/* $NetBSD: usbdi.c,v 1.182.4.5 2020/07/18 15:09:28 martin Exp $ */
/*
* Copyright (c) 1998, 2012, 2015 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (lennart@augustsson.net) at
* Carlstedt Research & Technology, Matthew R. Green (mrg@eterna.com.au),
* and Nick Hudson.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: usbdi.c,v 1.182.4.5 2020/07/18 15:09:28 martin Exp $");
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#include "opt_compat_netbsd.h"
#include "usb_dma.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/kmem.h>
#include <sys/proc.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usb_mem.h>
#include <dev/usb/usb_quirks.h>
#include <dev/usb/usbhist.h>
/* UTF-8 encoding stuff */
#include <fs/unicode.h>
extern int usbdebug;
Static usbd_status usbd_ar_pipe(struct usbd_pipe *);
Static void usbd_start_next(struct usbd_pipe *);
Static usbd_status usbd_open_pipe_ival
(struct usbd_interface *, uint8_t, uint8_t, struct usbd_pipe **, int);
static void *usbd_alloc_buffer(struct usbd_xfer *, uint32_t);
static void usbd_free_buffer(struct usbd_xfer *);
static struct usbd_xfer *usbd_alloc_xfer(struct usbd_device *, unsigned int);
static usbd_status usbd_free_xfer(struct usbd_xfer *);
static void usbd_request_async_cb(struct usbd_xfer *, void *, usbd_status);
static void usbd_xfer_timeout(void *);
static void usbd_xfer_timeout_task(void *);
static bool usbd_xfer_probe_timeout(struct usbd_xfer *);
static void usbd_xfer_cancel_timeout_async(struct usbd_xfer *);
#if defined(USB_DEBUG)
void
usbd_dump_iface(struct usbd_interface *iface)
{
USBHIST_FUNC();
USBHIST_CALLARGS(usbdebug, "iface %#jx", (uintptr_t)iface, 0, 0, 0);
if (iface == NULL)
return;
USBHIST_LOG(usbdebug, " device = %#jx idesc = %#jx index = %d",
(uintptr_t)iface->ui_dev, (uintptr_t)iface->ui_idesc,
iface->ui_index, 0);
USBHIST_LOG(usbdebug, " altindex=%d priv=%#jx",
iface->ui_altindex, (uintptr_t)iface->ui_priv, 0, 0);
}
void
usbd_dump_device(struct usbd_device *dev)
{
USBHIST_FUNC();
USBHIST_CALLARGS(usbdebug, "dev = %#jx", (uintptr_t)dev, 0, 0, 0);
if (dev == NULL)
return;
USBHIST_LOG(usbdebug, " bus = %#jx default_pipe = %#jx",
(uintptr_t)dev->ud_bus, (uintptr_t)dev->ud_pipe0, 0, 0);
USBHIST_LOG(usbdebug, " address = %jd config = %jd depth = %jd ",
dev->ud_addr, dev->ud_config, dev->ud_depth, 0);
USBHIST_LOG(usbdebug, " speed = %jd self_powered = %jd "
"power = %jd langid = %jd",
dev->ud_speed, dev->ud_selfpowered, dev->ud_power, dev->ud_langid);
}
void
usbd_dump_endpoint(struct usbd_endpoint *endp)
{
USBHIST_FUNC();
USBHIST_CALLARGS(usbdebug, "endp = %#jx", (uintptr_t)endp, 0, 0, 0);
if (endp == NULL)
return;
USBHIST_LOG(usbdebug, " edesc = %#jx refcnt = %jd",
(uintptr_t)endp->ue_edesc, endp->ue_refcnt, 0, 0);
if (endp->ue_edesc)
USBHIST_LOG(usbdebug, " bEndpointAddress=0x%02x",
endp->ue_edesc->bEndpointAddress, 0, 0, 0);
}
void
usbd_dump_queue(struct usbd_pipe *pipe)
{
struct usbd_xfer *xfer;
USBHIST_FUNC();
USBHIST_CALLARGS(usbdebug, "pipe = %#jx", (uintptr_t)pipe, 0, 0, 0);
SIMPLEQ_FOREACH(xfer, &pipe->up_queue, ux_next) {
USBHIST_LOG(usbdebug, " xfer = %#jx", (uintptr_t)xfer,
0, 0, 0);
}
}
void
usbd_dump_pipe(struct usbd_pipe *pipe)
{
USBHIST_FUNC();
USBHIST_CALLARGS(usbdebug, "pipe = %#jx", (uintptr_t)pipe, 0, 0, 0);
if (pipe == NULL)
return;
usbd_dump_iface(pipe->up_iface);
usbd_dump_device(pipe->up_dev);
usbd_dump_endpoint(pipe->up_endpoint);
USBHIST_LOG(usbdebug, "(usbd_dump_pipe)", 0, 0, 0, 0);
USBHIST_LOG(usbdebug, " running = %jd aborting = %jd",
pipe->up_running, pipe->up_aborting, 0, 0);
USBHIST_LOG(usbdebug, " intrxfer = %#jx, repeat = %jd, "
"interval = %jd", (uintptr_t)pipe->up_intrxfer, pipe->up_repeat,
pipe->up_interval, 0);
}
#endif
usbd_status
usbd_open_pipe(struct usbd_interface *iface, uint8_t address,
