/* $NetBSD: ixp425_qmgr.c,v 1.8 2019/06/03 06:04:20 msaitoh Exp $ */
/*-
* Copyright (c) 2006 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*/
/*-
* Copyright (c) 2001-2005, Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
/*__FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/ixp425_qmgr.c,v 1.1 2006/11/19 23:55:23 sam Exp $");*/
__KERNEL_RCSID(0, "$NetBSD: ixp425_qmgr.c,v 1.8 2019/06/03 06:04:20 msaitoh Exp $");
/*
* Intel XScale Queue Manager support.
*
* Each IXP4XXX device has a hardware block that implements a priority
* queue manager that is shared between the XScale cpu and the backend
* devices (such as the NPE). Queues are accessed by reading/writing
* special memory locations. The queue contents are mapped into a shared
* SRAM region with entries managed in a circular buffer. The XScale
* processor can receive interrupts based on queue contents (a condition
* code determines when interrupts should be delivered).
*
* The code here basically replaces the qmgr class in the Intel Access
* Library (IAL).
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <sys/malloc.h>
#include <sys/resource.h>
#include <sys/bus.h>
#include <machine/cpu.h>
#include <machine/intr.h>
#include <arm/xscale/ixp425reg.h>
#include <arm/xscale/ixp425var.h>
#include <arm/xscale/ixp425_qmgr.h>
/*
* State per AQM hw queue.
* This structure holds q configuration and dispatch state.
*/
struct qmgrInfo {
int qSizeInWords; /* queue size in words */
uint32_t qOflowStatBitMask; /* overflow status mask */
int qWriteCount; /* queue write count */
bus_size_t qAccRegAddr; /* access register */
bus_size_t qUOStatRegAddr; /* status register */
bus_size_t qConfigRegAddr; /* config register */
int qSizeInEntries; /* queue size in entries */
uint32_t qUflowStatBitMask; /* underflow status mask */
int qReadCount; /* queue read count */
/* XXX union */
uint32_t qStatRegAddr;
uint32_t qStatBitsOffset;
uint32_t qStat0BitMask;
uint32_t qStat1BitMask;
uint32_t intRegCheckMask; /* interrupt reg check mask */
void (*cb)(int, void *); /* callback function */
void *cbarg; /* callback argument */
int priority; /* dispatch priority */
#if 0
/* NB: needed only for A0 parts */
u_int statusWordOffset; /* status word offset */
uint32_t statusMask; /* status mask */
uint32_t statusCheckValue; /* status check value */
#endif
};
struct ixpqmgr_softc {
#ifdef __FreeBSD__
device_t sc_dev;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
struct resource *sc_irq; /* IRQ resource */
int sc_rid; /* resource id for irq */
void *sc_ih; /* interrupt handler */
#else
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
void *sc_ih[2]; /* interrupt handler */
#endif
struct qmgrInfo qinfo[IX_QMGR_MAX_NUM_QUEUES];
/*
* This array contains a list of queue identifiers ordered by
* priority. The table is split logically between queue
* identifiers 0-31 and 32-63. To optimize lookups bit masks
* are kept for the first-32 and last-32 q's. When the
* table needs to be rebuilt mark rebuildTable and it'll
* happen after the next interrupt.
*/
int priorityTable[IX_QMGR_MAX_NUM_QUEUES];
uint32_t lowPriorityTableFirstHalfMask;
uint32_t uppPriorityTableFirstHalfMask;
int rebuildTable; /* rebuild priorityTable */
uint32_t aqmFreeSramAddress; /* SRAM free space */
};
static int qmgr_debug = 0;
#define DPRINTF(dev, fmt, ...) do { \
if (qmgr_debug) printf(fmt, __VA_ARGS__); \
} while (0)
#define DPRINTFn(n, dev, fmt, ...) do { \
if (qmgr_debug >= n) printf(fmt, __VA_ARGS__); \
} while (0)
static struct ixpqmgr_softc *ixpqmgr_sc = NULL;
static void ixpqmgr_rebuild(struct ixpqmgr_softc *);
static int ixpqmgr_intr(void *);
static void aqm_int_enable(struct ixpqmgr_softc *sc, int qId);
static void aqm_int_disable(struct ixpqmgr_softc *sc, int qId);
static void aqm_qcfg(struct ixpqmgr_softc *sc, int qId, u_int ne, u_int nf);
