as a D-format number;
 *  	   %r3  contains a F-format extension to the reduced argument;
 *          %r4  contains a  0 or 1  corresponding to a  sin or cos  entry.
 */

	.hidden	__libm_sincos
ENTRY(__libm_sincos, 0)
/*
 *  Compensate for a cosine entry by adding one to the quadrant number.
 */
	addl2	%r4,%r0
/*
 *  Polyd clobbers  %r5-%r0 ;  save  X  in  %r7/%r6 .
 *  This can be avoided by rewriting  trigred .
 */
	movd	%r1,%r6
/*
 *  Likewise, save  alpha  in  %r8 .
 *  This can be avoided by rewriting  trigred .
 */
	movf	%r3,%r8
/*
 *  Odd or even quadrant?  cosine if odd, sine otherwise.
 *  Save  floor(quadrant/2) in  %r9  ; it determines the final sign.
 */
	rotl	$-1,%r0,%r9
	blss	cosine
sine:
	muld2	%r1,%r1		# Xsq = X * X
	cmpw	$0x2480,%r1	# [zl] Xsq > 2^-56?
	blss	1f		# [zl] yes, go ahead and do polyd
	clrq	%r1		# [zl] work around 11/780 FPA polyd bug
1:
	polyd	%r1,$7,sin_coef	# Q = P(Xsq) , of deg 7
	mulf3	$0f3.0,%r8,%r4	# beta = 3 * alpha
	mulf2	%r0,%r4		# beta = Q * beta
	addf2	%r8,%r4		# beta = alpha + beta
	muld2	%r6,%r0		# S(X) = X * Q
/*	cvtfd	%r4,%r4		... %r5 = 0 after a polyd. */
	addd2	%r4,%r0		# S(X) = beta + S(X)
	addd2	%r6,%r0		# S(X) = X + S(X)
	jbr	done
cosine:
	muld2	%r6,%r6		# Xsq = X * X
	beql	zero_arg
	mulf2	%r1,%r8		# beta = X * alpha
	polyd	%r6,$7,cos_coef	/* Q = P'(Xsq) , of deg 7 */
	subd3	%r0,%r8,%r0	# beta = beta - Q
	subw2	$0x80,%r6	# Xsq = Xsq / 2
	addd2	%r0,%r6		# Xsq = Xsq + beta
zero_arg:
	subd3	%r6,$0d1.0,%r0	# C(X) = 1 - Xsq
done:
	blbc	%r9,even
	mnegd	%r0,%r0
even:
	rsb

#ifdef __ELF__
	.section .rodata
#else
	.text
#endif
	_ALIGN_TEXT

sin_coef:
	.double	0d-7.53080332264191085773e-13	# s7 = 2^-29 -1.a7f2504ffc49f8..
	.double	0d+1.60573519267703489121e-10	# s6 = 2^-21  1.611adaede473c8..
	.double	0d-2.50520965150706067211e-08	# s5 = 2^-1a -1.ae644921ed8382..
	.double	0d+2.75573191800593885716e-06	# s4 = 2^-13  1.71de3a4b884278..
	.double	0d-1.98412698411850507950e-04	# s3 = 2^-0d -1.a01a01a0125e7d..
	.double	0d+8.33333333333325688985e-03	# s2 = 2^-07  1.11111111110e50
	.double	0d-1.66666666666666664354e-01	# s1 = 2^-03 -1.55555555555554
	.double	0d+0.00000000000000000000e+00	# s0 = 0

cos_coef:
	.double	0d-1.13006966202629430300e-11	# s7 = 2^-25 -1.8D9BA04D1374BE..
	.double	0d+2.08746646574796004700e-09	# s6 = 2^-1D  1.1EE632650350BA..
	.double	0d-2.75573073031284417300e-07	# s5 = 2^-16 -1.27E4F31411719E..
	.double	0d+2.48015872682668025200e-05	# s4 = 2^-10  1.A01A0196B902E8..
	.double	0d-1.38888888888464709200e-03	# s3 = 2^-0A -1.6C16C16C11FACE..
	.double	0d+4.16666666666664761400e-02	# s2 = 2^-05  1.5555555555539E
	.double	0d+0.00000000000000000000e+00	# s1 = 0
	.double	0d+0.00000000000000000000e+00	# s0 = 0

