/* $NetBSD: acpi_pmtr.c,v 1.8 2015/04/23 23:23:00 pgoyette Exp $ */
/*-
* Copyright (c) 2011 Jukka Ruohonen <jruohonen@iki.fi>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi_pmtr.c,v 1.8 2015/04/23 23:23:00 pgoyette Exp $");
#include <sys/param.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <dev/acpi/acpireg.h>
#include <dev/acpi/acpivar.h>
#include <dev/sysmon/sysmonvar.h>
#define _COMPONENT ACPI_RESOURCE_COMPONENT
ACPI_MODULE_NAME ("acpi_pmtr")
#define ACPIPMTR_CAP_FLAGS 0
#define ACPIPMTR_CAP_UNIT 1
#define ACPIPMTR_CAP_TYPE 2
#define ACPIPMTR_CAP_ACCURACY 3
#define ACPIPMTR_CAP_SAMPLING 4
#define ACPIPMTR_CAP_IVAL_MIN 5
#define ACPIPMTR_CAP_IVAL_MAX 6
#define ACPIPMTR_CAP_HYSTERESIS 7
#define ACPIPMTR_CAP_HWLIMIT 8
#define ACPIPMTR_CAP_HWLIMIT_MIN 9
#define ACPIPMTR_CAP_HWLIMIT_MAX 10
#define ACPIPMTR_CAP_COUNT 11
/* ACPIPMTR_CAP_MODEL 11 */
/* ACPIPMTR_CAP_SERIAL 12 */
/* ACPIPMTR_CAP_OEM 13 */
#define ACPIPMTR_FLAGS_MEASURE __BIT(0)
#define ACPIPMTR_FLAGS_TRIP __BIT(1)
#define ACPIPMTR_FLAGS_HWLIMIT __BIT(2)
#define ACPIPMTR_FLAGS_NOTIFY __BIT(3)
#define ACPIPMTR_FLAGS_DISCHARGE __BIT(8)
#define ACPIPMTR_POWER_INPUT 0x00
#define ACPIPMTR_POWER_OUTPUT 0x01
#define ACPIPMTR_NOTIFY_CAP 0x80
#define ACPIPMTR_NOTIFY_TRIP 0x81
#define ACPIPMTR_NOTIFY_HWLIMIT1 0x82
#define ACPIPMTR_NOTIFY_HWLIMIT2 0x83
#define ACPIPMTR_NOTIFY_INTERVAL 0x84
struct acpipmtr_softc {
device_t sc_dev;
struct acpi_devnode *sc_node;
struct sysmon_envsys *sc_sme;
envsys_data_t sc_sensor_i;
envsys_data_t sc_sensor_o;
uint32_t sc_cap[ACPIPMTR_CAP_COUNT];
int32_t sc_interval;
kmutex_t sc_mtx;
};
const char * const acpi_pmtr_ids[] = {
"ACPI000D",
NULL
};
static int acpipmtr_match(device_t, cfdata_t, void *);
static void acpipmtr_attach(device_t, device_t, void *);
static int acpipmtr_detach(device_t, int);
static bool acpipmtr_cap_get(device_t, bool);
static bool acpipmtr_dev_print(device_t);
static bool acpipmtr_sensor_init(device_t);
static void acpipmtr_sensor_type(device_t);
static int32_t acpipmtr_sensor_get(device_t, const char *);
static int32_t acpipmtr_sensor_get_reading(device_t);
static int32_t acpipmtr_sensor_get_interval(device_t);
static void acpipmtr_sensor_refresh(struct sysmon_envsys*,envsys_data_t *);
static void acpipmtr_notify(ACPI_HANDLE, uint32_t, void *);
CFATTACH_DECL_NEW(acpipmtr, sizeof(struct acpipmtr_softc),
acpipmtr_match, acpipmtr_attach, acpipmtr_detach, NULL);
static int
acpipmtr_match(device_t parent, cfdata_t match, void *aux)
{
struct acpi_attach_args *aa = aux;
if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE)
return 0;
return acpi_match_hid(aa->aa_node->ad_devinfo, acpi_pmtr_ids);
}
static void
acpipmtr_attach(device_t parent, device_t self, void *aux)
{
struct acpipmtr_softc *sc = device_private(self);
struct acpi_attach_args *aa = aux;
uint32_t acc;
sc->sc_sme = NULL;
sc->sc_dev = self;
sc->sc_node = aa->aa_node;
aprint_naive("\n");
aprint_normal(": ACPI Power Meter\n");
(void)pmf_device_register(self, NULL, NULL);
mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
if (acpipmtr_cap_get(self, true) != true)
return;
if (acpipmtr_sensor_init(self) != true)
return;
(void)acpipmtr_dev_print(self);
(void)acpi_register_notify(sc->sc_node, acpipmtr_notify);
if ((acc = sc->sc_cap[ACPIPMTR_CAP_ACCURACY]) == 0)
acc = 100000;
aprint_verbose_dev(self,
"measuring %s power at %u.%u %% accuracy, %u ms sampling\n",
(sc->sc_cap[ACPIPMTR_CAP_TYPE] != 0) ? "output" : "input",
acc / 1000, acc % 1000, sc->sc_cap[ACPIPMTR_CAP_SAMPLING]);