static void aqm_srcsel_write(struct ixpqmgr_softc *sc, int qId, int sourceId);
static void aqm_reset(struct ixpqmgr_softc *sc);
static void
dummyCallback(int qId, void *arg)
{
/* XXX complain */
}
static uint32_t
aqm_reg_read(struct ixpqmgr_softc *sc, bus_size_t off)
{
DPRINTFn(9, sc->sc_dev, "%s(0x%x)\n", __func__, (int)off);
return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
}
static void
aqm_reg_write(struct ixpqmgr_softc *sc, bus_size_t off, uint32_t val)
{
DPRINTFn(9, sc->sc_dev, "%s(0x%x, 0x%x)\n", __func__, (int)off, val);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
}
#ifdef __FreeBSD__
static int
ixpqmgr_probe(device_t dev)
{
device_set_desc(dev, "IXP425 Q-Manager");
return 0;
}
#endif
#ifdef __FreeBSD__
static void
ixpqmgr_attach(device_t dev)
#else
void *
ixpqmgr_init(bus_space_tag_t iot)
#endif
{
#ifdef __FreeBSD__
struct ixpqmgr_softc *sc = device_get_softc(dev);
struct ixp425_softc *sa = device_get_softc(device_get_parent(dev));
#else
struct ixpqmgr_softc *sc;
#endif
int i;
#ifdef __FreeBSD__
ixpqmgr_sc = sc;
sc->sc_dev = dev;
sc->sc_iot = sa->sc_iot;
#else
sc = malloc(sizeof(*sc), M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc == NULL)
return (NULL);
sc->sc_iot = iot;
#endif
if (bus_space_map(sc->sc_iot, IXP425_QMGR_HWBASE, IXP425_QMGR_SIZE,
0, &sc->sc_ioh))
panic("%s: Cannot map registers", __func__);
#ifdef __FreeBSD__
/* NB: we only use the lower 32 q's */
sc->sc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->sc_rid,
IXP425_INT_QUE1_32, IXP425_INT_QUE33_64, 2, RF_ACTIVE);
if (!sc->sc_irq)
panic("Unable to allocate the qmgr irqs.\n");
/* XXX could be a source of entropy */
bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
ixpqmgr_intr, NULL, &sc->sc_ih);
#else
ixpqmgr_sc = sc;
sc->sc_ih[0] = ixp425_intr_establish(IXP425_INT_QUE1_32, IPL_NET,
ixpqmgr_intr, sc);
if (sc->sc_ih[0] == NULL) {
ixpqmgr_sc = NULL;
free(sc, M_DEVBUF);
return (NULL);
}
sc->sc_ih[1] = ixp425_intr_establish(IXP425_INT_QUE33_64, IPL_NET,
ixpqmgr_intr, sc);
if (sc->sc_ih[1] == NULL) {
ixp425_intr_disestablish(sc->sc_ih[0]);
ixpqmgr_sc = NULL;
free(sc, M_DEVBUF);
return (NULL);
}
#endif
/* NB: softc is pre-zero'd */
for (i = 0; i < IX_QMGR_MAX_NUM_QUEUES; i++) {
struct qmgrInfo *qi = &sc->qinfo[i];
qi->cb = dummyCallback;
qi->priority = IX_QMGR_Q_PRIORITY_0; /* default priority */
/*
* There are two interrupt registers, 32 bits each. One
* for the lower queues(0-31) and one for the upper
* queues(32-63). Therefore need to mod by 32 i.e the
* min upper queue identifier.
*/
qi->intRegCheckMask = (1<<(i%(IX_QMGR_MIN_QUEUPP_QID)));
/*
* Register addresses and bit masks are calculated and
* stored here to optimize QRead, QWrite and QStatusGet
* functions.
*/
/* AQM Queue access reg addresses, per queue */
qi->qAccRegAddr = IX_QMGR_Q_ACCESS_ADDR_GET(i);
qi->qAccRegAddr = IX_QMGR_Q_ACCESS_ADDR_GET(i);
qi->qConfigRegAddr = IX_QMGR_Q_CONFIG_ADDR_GET(i);
/* AQM Queue lower-group (0-31), only */
if (i < IX_QMGR_MIN_QUEUPP_QID) {
/* AQM Q underflow/overflow status reg address, per queue */
qi->qUOStatRegAddr = IX_QMGR_QUEUOSTAT0_OFFSET +
((i / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD) *
sizeof(uint32_t));
/* AQM Q underflow status bit masks for status reg per queue */
qi->qUflowStatBitMask =
(IX_QMGR_UNDERFLOW_BIT_OFFSET + 1) <<
((i & (IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD - 1)) *
(32 / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD));
/* AQM Q overflow status bit masks for status reg, per queue */
qi->qOflowStatBitMask =
(IX_QMGR_OVERFLOW_BIT_OFFSET + 1) <<
((i & (IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD - 1)) *
(32 / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD));
/* AQM Q lower-group (0-31) status reg addresses, per queue */
qi->qStatRegAddr = IX_QMGR_QUELOWSTAT0_OFFSET +