/*
 *  Multiples of  pi/2  expressed as the sum of three doubles,
 *
 *  trailing:	n * pi/2 ,  n = 0, 1, 2, ..., 29
 *			trailing[n] ,
 *
 *  middle:	n * pi/2 ,  n = 0, 1, 2, ..., 29
 *			middle[n]   ,
 *
 *  leading:	n * pi/2 ,  n = 0, 1, 2, ..., 29
 *			leading[n]  ,
 *
 *	where
 *		leading[n]  := (n * pi/2)  rounded,
 *		middle[n]   := (n * pi/2  -  leading[n])  rounded,
 *		trailing[n] := (( n * pi/2 - leading[n]) - middle[n])  rounded .
 */
trailing:
	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  trailing
	.double	0d+4.33590506506189049611e-35	#  1 * pi/2  trailing
	.double	0d+8.67181013012378099223e-35	#  2 * pi/2  trailing
	.double	0d+1.30077151951856714215e-34	#  3 * pi/2  trailing
	.double	0d+1.73436202602475619845e-34	#  4 * pi/2  trailing
	.double	0d-1.68390735624352669192e-34	#  5 * pi/2  trailing
	.double	0d+2.60154303903713428430e-34	#  6 * pi/2  trailing
	.double	0d-8.16726343231148352150e-35	#  7 * pi/2  trailing
	.double	0d+3.46872405204951239689e-34	#  8 * pi/2  trailing
	.double	0d+3.90231455855570147991e-34	#  9 * pi/2  trailing
	.double	0d-3.36781471248705338384e-34	# 10 * pi/2  trailing
	.double	0d-1.06379439835298071785e-33	# 11 * pi/2  trailing
	.double	0d+5.20308607807426856861e-34	# 12 * pi/2  trailing
	.double	0d+5.63667658458045770509e-34	# 13 * pi/2  trailing
	.double	0d-1.63345268646229670430e-34	# 14 * pi/2  trailing
	.double	0d-1.19986217995610764801e-34	# 15 * pi/2  trailing
	.double	0d+6.93744810409902479378e-34	# 16 * pi/2  trailing
	.double	0d-8.03640094449267300110e-34	# 17 * pi/2  trailing
	.double	0d+7.80462911711140295982e-34	# 18 * pi/2  trailing
	.double	0d-7.16921993148029483506e-34	# 19 * pi/2  trailing
	.double	0d-6.73562942497410676769e-34	# 20 * pi/2  trailing
	.double	0d-6.30203891846791677593e-34	# 21 * pi/2  trailing
	.double	0d-2.12758879670596143570e-33	# 22 * pi/2  trailing
	.double	0d+2.53800212047402350390e-33	# 23 * pi/2  trailing
	.double	0d+1.04061721561485371372e-33	# 24 * pi/2  trailing
	.double	0d+6.11729905311472319056e-32	# 25 * pi/2  trailing
	.double	0d+1.12733531691609154102e-33	# 26 * pi/2  trailing
	.double	0d-3.70049587943078297272e-34	# 27 * pi/2  trailing
	.double	0d-3.26690537292459340860e-34	# 28 * pi/2  trailing
	.double	0d-1.14812616507957271361e-34	# 29 * pi/2  trailing