aprint_debug_dev(self, "%s hw-limits, capabilities 0x%02x\n",
(sc->sc_cap[ACPIPMTR_CAP_HWLIMIT] != 0) ? "rw" : "ro",
sc->sc_cap[ACPIPMTR_CAP_FLAGS]);
}
static int
acpipmtr_detach(device_t self, int flags)
{
struct acpipmtr_softc *sc = device_private(self);
pmf_device_deregister(self);
acpi_deregister_notify(sc->sc_node);
if (sc->sc_sme != NULL)
sysmon_envsys_unregister(sc->sc_sme);
mutex_destroy(&sc->sc_mtx);
return 0;
}
static bool
acpipmtr_cap_get(device_t self, bool print)
{
struct acpipmtr_softc *sc = device_private(self);
ACPI_OBJECT *elm, *obj;
ACPI_BUFFER buf;
ACPI_STATUS rv;
uint32_t i;
for (i = 0; i < __arraycount(sc->sc_cap); i++)
sc->sc_cap[i] = 0;
rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PMC", &buf);
if (ACPI_FAILURE(rv))
goto out;
obj = buf.Pointer;
if (obj->Type != ACPI_TYPE_PACKAGE) {
rv = AE_TYPE;
goto out;
}
elm = obj->Package.Elements;
if (obj->Package.Count != 14) {
rv = AE_LIMIT;
goto out;
}
CTASSERT(__arraycount(sc->sc_cap) == 11);
for (i = 0; i < __arraycount(sc->sc_cap); i++) {
if (elm[i].Type != ACPI_TYPE_INTEGER) {
rv = AE_TYPE;
goto out;
}
if (elm[i].Integer.Value > UINT32_MAX) {
rv = AE_AML_NUMERIC_OVERFLOW;
goto out;
}
sc->sc_cap[i] = elm[i].Integer.Value;
}
if (print != true)
goto out;
for (; i < 14; i++) {
if (elm[i].Type != ACPI_TYPE_STRING)
goto out;
if (elm[i].String.Pointer == NULL)
goto out;
if (elm[i].String.Pointer[0] == '\0')
goto out;
}
aprint_debug_dev(self, "%s, serial %s, "
"model %s\n", elm[13].String.Pointer,
elm[12].String.Pointer, elm[11].String.Pointer);
out:
if (ACPI_FAILURE(rv))
aprint_error_dev(self, "failed to evaluate _PMC: %s\n",
AcpiFormatException(rv));
if (buf.Pointer != NULL)
ACPI_FREE(buf.Pointer);
return (rv != AE_OK) ? false : true;
}
static bool
acpipmtr_dev_print(device_t self)
{
struct acpipmtr_softc *sc = device_private(self);
struct acpi_devnode *ad;
ACPI_OBJECT *elm, *obj;
ACPI_BUFFER buf;
ACPI_HANDLE hdl;
ACPI_STATUS rv;
uint32_t i, n;
/*
* The _PMD method returns a package of devices whose total power
* drawn should roughly correspond with the readings from the meter.
*/
rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PMD", &buf);
if (ACPI_FAILURE(rv))
goto out;
obj = buf.Pointer;
if (obj->Type != ACPI_TYPE_PACKAGE) {
rv = AE_TYPE;
goto out;
}
n = obj->Package.Count;
if (n == 0) {
rv = AE_LIMIT;
goto out;
}
aprint_debug_dev(self, "measured devices: ");
for (i = 0; i < n; i++) {
elm = &obj->Package.Elements[i];
rv = acpi_eval_reference_handle(elm, &hdl);
if (ACPI_FAILURE(rv))
continue;
ad = acpi_match_node(hdl);
if (ad == NULL)
continue;
aprint_debug("%s ", ad->ad_name);
}
aprint_debug("\n");
out:
if (ACPI_FAILURE(rv))
aprint_debug_dev(self, "failed to evaluate _PMD: %s\n",
AcpiFormatException(rv));
if (buf.Pointer != NULL)
ACPI_FREE(buf.Pointer);
return (rv != AE_OK) ? false : true;
}
static bool
acpipmtr_sensor_init(device_t self)
{
struct acpipmtr_softc *sc = device_private(self);
const size_t siz = sizeof(sc->sc_sensor_i.desc);
int32_t val;
val = acpipmtr_sensor_get_reading(self);
sc->sc_interval = acpipmtr_sensor_get_interval(self);
if (val < 0) {
aprint_error_dev(self, "failed to get sensor reading\n");
return false;
}
/* Always mW in ACPI 4.0. */
if (sc->sc_cap[ACPIPMTR_CAP_UNIT] != 0)
aprint_error_dev(self, "invalid measurement unit\n");
sc->sc_sme = sysmon_envsys_create();
sc->sc_sensor_i.units = ENVSYS_SWATTS;
sc->sc_sensor_o.units = ENVSYS_SWATTS;
sc->sc_sensor_i.value_cur = val * 1000;
sc->sc_sensor_o.value_cur = val * 1000;
acpipmtr_sensor_type(self);
(void)strlcpy(sc->sc_sensor_i.desc, "input power", siz);