((i / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD) *
sizeof(uint32_t));
/* AQM Q lower-group (0-31) status register bit offset */
qi->qStatBitsOffset =
(i & (IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD - 1)) *
(32 / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD);
} else { /* AQM Q upper-group (32-63), only */
qi->qUOStatRegAddr = 0; /* XXX */
/* AQM Q upper-group (32-63) Nearly Empty status reg bitmasks */
qi->qStat0BitMask = (1 << (i - IX_QMGR_MIN_QUEUPP_QID));
/* AQM Q upper-group (32-63) Full status register bitmasks */
qi->qStat1BitMask = (1 << (i - IX_QMGR_MIN_QUEUPP_QID));
}
}
sc->aqmFreeSramAddress = 0x100; /* Q buffer space starts at 0x2100 */
ixpqmgr_rebuild(sc); /* build inital priority table */
aqm_reset(sc); /* reset h/w */
return (sc);
}
#ifdef __FreeBSD__
static void
ixpqmgr_detach(device_t dev)
{
struct ixpqmgr_softc *sc = device_get_softc(dev);
aqm_reset(sc); /* disable interrupts */
bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_rid, sc->sc_irq);
bus_space_unmap(sc->sc_iot, sc->sc_ioh, IXP425_QMGR_SIZE);
}
#endif
int
ixpqmgr_qconfig(int qId, int qEntries, int ne, int nf, int srcSel,
void (*cb)(int, void *), void *cbarg)
{
struct ixpqmgr_softc *sc = ixpqmgr_sc;
struct qmgrInfo *qi = &sc->qinfo[qId];
DPRINTF(sc->sc_dev, "%s(%u, %u, %u, %u, %u, %p, %p)\n",
__func__, qId, qEntries, ne, nf, srcSel, cb, cbarg);
/* NB: entry size is always 1 */
qi->qSizeInWords = qEntries;
qi->qReadCount = 0;
qi->qWriteCount = 0;
qi->qSizeInEntries = qEntries; /* XXX kept for code clarity */
if (cb == NULL) {
/* Reset to dummy callback */
qi->cb = dummyCallback;
qi->cbarg = 0;
} else {
qi->cb = cb;
qi->cbarg = cbarg;
}
/* Write the config register; NB must be AFTER qinfo setup */
aqm_qcfg(sc, qId, ne, nf);
/*
* Account for space just allocated to queue.
*/
sc->aqmFreeSramAddress += (qi->qSizeInWords * sizeof(uint32_t));
/* Set the interrupt source if this queue is in the range 0-31 */
if (qId < IX_QMGR_MIN_QUEUPP_QID)
aqm_srcsel_write(sc, qId, srcSel);
if (cb != NULL) /* Enable the interrupt */
aqm_int_enable(sc, qId);
sc->rebuildTable = true;
return 0; /* XXX */
}
int
ixpqmgr_qwrite(int qId, uint32_t entry)
{
struct ixpqmgr_softc *sc = ixpqmgr_sc;
struct qmgrInfo *qi = &sc->qinfo[qId];
DPRINTFn(3, sc->sc_dev, "%s(%u, 0x%x) writeCount %u size %u\n",
__func__, qId, entry, qi->qWriteCount, qi->qSizeInEntries);
/* write the entry */
aqm_reg_write(sc, qi->qAccRegAddr, entry);
/* NB: overflow is available for lower queues only */
if (qId < IX_QMGR_MIN_QUEUPP_QID) {
int qSize = qi->qSizeInEntries;
/*
* Increment the current number of entries in the queue
* and check for overflow .
*/
if (qi->qWriteCount++ == qSize) { /* check for overflow */
uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
int qPtrs;
/*
* Read the status twice because the status may
* not be immediately ready after the write operation
*/
if ((status & qi->qOflowStatBitMask) ||
((status = aqm_reg_read(sc, qi->qUOStatRegAddr)) & qi->qOflowStatBitMask)) {
/*
* The queue is full, clear the overflow status bit if set.
*/
aqm_reg_write(sc, qi->qUOStatRegAddr,
status & ~qi->qOflowStatBitMask);
qi->qWriteCount = qSize;
DPRINTFn(5, sc->sc_dev,
"%s(%u, 0x%x) Q full, overflow status cleared\n",
__func__, qId, entry);
return ENOSPC;
}
/*
* No overflow occured : someone is draining the queue
* and the current counter needs to be
* updated from the current number of entries in the queue
*/
/* calculate number of words in q */
qPtrs = aqm_reg_read(sc, qi->qConfigRegAddr);
DPRINTFn(2, sc->sc_dev,
"%s(%u, 0x%x) Q full, no overflow status, qConfig 0x%x\n",
__func__, qId, entry, qPtrs);
qPtrs = (qPtrs - (qPtrs >> 7)) & 0x7f;
if (qPtrs == 0) {
/*
* The queue may be full at the time of the
* snapshot. Next access will check
* the overflow status again.