middle:
	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  middle
	.double	0d+5.72118872610983179676e-18	#  1 * pi/2  middle
	.double	0d+1.14423774522196635935e-17	#  2 * pi/2  middle
	.double	0d-3.83475850529283316309e-17	#  3 * pi/2  middle
	.double	0d+2.28847549044393271871e-17	#  4 * pi/2  middle
	.double	0d-2.69052076007086676522e-17	#  5 * pi/2  middle
	.double	0d-7.66951701058566632618e-17	#  6 * pi/2  middle
	.double	0d-1.54628301484890040587e-17	#  7 * pi/2  middle
	.double	0d+4.57695098088786543741e-17	#  8 * pi/2  middle
	.double	0d+1.07001849766246313192e-16	#  9 * pi/2  middle
	.double	0d-5.38104152014173353044e-17	# 10 * pi/2  middle
	.double	0d-2.14622680169080983801e-16	# 11 * pi/2  middle
	.double	0d-1.53390340211713326524e-16	# 12 * pi/2  middle
	.double	0d-9.21580002543456677056e-17	# 13 * pi/2  middle
	.double	0d-3.09256602969780081173e-17	# 14 * pi/2  middle
	.double	0d+3.03066796603896507006e-17	# 15 * pi/2  middle
	.double	0d+9.15390196177573087482e-17	# 16 * pi/2  middle
	.double	0d+1.52771359575124969107e-16	# 17 * pi/2  middle
	.double	0d+2.14003699532492626384e-16	# 18 * pi/2  middle
	.double	0d-1.68853170360202329427e-16	# 19 * pi/2  middle
	.double	0d-1.07620830402834670609e-16	# 20 * pi/2  middle
	.double	0d+3.97700719404595604379e-16	# 21 * pi/2  middle
	.double	0d-4.29245360338161967602e-16	# 22 * pi/2  middle
	.double	0d-3.68013020380794313406e-16	# 23 * pi/2  middle
	.double	0d-3.06780680423426653047e-16	# 24 * pi/2  middle
	.double	0d-2.45548340466059054318e-16	# 25 * pi/2  middle
	.double	0d-1.84316000508691335411e-16	# 26 * pi/2  middle
	.double	0d-1.23083660551323675053e-16	# 27 * pi/2  middle
	.double	0d-6.18513205939560162346e-17	# 28 * pi/2  middle
	.double	0d-6.18980636588357585202e-19	# 29 * pi/2  middle

leading:
	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  leading
	.double	0d+1.57079632679489661351e+00	#  1 * pi/2  leading
	.double	0d+3.14159265358979322702e+00	#  2 * pi/2  leading
	.double	0d+4.71238898038468989604e+00	#  3 * pi/2  leading
	.double	0d+6.28318530717958645404e+00	#  4 * pi/2  leading
	.double	0d+7.85398163397448312306e+00	#  5 * pi/2  leading
	.double	0d+9.42477796076937979208e+00	#  6 * pi/2  leading
	.double	0d+1.09955742875642763501e+01	#  7 * pi/2  leading
	.double	0d+1.25663706143591729081e+01	#  8 * pi/2  leading
	.double	0d+1.41371669411540694661e+01	#  9 * pi/2  leading
	.double	0d+1.57079632679489662461e+01	# 10 * pi/2  leading
	.double	0d+1.72787595947438630262e+01	# 11 * pi/2  leading
	.double	0d+1.88495559215387595842e+01	# 12 * pi/2  leading
	.double	0d+2.04203522483336561422e+01	# 13 * pi/2  leading
	.double	0d+2.19911485751285527002e+01	# 14 * pi/2  leading
	.double	0d+2.35619449019234492582e+01	# 15 * pi/2  leading
	.double	0d+2.51327412287183458162e+01	# 16 * pi/2  leading
	.double	0d+2.67035375555132423742e+01	# 17 * pi/2  leading
	.double	0d+2.82743338823081389322e+01	# 18 * pi/2  leading
	.double	0d+2.98451302091030359342e+01	# 19 * pi/2  leading
	.double	0d+3.14159265358979324922e+01	# 20 * pi/2  leading
	.double	0d+3.29867228626928286062e+01	# 21 * pi/2  leading
	.double	0d+3.45575191894877260523e+01	# 22 * pi/2  leading
	.double	0d+3.61283155162826226103e+01	# 23 * pi/2  leading
	.double	0d+3.76991118430775191683e+01	# 24 * pi/2  leading
	.double	0d+3.92699081698724157263e+01	# 25 * pi/2  leading
	.double	0d+4.08407044966673122843e+01	# 26 * pi/2  leading
	.double	0d+4.24115008234622088423e+01	# 27 * pi/2  leading
	.double	0d+4.39822971502571054003e+01	# 28 * pi/2  leading
	.double	0d+4.55530934770520019583e+01	# 29 * pi/2  leading