(void)strlcpy(sc->sc_sensor_o.desc, "output power", siz);
sc->sc_sme->sme_cookie = self;
sc->sc_sme->sme_flags = SME_POLL_ONLY;
sc->sc_sme->sme_name = device_xname(self);
sc->sc_sme->sme_refresh = acpipmtr_sensor_refresh;
if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_i) != 0)
goto fail;
if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_o) != 0)
goto fail;
if (sysmon_envsys_register(sc->sc_sme) != 0)
goto fail;
return true;
fail:
aprint_error_dev(self, "failed to initialize sysmon\n");
sysmon_envsys_destroy(sc->sc_sme);
sc->sc_sme = NULL;
return false;
}
static void
acpipmtr_sensor_type(device_t self)
{
struct acpipmtr_softc *sc = device_private(self);
mutex_enter(&sc->sc_mtx);
switch (sc->sc_cap[ACPIPMTR_CAP_TYPE]) {
case ACPIPMTR_POWER_INPUT:
sc->sc_sensor_i.state = ENVSYS_SVALID;
sc->sc_sensor_o.state = ENVSYS_SINVALID;
break;
case ACPIPMTR_POWER_OUTPUT:
sc->sc_sensor_i.state = ENVSYS_SINVALID;
sc->sc_sensor_o.state = ENVSYS_SVALID;
break;
default:
sc->sc_sensor_i.state = ENVSYS_SINVALID;
sc->sc_sensor_o.state = ENVSYS_SINVALID;
break;
}
mutex_exit(&sc->sc_mtx);
}
static int32_t
acpipmtr_sensor_get(device_t self, const char *path)
{
struct acpipmtr_softc *sc = device_private(self);
ACPI_INTEGER val = 0;
ACPI_STATUS rv;
rv = acpi_eval_integer(sc->sc_node->ad_handle, path, &val);
if (ACPI_FAILURE(rv))
goto fail;
if (val == 0 || val > INT32_MAX) {
rv = AE_LIMIT;
goto fail;
}
return val;
fail:
aprint_debug_dev(self, "failed to evaluate "
"%s: %s\n", path, AcpiFormatException(rv));
return -1;
}
static int32_t
acpipmtr_sensor_get_reading(device_t self)
{
return acpipmtr_sensor_get(self, "_PMM");
}
static int32_t
acpipmtr_sensor_get_interval(device_t self)
{
return acpipmtr_sensor_get(self, "_GAI");
}
static void
acpipmtr_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
{
device_t self = sme->sme_cookie;
struct acpipmtr_softc *sc;
int32_t val;
sc = device_private(self);
sc->sc_sensor_i.state = ENVSYS_SINVALID;
sc->sc_sensor_o.state = ENVSYS_SINVALID;
val = acpipmtr_sensor_get_reading(self) * 1000;
if (val < 0)
return;
sc->sc_sensor_i.value_cur = val;
sc->sc_sensor_o.value_cur = val;
acpipmtr_sensor_type(self);
}
static void
acpipmtr_notify(ACPI_HANDLE hdl, uint32_t evt, void *aux)
{
struct acpipmtr_softc *sc;
device_t self = aux;
int32_t val;
sc = device_private(self);
switch (evt) {
case ACPIPMTR_NOTIFY_CAP:
mutex_enter(&sc->sc_mtx);
if (acpipmtr_cap_get(self, false) != true) {
mutex_exit(&sc->sc_mtx);
break;
}
mutex_exit(&sc->sc_mtx);
acpipmtr_sensor_type(self);
break;
case ACPIPMTR_NOTIFY_INTERVAL:
val = acpipmtr_sensor_get_interval(self);
if (val < 0 || val == sc->sc_interval)
break;
aprint_debug_dev(self, "averaging interval changed "
"from %u ms to %u ms\n", sc->sc_interval, val);
sc->sc_interval = val;
break;
case ACPIPMTR_NOTIFY_TRIP: /* AE_SUPPORT */
case ACPIPMTR_NOTIFY_HWLIMIT1: /* AE_SUPPORT */
case ACPIPMTR_NOTIFY_HWLIMIT2: /* AE_SUPPORT */
break;
default:
aprint_debug_dev(self, "unknown notify 0x%02x\n", evt);
}
}
MODULE(MODULE_CLASS_DRIVER, acpipmtr, "sysmon_envsys");
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
acpipmtr_modcmd(modcmd_t cmd, void *aux)
{
int rv = 0;
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
rv = config_init_component(cfdriver_ioconf_acpipmtr,
cfattach_ioconf_acpipmtr, cfdata_ioconf_acpipmtr);
#endif
break;
case MODULE_CMD_FINI:
#ifdef _MODULE
rv = config_fini_component(cfdriver_ioconf_acpipmtr,
cfattach_ioconf_acpipmtr, cfdata_ioconf_acpipmtr);
#endif
break;
default:
rv = ENOTTY;
}
return rv;
}