*/
qi->qWriteCount = qSize;
} else {
/* convert the number of words to a number of entries */
qi->qWriteCount = qPtrs & (qSize - 1);
}
}
}
return 0;
}
int
ixpqmgr_qread(int qId, uint32_t *entry)
{
struct ixpqmgr_softc *sc = ixpqmgr_sc;
struct qmgrInfo *qi = &sc->qinfo[qId];
bus_size_t off = qi->qAccRegAddr;
*entry = aqm_reg_read(sc, off);
/*
* Reset the current read count : next access to the read function
* will force a underflow status check.
*/
qi->qReadCount = 0;
/* Check if underflow occurred on the read */
if (*entry == 0 && qId < IX_QMGR_MIN_QUEUPP_QID) {
/* get the queue status */
uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
if (status & qi->qUflowStatBitMask) { /* clear underflow status */
aqm_reg_write(sc, qi->qUOStatRegAddr,
status &~ qi->qUflowStatBitMask);
return ENOSPC;
}
}
return 0;
}
int
ixpqmgr_qreadm(int qId, uint32_t n, uint32_t *p)
{
struct ixpqmgr_softc *sc = ixpqmgr_sc;
struct qmgrInfo *qi = &sc->qinfo[qId];
uint32_t entry;
bus_size_t off = qi->qAccRegAddr;
entry = aqm_reg_read(sc, off);
while (--n) {
if (entry == 0) {
/* if we read a NULL entry, stop. We have underflowed */
break;
}
*p++ = entry; /* store */
entry = aqm_reg_read(sc, off);
}
*p = entry;
/*
* Reset the current read count : next access to the read function
* will force a underflow status check.
*/
qi->qReadCount = 0;
/* Check if underflow occurred on the read */
if (entry == 0 && qId < IX_QMGR_MIN_QUEUPP_QID) {
/* get the queue status */
uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
if (status & qi->qUflowStatBitMask) { /* clear underflow status */
aqm_reg_write(sc, qi->qUOStatRegAddr,
status &~ qi->qUflowStatBitMask);
return ENOSPC;
}
}
return 0;
}
uint32_t
ixpqmgr_getqstatus(int qId)
{
#define QLOWSTATMASK \
((1 << (32 / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD)) - 1)
struct ixpqmgr_softc *sc = ixpqmgr_sc;
const struct qmgrInfo *qi = &sc->qinfo[qId];
uint32_t status;
if (qId < IX_QMGR_MIN_QUEUPP_QID) {
/* read the status of a queue in the range 0-31 */
status = aqm_reg_read(sc, qi->qStatRegAddr);
/* mask out the status bits relevant only to this queue */
status = (status >> qi->qStatBitsOffset) & QLOWSTATMASK;
} else { /* read status of a queue in the range 32-63 */
status = 0;
if (aqm_reg_read(sc, IX_QMGR_QUEUPPSTAT0_OFFSET)&qi->qStat0BitMask)
status |= IX_QMGR_Q_STATUS_NE_BIT_MASK; /* nearly empty */
if (aqm_reg_read(sc, IX_QMGR_QUEUPPSTAT1_OFFSET)&qi->qStat1BitMask)
status |= IX_QMGR_Q_STATUS_F_BIT_MASK; /* full */
}
return status;
#undef QLOWSTATMASK
}
uint32_t
ixpqmgr_getqconfig(int qId)
{
struct ixpqmgr_softc *sc = ixpqmgr_sc;
return aqm_reg_read(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId));
}
void
ixpqmgr_dump(void)
{
struct ixpqmgr_softc *sc = ixpqmgr_sc;
int i, a;
/* status registers */
printf("0x%04x: %08x %08x %08x %08x\n"
, 0x400
, aqm_reg_read(sc, 0x400)
, aqm_reg_read(sc, 0x400+4)
, aqm_reg_read(sc, 0x400+8)
, aqm_reg_read(sc, 0x400+12)
);
printf("0x%04x: %08x %08x %08x %08x\n"
, 0x410
, aqm_reg_read(sc, 0x410)
, aqm_reg_read(sc, 0x410+4)
, aqm_reg_read(sc, 0x410+8)
, aqm_reg_read(sc, 0x410+12)
);
printf("0x%04x: %08x %08x %08x %08x\n"
, 0x420
, aqm_reg_read(sc, 0x420)
, aqm_reg_read(sc, 0x420+4)
, aqm_reg_read(sc, 0x420+8)
, aqm_reg_read(sc, 0x420+12)