twoOverPi:
	.double	0d+6.36619772367581343076e-01

	.text
	_ALIGN_TEXT

table_lookup:
	muld3	%r3,twoOverPi,%r0
	cvtrdl	%r0,%r0			# n = nearest int to ((2/pi)*|x|) rnded
	subd2	leading[%r0],%r3		# p = (|x| - leading n*pi/2) exactly
	subd3	middle[%r0],%r3,%r1	# q = (p - middle  n*pi/2) rounded
	subd2	%r1,%r3			# r = (p - q)
	subd2	middle[%r0],%r3		# r =  r - middle  n*pi/2
	subd2	trailing[%r0],%r3		# r =  r - trailing n*pi/2  rounded
/*
 *  If the original argument was negative,
 *  negate the reduce argument and
 *  adjust the octant/quadrant number.
 */
	tstw	4(%ap)
	bgeq	abs2
	mnegf	%r1,%r1
	mnegf	%r3,%r3
/*	subb3	%r0,$8,%r0	...used for  pi/4  reduction -S.McD */
	subb3	%r0,$4,%r0
abs2:
/*
 *  Clear all unneeded octant/quadrant bits.
 */
/*	bicb2	$0xf8,%r0	...used for  pi/4  reduction -S.McD */
	bicb2	$0xfc,%r0
	rsb
/*
 *						p.0
 */
#ifdef __ELF__
	.section .rodata
#else
	.text
#endif
	_ALIGN_TEXT
/*
 * Only 256 (actually 225) bits of 2/pi are needed for VAX double
 * precision; this was determined by enumerating all the nearest
 * machine integer multiples of pi/2 using continued fractions.
 * (8a8d3673775b7ff7 required the most bits.)		-S.McD
 */
	.long	0
	.long	0
	.long	0xaef1586d
	.long	0x9458eaf7
	.long	0x10e4107f
	.long	0xd8a5664f
	.long	0x4d377036
	.long	0x09d5f47d
	.long	0x91054a7f
	.long	0xbe60db93
bits2opi:
	.long	0x00000028
	.long	0
/*
 *  Note: wherever you see the word `octant', read `quadrant'.
 *  Currently this code is set up for  pi/2  argument reduction.
 *  By uncommenting/commenting the appropriate lines, it will
 *  also serve as a  pi/4  argument reduction code.
 */
	.text

/*						p.1
 *  Trigred  preforms argument reduction
 *  for the trigonometric functions.  It
 *  takes one input argument, a D-format
 *  number in  %r1/%r0 .  The magnitude of
 *  the input argument must be greater
 *  than or equal to  1/2 .  Trigred produces
 *  three results:  the number of the octant
 *  occupied by the argument, the reduced
 *  argument, and an extension of the
 *  reduced argument.  The octant number is
 *  returned in  %r0 .  The reduced argument
 *  is returned as a D-format number in
 *  %r2/%r1 .  An 8 bit extension of the
 *  reduced argument is returned as an
 *  F-format number in %r3.
 *						p.2
 */
trigred:
/*
 *  Save the sign of the input argument.
 */
	movw	%r0,-(%sp)
/*
 *  Extract the exponent field.
 */
	extzv	$7,$7,%r0,%r2
/*
 *  Convert the fraction part of the input
 *  argument into a quadword integer.
 */
	bicw2	$0xff80,%r0
	bisb2	$0x80,%r0	# -S.McD
	rotl	$16,%r0,%r0
	rotl	$16,%r1,%r1
/*
 *  If  %r1  is negative, add  1  to  %r0 .  This
 *  adjustment is made so that the two's
 *  complement multiplications done later
 *  will produce unsigned results.
 */
	bgeq	posmid
	incl	%r0
posmid:
/*						p.3
 *
 *  Set  %r3  to the address of the first quadword
 *  used to obtain the needed portion of  2/pi .
 *  The address is longword aligned to ensure
 *  efficient access.
 */
	ashl	$-3,%r2,%r3
	bicb2	$3,%r3
	mnegl	%r3,%r3
	movab	bits2opi[%r3],%r3
/*
 *  Set  %r2  to the size of the shift needed to
 *  obtain the correct portion of  2/pi .
 */
	bicb2	$0xe0,%r2
/*						p.4
 *
 *  Move the needed  128  bits of  2/pi  into
 *  %r11 - %r8 .  Adjust the numbers to allow
 *  for unsigned multiplication.
 */
	ashq	%r2,(%r3),%r10