);
printf("0x%04x: %08x %08x %08x %08x\n"
, 0x430
, aqm_reg_read(sc, 0x430)
, aqm_reg_read(sc, 0x430+4)
, aqm_reg_read(sc, 0x430+8)
, aqm_reg_read(sc, 0x430+12)
);
/* q configuration registers */
for (a = 0x2000; a < 0x20ff; a += 32)
printf("0x%04x: %08x %08x %08x %08x %08x %08x %08x %08x\n"
, a
, aqm_reg_read(sc, a)
, aqm_reg_read(sc, a+4)
, aqm_reg_read(sc, a+8)
, aqm_reg_read(sc, a+12)
, aqm_reg_read(sc, a+16)
, aqm_reg_read(sc, a+20)
, aqm_reg_read(sc, a+24)
, aqm_reg_read(sc, a+28)
);
/* allocated SRAM */
for (i = 0x100; i < sc->aqmFreeSramAddress; i += 32) {
a = 0x2000 + i;
printf("0x%04x: %08x %08x %08x %08x %08x %08x %08x %08x\n"
, a
, aqm_reg_read(sc, a)
, aqm_reg_read(sc, a+4)
, aqm_reg_read(sc, a+8)
, aqm_reg_read(sc, a+12)
, aqm_reg_read(sc, a+16)
, aqm_reg_read(sc, a+20)
, aqm_reg_read(sc, a+24)
, aqm_reg_read(sc, a+28)
);
}
for (i = 0; i < 16; i++) {
printf("Q[%2d] config 0x%08x status 0x%02x "
"Q[%2d] config 0x%08x status 0x%02x\n"
, i, ixpqmgr_getqconfig(i), ixpqmgr_getqstatus(i)
, i+16, ixpqmgr_getqconfig(i+16), ixpqmgr_getqstatus(i+16)
);
}
}
void
ixpqmgr_notify_enable(int qId, int srcSel)
{
struct ixpqmgr_softc *sc = ixpqmgr_sc;
#if 0
/* Calculate the checkMask and checkValue for this q */
aqm_calc_statuscheck(sc, qId, srcSel);
#endif
/* Set the interrupt source if this queue is in the range 0-31 */
if (qId < IX_QMGR_MIN_QUEUPP_QID)
aqm_srcsel_write(sc, qId, srcSel);
/* Enable the interrupt */
aqm_int_enable(sc, qId);
}
void
ixpqmgr_notify_disable(int qId)
{
struct ixpqmgr_softc *sc = ixpqmgr_sc;
aqm_int_disable(sc, qId);
}
/*
* Rebuild the priority table used by the dispatcher.
*/
static void
ixpqmgr_rebuild(struct ixpqmgr_softc *sc)
{
int q, pri;
int lowQuePriorityTableIndex, uppQuePriorityTableIndex;
struct qmgrInfo *qi;
sc->lowPriorityTableFirstHalfMask = 0;
sc->uppPriorityTableFirstHalfMask = 0;
lowQuePriorityTableIndex = 0;
uppQuePriorityTableIndex = 32;
for (pri = 0; pri < IX_QMGR_NUM_PRIORITY_LEVELS; pri++) {
/* low priority q's */
for (q = 0; q < IX_QMGR_MIN_QUEUPP_QID; q++) {
qi = &sc->qinfo[q];
if (qi->priority == pri) {
/*
* Build the priority table bitmask which match the
* queues of the first half of the priority table.
*/
if (lowQuePriorityTableIndex < 16) {
sc->lowPriorityTableFirstHalfMask |=
qi->intRegCheckMask;
}
sc->priorityTable[lowQuePriorityTableIndex++] = q;
}
}
/* high priority q's */
for (; q < IX_QMGR_MAX_NUM_QUEUES; q++) {
qi = &sc->qinfo[q];
if (qi->priority == pri) {
/*
* Build the priority table bitmask which match the
* queues of the first half of the priority table .
*/
if (uppQuePriorityTableIndex < 48) {
sc->uppPriorityTableFirstHalfMask |=
qi->intRegCheckMask;
}
sc->priorityTable[uppQuePriorityTableIndex++] = q;
}
}
}
sc->rebuildTable = false;
}
/*
* Count the number of leading zero bits in a word,
* and return the same value than the CLZ instruction.
* Note this is similar to the standard ffs function but
* it counts zero's from the MSB instead of the LSB.
*
* word (in) return value (out)
* 0x80000000 0
* 0x40000000 1
* ,,, ,,,
* 0x00000002 30
* 0x00000001 31
* 0x00000000 32
*
* The C version of this function is used as a replacement
* for system not providing the equivalent of the CLZ
* assembly language instruction.
*
* Note that this version is big-endian
*/
static unsigned int
_lzcount(uint32_t word)
{
unsigned int lzcount = 0;
if (word == 0)
return 32;
while ((word & 0x80000000) == 0) {
word <<= 1;
lzcount++;
}
return lzcount;
}
static int
ixpqmgr_intr(void *arg)
{
struct ixpqmgr_softc *sc = ixpqmgr_sc;
uint32_t intRegVal; /* Interrupt reg val */
struct qmgrInfo *qi;
int priorityTableIndex; /* Priority table index */
int qIndex; /* Current queue being processed */
/* Read the interrupt register */
intRegVal = aqm_reg_read(sc, IX_QMGR_QINTREG0_OFFSET);
/* Write back to clear interrupt */
aqm_reg_write(sc, IX_QMGR_QINTREG0_OFFSET, intRegVal);
DPRINTFn(5, sc->sc_dev, "%s: ISR0 0x%x ISR1 0x%x\n",
__func__, intRegVal, aqm_reg_read(sc, IX_QMGR_QINTREG1_OFFSET));
/* No queue has interrupt register set */
if (intRegVal != 0) {
/* get the first queue Id from the interrupt register value */
qIndex = (32 - 1) - _lzcount(intRegVal);
DPRINTFn(2, sc->sc_dev, "%s: ISR0 0x%x qIndex %u\n",
__func__, intRegVal, qIndex);
/*
* Optimize for single callback case.
*/
qi = &sc->qinfo[qIndex];
if (intRegVal == qi->intRegCheckMask) {
/*
* Only 1 queue event triggered a notification.
* Call the callback function for this queue
*/
qi->cb(qIndex, qi->cbarg);
} else {
/*
* The event is triggered by more than 1 queue,
* the queue search will start from the beginning
* or the middle of the priority table.
*
* The search will end when all the bits of the interrupt
* register are cleared. There is no need to maintain
* a separate value and test it at each iteration.
*/
if (intRegVal & sc->lowPriorityTableFirstHalfMask) {
priorityTableIndex = 0;
} else {
priorityTableIndex = 16;
}
/*
* Iterate over the priority table until all the bits
* of the interrupt register are cleared.
*/
do {
qIndex = sc->priorityTable[priorityTableIndex++];
if (qIndex >= IX_QMGR_MAX_NUM_QUEUES)
break;
qi = &sc->qinfo[qIndex];
/* If this queue caused this interrupt to be raised */
if (intRegVal & qi->intRegCheckMask) {
/* Call the callback function for this queue */
qi->cb(qIndex, qi->cbarg);
/* Clear the interrupt register bit */
intRegVal &= ~qi->intRegCheckMask;
}
} while (intRegVal &&
priorityTableIndex < IX_QMGR_MAX_NUM_QUEUES);
}
}
/* Rebuild the priority table if needed */
if (sc->rebuildTable)
ixpqmgr_rebuild(sc);
return (1);
}
#if 0
/*
* Generate the parameters used to check if a Q's status matches
* the specified source select. We calculate which status word
* to check (statusWordOffset), the value to check the status
* against (statusCheckValue) and the mask (statusMask) to mask
* out all but the bits to check in the status word.
*/
static void
aqm_calc_statuscheck(int qId, IxQMgrSourceId srcSel)
{
struct qmgrInfo *qi = &qinfo[qId];
uint32_t shiftVal;
if (qId < IX_QMGR_MIN_QUEUPP_QID) {
switch (srcSel) {
case IX_QMGR_Q_SOURCE_ID_E:
qi->statusCheckValue = IX_QMGR_Q_STATUS_E_BIT_MASK;
qi->statusMask = IX_QMGR_Q_STATUS_E_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_NE:
qi->statusCheckValue = IX_QMGR_Q_STATUS_NE_BIT_MASK;
qi->statusMask = IX_QMGR_Q_STATUS_NE_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_NF:
qi->statusCheckValue = IX_QMGR_Q_STATUS_NF_BIT_MASK;
qi->statusMask = IX_QMGR_Q_STATUS_NF_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_F:
qi->statusCheckValue = IX_QMGR_Q_STATUS_F_BIT_MASK;
qi->statusMask = IX_QMGR_Q_STATUS_F_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_NOT_E:
qi->statusCheckValue = 0;
qi->statusMask = IX_QMGR_Q_STATUS_E_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_NOT_NE:
qi->statusCheckValue = 0;
qi->statusMask = IX_QMGR_Q_STATUS_NE_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_NOT_NF:
qi->statusCheckValue = 0;
qi->statusMask = IX_QMGR_Q_STATUS_NF_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_NOT_F:
qi->statusCheckValue = 0;
qi->statusMask = IX_QMGR_Q_STATUS_F_BIT_MASK;
break;
default:
/* Should never hit */
IX_OSAL_ASSERT(0);
break;
}
/* One nibble of status per queue so need to shift the
* check value and mask out to the correct position.
*/
shiftVal = (qId % IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD) *
IX_QMGR_QUELOWSTAT_BITS_PER_Q;
/* Calculate the which status word to check from the qId,
* 8 Qs status per word
*/
qi->statusWordOffset = qId / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD;
qi->statusCheckValue <<= shiftVal;
qi->statusMask <<= shiftVal;
} else {
/* One status word */
qi->statusWordOffset = 0;
/* Single bits per queue and int source bit hardwired NE,
* Qs start at 32.