	subl2	$4,%r3
	ashq	%r2,(%r3),%r9
	bgeq	signoff1
	incl	%r11
signoff1:
	subl2	$4,%r3
	ashq	%r2,(%r3),%r8
	bgeq	signoff2
	incl	%r10
signoff2:
	subl2	$4,%r3
	ashq	%r2,(%r3),%r7
	bgeq	signoff3
	incl	%r9
signoff3:
/*						p.5
 *
 *  Multiply the contents of  %r0/%r1  by the
 *  slice of  2/pi  in  %r11 - %r8 .
 */
	emul	%r0,%r8,$0,%r4
	emul	%r0,%r9,%r5,%r5
	emul	%r0,%r10,%r6,%r6

	emul	%r1,%r8,$0,%r7
	emul	%r1,%r9,%r8,%r8
	emul	%r1,%r10,%r9,%r9
	emul	%r1,%r11,%r10,%r10

	addl2	%r4,%r8
	adwc	%r5,%r9
	adwc	%r6,%r10
/*						p.6
 *
 *  If there are more than five leading zeros
 *  after the first two quotient bits or if there
 *  are more than five leading ones after the first
 *  two quotient bits, generate more fraction bits.
 *  Otherwise, branch to code to produce the result.
 */
	bicl3	$0xc1ffffff,%r10,%r4
	beql	more1
	cmpl	$0x3e000000,%r4
	bneq	result
more1:
/*						p.7
 *
 *  generate another  32  result bits.
 */
	subl2	$4,%r3
	ashq	%r2,(%r3),%r5
	bgeq	signoff4

	emul	%r1,%r6,$0,%r4
	addl2	%r1,%r5
	emul	%r0,%r6,%r5,%r5
	addl2	%r0,%r6
	jbr	addbits1

signoff4:
	emul	%r1,%r6,$0,%r4
	emul	%r0,%r6,%r5,%r5

addbits1:
	addl2	%r5,%r7
	adwc	%r6,%r8
	adwc	$0,%r9
	adwc	$0,%r10
/*						p.8
 *
 *  Check for massive cancellation.
 */
	bicl3	$0xc0000000,%r10,%r6
/*	bneq	more2			-S.McD  Test was backwards */
	beql	more2
	cmpl	$0x3fffffff,%r6
	bneq	result
more2:
/*						p.9
 *
 *  If massive cancellation has occurred,
 *  generate another  24  result bits.
 *  Testing has shown there will always be
 *  enough bits after this point.
 */
	subl2	$4,%r3
	ashq	%r2,(%r3),%r5
	bgeq	signoff5