*/
qi->statusMask = 1 << (qId - IX_QMGR_MIN_QUEUPP_QID);
qi->statusCheckValue = qi->statusMask;
}
}
#endif
static void
aqm_int_enable(struct ixpqmgr_softc *sc, int qId)
{
bus_size_t reg;
uint32_t v;
if (qId < IX_QMGR_MIN_QUEUPP_QID)
reg = IX_QMGR_QUEIEREG0_OFFSET;
else
reg = IX_QMGR_QUEIEREG1_OFFSET;
v = aqm_reg_read(sc, reg);
aqm_reg_write(sc, reg, v | (1 << (qId % IX_QMGR_MIN_QUEUPP_QID)));
DPRINTF(sc->sc_dev, "%s(%u) 0x%lx: 0x%x => 0x%x\n",
__func__, qId, reg, v, aqm_reg_read(sc, reg));
}
static void
aqm_int_disable(struct ixpqmgr_softc *sc, int qId)
{
bus_size_t reg;
uint32_t v;
if (qId < IX_QMGR_MIN_QUEUPP_QID)
reg = IX_QMGR_QUEIEREG0_OFFSET;
else
reg = IX_QMGR_QUEIEREG1_OFFSET;
v = aqm_reg_read(sc, reg);
aqm_reg_write(sc, reg, v &~ (1 << (qId % IX_QMGR_MIN_QUEUPP_QID)));
DPRINTF(sc->sc_dev, "%s(%u) 0x%lx: 0x%x => 0x%x\n",
__func__, qId, reg, v, aqm_reg_read(sc, reg));
}
static unsigned
log2(unsigned n)
{
unsigned count;
/*
* N.B. this function will return 0 if supplied 0.
*/
for (count = 0; n/2; count++)
n /= 2;
return count;
}
static __inline unsigned
toAqmEntrySize(int entrySize)
{
/* entrySize 1("00"),2("01"),4("10") */
return log2(entrySize);
}
static __inline unsigned
toAqmBufferSize(unsigned bufferSizeInWords)
{
/* bufferSize 16("00"),32("01),64("10"),128("11") */
return log2(bufferSizeInWords / IX_QMGR_MIN_BUFFER_SIZE);
}
static __inline unsigned
toAqmWatermark(int watermark)
{
/*
* Watermarks 0("000"),1("001"),2("010"),4("011"),
* 8("100"),16("101"),32("110"),64("111")
*/
return log2(2 * watermark);
}
static void
aqm_qcfg(struct ixpqmgr_softc *sc, int qId, u_int ne, u_int nf)
{
const struct qmgrInfo *qi = &sc->qinfo[qId];
uint32_t qCfg;
uint32_t baseAddress;
/* Build config register */
qCfg = ((toAqmEntrySize(1) & IX_QMGR_ENTRY_SIZE_MASK) <<
IX_QMGR_Q_CONFIG_ESIZE_OFFSET)
| ((toAqmBufferSize(qi->qSizeInWords) & IX_QMGR_SIZE_MASK) <<
IX_QMGR_Q_CONFIG_BSIZE_OFFSET);
/* baseAddress, calculated relative to start address */
baseAddress = sc->aqmFreeSramAddress;
/* base address must be word-aligned */
KASSERT((baseAddress % IX_QMGR_BASE_ADDR_16_WORD_ALIGN) == 0);
/* Now convert to a 16 word pointer as required by QUECONFIG register */
baseAddress >>= IX_QMGR_BASE_ADDR_16_WORD_SHIFT;
qCfg |= baseAddress << IX_QMGR_Q_CONFIG_BADDR_OFFSET;
/* set watermarks */
qCfg |= (toAqmWatermark(ne) << IX_QMGR_Q_CONFIG_NE_OFFSET)
| (toAqmWatermark(nf) << IX_QMGR_Q_CONFIG_NF_OFFSET);
DPRINTF(sc->sc_dev, "%s(%u, %u, %u) 0x%x => 0x%x @ 0x%x\n",
__func__, qId, ne, nf,
aqm_reg_read(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId)),
qCfg, (u_int)IX_QMGR_Q_CONFIG_ADDR_GET(qId));
aqm_reg_write(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId), qCfg);
}
static void
aqm_srcsel_write(struct ixpqmgr_softc *sc, int qId, int sourceId)
{
bus_size_t off;
uint32_t v;
/*
* Calculate the register offset; multiple queues split across registers
*/
off = IX_QMGR_INT0SRCSELREG0_OFFSET +
((qId / IX_QMGR_INTSRC_NUM_QUE_PER_WORD) * sizeof(uint32_t));
v = aqm_reg_read(sc, off);
if (off == IX_QMGR_INT0SRCSELREG0_OFFSET && qId == 0) {
/* Queue 0 at INT0SRCSELREG should not corrupt the value bit-3 */
v |= 0x7;
} else {
const uint32_t bpq = 32 / IX_QMGR_INTSRC_NUM_QUE_PER_WORD;
uint32_t mask;
int qshift;
qshift = (qId & (IX_QMGR_INTSRC_NUM_QUE_PER_WORD-1)) * bpq;
mask = ((1 << bpq) - 1) << qshift; /* q's status mask */
/* merge sourceId */
v = (v &~ mask) | ((sourceId << qshift) & mask);
}
DPRINTF(sc->sc_dev, "%s(%u, %u) 0x%x => 0x%x @ 0x%lx\n",
__func__, qId, sourceId, aqm_reg_read(sc, off), v, off);
aqm_reg_write(sc, off, v);
}
/*
* Reset AQM registers to default values.
*/
static void
aqm_reset(struct ixpqmgr_softc *sc)
{
int i;
/* Reset queues 0..31 status registers 0..3 */
aqm_reg_write(sc, IX_QMGR_QUELOWSTAT0_OFFSET,
IX_QMGR_QUELOWSTAT_RESET_VALUE);
aqm_reg_write(sc, IX_QMGR_QUELOWSTAT1_OFFSET,
IX_QMGR_QUELOWSTAT_RESET_VALUE);
aqm_reg_write(sc, IX_QMGR_QUELOWSTAT2_OFFSET,
IX_QMGR_QUELOWSTAT_RESET_VALUE);
aqm_reg_write(sc, IX_QMGR_QUELOWSTAT3_OFFSET,
IX_QMGR_QUELOWSTAT_RESET_VALUE);
/* Reset underflow/overflow status registers 0..1 */
aqm_reg_write(sc, IX_QMGR_QUEUOSTAT0_OFFSET,
IX_QMGR_QUEUOSTAT_RESET_VALUE);
aqm_reg_write(sc, IX_QMGR_QUEUOSTAT1_OFFSET,
IX_QMGR_QUEUOSTAT_RESET_VALUE);
/* Reset queues 32..63 nearly empty status registers */
aqm_reg_write(sc, IX_QMGR_QUEUPPSTAT0_OFFSET,
IX_QMGR_QUEUPPSTAT0_RESET_VALUE);
/* Reset queues 32..63 full status registers */
aqm_reg_write(sc, IX_QMGR_QUEUPPSTAT1_OFFSET,
IX_QMGR_QUEUPPSTAT1_RESET_VALUE);
/* Reset int0 status flag source select registers 0..3 */
aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG0_OFFSET,
IX_QMGR_INT0SRCSELREG_RESET_VALUE);
aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG1_OFFSET,
IX_QMGR_INT0SRCSELREG_RESET_VALUE);
aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG2_OFFSET,
IX_QMGR_INT0SRCSELREG_RESET_VALUE);
aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG3_OFFSET,
IX_QMGR_INT0SRCSELREG_RESET_VALUE);
/* Reset queue interrupt enable register 0..1 */
aqm_reg_write(sc, IX_QMGR_QUEIEREG0_OFFSET,
IX_QMGR_QUEIEREG_RESET_VALUE);
aqm_reg_write(sc, IX_QMGR_QUEIEREG1_OFFSET,
IX_QMGR_QUEIEREG_RESET_VALUE);
/* Reset queue interrupt register 0..1 */
aqm_reg_write(sc, IX_QMGR_QINTREG0_OFFSET, IX_QMGR_QINTREG_RESET_VALUE);
aqm_reg_write(sc, IX_QMGR_QINTREG1_OFFSET, IX_QMGR_QINTREG_RESET_VALUE);
/* Reset queue configuration words 0..63 */
for (i = 0; i < IX_QMGR_MAX_NUM_QUEUES; i++)
aqm_reg_write(sc, sc->qinfo[i].qConfigRegAddr,
IX_QMGR_QUECONFIG_RESET_VALUE);
/* XXX zero SRAM to simplify debugging */
for (i = IX_QMGR_QUEBUFFER_SPACE_OFFSET;
i < IX_QMGR_AQM_SRAM_SIZE_IN_BYTES; i += sizeof(uint32_t))
aqm_reg_write(sc, i, 0);
}
#ifdef __FreeBSD__
static device_method_t ixpqmgr_methods[] = {
DEVMETHOD(device_probe, ixpqmgr_probe),
DEVMETHOD(device_attach, ixpqmgr_attach),
DEVMETHOD(device_detach, ixpqmgr_detach),
{ 0, 0 }
};
static driver_t ixpqmgr_driver = {
"ixpqmgr",
ixpqmgr_methods,
sizeof(struct ixpqmgr_softc),
};
static devclass_t ixpqmgr_devclass;
DRIVER_MODULE(ixpqmgr, ixp, ixpqmgr_driver, ixpqmgr_devclass, 0, 0);
#endif