	emul	%r0,%r6,%r4,%r5
	addl2	%r0,%r6
	jbr	addbits2

signoff5:
	emul	%r0,%r6,%r4,%r5

addbits2:
	addl2	%r6,%r7
	adwc	$0,%r8
	adwc	$0,%r9
	adwc	$0,%r10
/*						p.10
 *
 *  The following code produces the reduced
 *  argument from the product bits contained
 *  in  %r10 - %r7 .
 */
result:
/*
 *  Extract the octant number from  %r10 .
 */
/*	extzv	$29,$3,%r10,%r0	...used for  pi/4  reduction -S.McD */
	extzv	$30,$2,%r10,%r0
/*
 *  Clear the octant bits in  %r10 .
 */
/*	bicl2	$0xe0000000,%r10	...used for  pi/4  reduction -S.McD */
	bicl2	$0xc0000000,%r10
/*
 *  Zero the sign flag.
 */
	clrl	%r5
/*						p.11
 *
 *  Check to see if the fraction is greater than
 *  or equal to one-half.  If it is, add one
 *  to the octant number, set the sign flag
 *  on, and replace the fraction with  1 minus
 *  the fraction.
 */
/*	bitl	$0x10000000,%r10		...used for  pi/4  reduction -S.McD */
	bitl	$0x20000000,%r10
	beql	small
	incl	%r0
	incl	%r5
/*	subl3	%r10,$0x1fffffff,%r10	...used for  pi/4  reduction -S.McD */
	subl3	%r10,$0x3fffffff,%r10
	mcoml	%r9,%r9
	mcoml	%r8,%r8
	mcoml	%r7,%r7
small:
/*						p.12
 *
 *  Test whether the first  29  bits of the ...used for  pi/4  reduction -S.McD
 *  Test whether the first  30  bits of the
 *  fraction are zero.
 */
	tstl	%r10
	beql	tiny
/*
 *  Find the position of the first one bit in  %r10 .
 */
	cvtld	%r10,%r1
	extzv	$7,$7,%r1,%r1
/*
 *  Compute the size of the shift needed.
 */
	subl3	%r1,$32,%r6
/*
 *  Shift up the high order  64  bits of the
 *  product.
 */
	ashq	%r6,%r9,%r10
	ashq	%r6,%r8,%r9
	jbr	mult
/*						p.13
 *
 *  Test to see if the sign bit of  %r9  is on.
 */
tiny:
	tstl	%r9
	bgeq	tinier
/*
 *  If it is, shift the product bits up  32  bits.
 */
	movl	$32,%r6
	movq	%r8,%r10
	tstl	%r10
	jbr	mult
/*						p.14
 *
 *  Test whether  %r9  is zero.  It is probably
 *  impossible for both  %r10  and  %r9  to be
 *  zero, but until proven to be so, the test
 *  must be made.
 */
tinier:
	beql	zero
/*
 *  Find the position of the first one bit in  %r9 .
 */
	cvtld	%r9,%r1
	extzv	$7,$7,%r1,%r1
/*
 *  Compute the size of the shift needed.
 */
	subl3	%r1,$32,%r1
	addl3	$32,%r1,%r6
/*
 *  Shift up the high order  64  bits of the
 *  product.
 */
	ashq	%r1,%r8,%r10
	ashq	%r1,%r7,%r9
	jbr	mult
/*						p.15
 *
 *  The following code sets the reduced
 *  argument to zero.
 */
zero:
	clrl	%r1
	clrl	%r2
	clrl	%r3
	jbr	return
/*						p.16
 *
 *  At this point,  %r0  contains the octant number,
 *  %r6  indicates the number of bits the fraction
 *  has been shifted,  %r5  indicates the sign of
 *  the fraction,  %r11/%r10  contain the high order
 *  64  bits of the fraction, and the condition
 *  codes indicate where the sign bit of  %r10
 *  is on.  The following code multiplies the
 *  fraction by  pi/2 .
 */
mult:
/*
 *  Save  %r11/%r10  in  %r4/%r1 .		-S.McD
 */
	movl	%r11,%r4
	movl	%r10,%r1
/*
 *  If the sign bit of  %r10  is on, add  1  to  %r11 .
 */
	bgeq	signoff6
	incl	%r11
signoff6:
/*						p.17
 *
 *  Move  pi/2  into  %r3/%r2 .
 */
	movq	$0xc90fdaa22168c235,%r2
/*
 *  Multiply the fraction by the portion of  pi/2
 *  in  %r2 .
 */
	emul	%r2,%r10,$0,%r7
	emul	%r2,%r11,%r8,%r7
/*
 *  Multiply the fraction by the portion of  pi/2
 *  in  %r3 .
 */
	emul	%r3,%r10,$0,%r9
	emul	%r3,%r11,%r10,%r10
/*
 *  Add the product bits together.
 */
	addl2	%r7,%r9
	adwc	%r8,%r10
	adwc	$0,%r11
/*
 *  Compensate for not sign extending  %r8  above.-S.McD
 */
	tstl	%r8
	bgeq	signoff6a
	decl	%r11
signoff6a:
/*
 *  Compensate for  %r11/%r10  being unsigned.	-S.McD
 */
	addl2	%r2,%r10
	adwc	%r3,%r11
/*
 *  Compensate for  %r3/%r2  being unsigned.	-S.McD
 */
	addl2	%r1,%r10
	adwc	%r4,%r11
/*						p.18
 *
 *  If the sign bit of  %r11  is zero, shift the
 *  product bits up one bit and increment  %r6 .
 */
	blss	signon
	incl	%r6
	ashq	$1,%r10,%r10
	tstl	%r9
	bgeq	signoff7
	incl	%r10
signoff7:
signon:
/*						p.19
 *
 *  Shift the  56  most significant product
 *  bits into  %r9/%r8 .  The sign extension
 *  will be handled later.
 */
	ashq	$-8,%r10,%r8
/*
 *  Convert the low order  8  bits of  %r10
 *  into an F-format number.
 */
	cvtbf	%r10,%r3
/*
 *  If the result of the conversion was
 *  negative, add  1  to  %r9/%r8 .
 */
	bgeq	chop
	incl	%r8
	adwc	$0,%r9
/*
 *  If  %r9  is now zero, branch to special
 *  code to handle that possibility.
 */
	beql	carryout
chop:
/*						p.20
 *
 *  Convert the number in  %r9/%r8  into
 *  D-format number in  %r2/%r1 .
 */
	rotl	$16,%r8,%r2
	rotl	$16,%r9,%r1
/*
 *  Set the exponent field to the appropriate
 *  value.  Note that the extra bits created by
 *  sign extension are now eliminated.
 */
	subw3	%r6,$131,%r6
	insv	%r6,$7,$9,%r1
/*
 *  Set the exponent field of the F-format
 *  number in  %r3  to the appropriate value.
 */
	tstf	%r3
	beql	return
/*	extzv	$7,$8,%r3,%r4	-S.McD */
	extzv	$7,$7,%r3,%r4
	addw2	%r4,%r6
/*	subw2	$217,%r6		-S.McD */
	subw2	$64,%r6
	insv	%r6,$7,$8,%r3
	jbr	return
/*						p.21
 *
 *  The following code generates the appropriate
 *  result for the unlikely possibility that
 *  rounding the number in  %r9/%r8  resulted in
 *  a carry out.
 */
carryout:
	clrl	%r1
	clrl	%r2
	subw3	%r6,$132,%r6
	insv	%r6,$7,$9,%r1
	tstf	%r3
	beql	return
	extzv	$7,$8,%r3,%r4
	addw2	%r4,%r6
	subw2	$218,%r6
	insv	%r6,$7,$8,%r3
/*						p.22
 *
 *  The following code makes an needed
 *  adjustments to the signs of the
 *  results or to the octant number, and
 *  then returns.
 */
return:
/*
 *  Test if the fraction was greater than or
 *  equal to  1/2 .  If so, negate the reduced
 *  argument.
 */
	blbc	%r5,signoff8
	mnegf	%r1,%r1
	mnegf	%r3,%r3
signoff8:
/*						p.23
 *
 *  If the original argument was negative,
 *  negate the reduce argument and
 *  adjust the octant number.
 */
	tstw	(%sp)+
	bgeq	signoff9
	mnegf	%r1,%r1
	mnegf	%r3,%r3
/*	subb3	%r0,$8,%r0	...used for  pi/4  reduction -S.McD */
	subb3	%r0,$4,%r0
signoff9:
/*
 *  Clear all unneeded octant bits.
 *
 *	bicb2	$0xf8,%r0	...used for  pi/4  reduction -S.McD */
	bicb2	$0xfc,%r0
/*
 *  Return.
 */
	rsb