uint8_t flags, struct usbd_pipe **pipe)
{
return (usbd_open_pipe_ival(iface, address, flags, pipe,
USBD_DEFAULT_INTERVAL));
}
usbd_status
usbd_open_pipe_ival(struct usbd_interface *iface, uint8_t address,
uint8_t flags, struct usbd_pipe **pipe, int ival)
{
struct usbd_pipe *p;
struct usbd_endpoint *ep;
usbd_status err;
int i;
USBHIST_FUNC();
USBHIST_CALLARGS(usbdebug, "iface = %#jx address = 0x%jx flags = 0x%jx",
(uintptr_t)iface, address, flags, 0);
for (i = 0; i < iface->ui_idesc->bNumEndpoints; i++) {
ep = &iface->ui_endpoints[i];
if (ep->ue_edesc == NULL)
return USBD_IOERROR;
if (ep->ue_edesc->bEndpointAddress == address)
goto found;
}
return USBD_BAD_ADDRESS;
found:
if ((flags & USBD_EXCLUSIVE_USE) && ep->ue_refcnt != 0)
return USBD_IN_USE;
err = usbd_setup_pipe_flags(iface->ui_dev, iface, ep, ival, &p, flags);
if (err)
return err;
LIST_INSERT_HEAD(&iface->ui_pipes, p, up_next);
*pipe = p;
return USBD_NORMAL_COMPLETION;
}
usbd_status
usbd_open_pipe_intr(struct usbd_interface *iface, uint8_t address,
uint8_t flags, struct usbd_pipe **pipe,
void *priv, void *buffer, uint32_t len,
usbd_callback cb, int ival)
{
usbd_status err;
struct usbd_xfer *xfer;
struct usbd_pipe *ipipe;
USBHIST_FUNC();
USBHIST_CALLARGS(usbdebug, "address = 0x%jx flags = 0x%jx len = %jd",
address, flags, len, 0);
err = usbd_open_pipe_ival(iface, address,
USBD_EXCLUSIVE_USE | (flags & USBD_MPSAFE),
&ipipe, ival);
if (err)
return err;
err = usbd_create_xfer(ipipe, len, flags, 0, &xfer);
if (err)
goto bad1;
usbd_setup_xfer(xfer, priv, buffer, len, flags, USBD_NO_TIMEOUT, cb);
ipipe->up_intrxfer = xfer;
ipipe->up_repeat = 1;
err = usbd_transfer(xfer);
*pipe = ipipe;
if (err != USBD_IN_PROGRESS)
goto bad3;
return USBD_NORMAL_COMPLETION;
bad3:
ipipe->up_intrxfer = NULL;
ipipe->up_repeat = 0;
usbd_destroy_xfer(xfer);
bad1:
usbd_close_pipe(ipipe);
return err;
}
usbd_status
usbd_close_pipe(struct usbd_pipe *pipe)
{
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
KASSERT(pipe != NULL);
usbd_lock_pipe(pipe);
if (!SIMPLEQ_EMPTY(&pipe->up_queue)) {
printf("WARNING: pipe closed with active xfers on addr %d\n",
pipe->up_dev->ud_addr);
usbd_ar_pipe(pipe);
}
KASSERT(SIMPLEQ_EMPTY(&pipe->up_queue));
LIST_REMOVE(pipe, up_next);
pipe->up_endpoint->ue_refcnt--;
pipe->up_methods->upm_close(pipe);
if (pipe->up_intrxfer != NULL) {
usbd_unlock_pipe(pipe);
usbd_destroy_xfer(pipe->up_intrxfer);
usbd_lock_pipe(pipe);
}
usbd_unlock_pipe(pipe);
kmem_free(pipe, pipe->up_dev->ud_bus->ub_pipesize);
return USBD_NORMAL_COMPLETION;
}
usbd_status
usbd_transfer(struct usbd_xfer *xfer)
{
struct usbd_pipe *pipe = xfer->ux_pipe;
usbd_status err;
unsigned int size, flags;
USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug,
"xfer = %#jx, flags = %#jx, pipe = %#jx, running = %jd",
(uintptr_t)xfer, xfer->ux_flags, (uintptr_t)pipe, pipe->up_running);
KASSERT(xfer->ux_status == USBD_NOT_STARTED);
#ifdef USB_DEBUG
if (usbdebug > 5)
usbd_dump_queue(pipe);
#endif
xfer->ux_done = 0;
if (pipe->up_aborting) {
USBHIST_LOG(usbdebug, "<- done xfer %#jx, aborting",
(uintptr_t)xfer, 0, 0, 0);
return USBD_CANCELLED;
}
KASSERT(xfer->ux_length == 0 || xfer->ux_buf != NULL);
size = xfer->ux_length;
flags = xfer->ux_flags;
if (size != 0) {
/*
* Use the xfer buffer if none specified in transfer setup.
* isoc transfers always use the xfer buffer, i.e.
* ux_buffer is always NULL for isoc.
*/
if (xfer->ux_buffer == NULL) {
xfer->ux_buffer = xfer->ux_buf;
}
/*
* If not using the xfer buffer copy data to the
* xfer buffer for OUT transfers of >0 length
*/
if (xfer->ux_buffer != xfer->ux_buf) {
KASSERT(xfer->ux_buf);
if (!usbd_xfer_isread(xfer)) {
memcpy(xfer->ux_buf, xfer->ux_buffer, size);
}
}
}
/* xfer is not valid after the transfer method unless synchronous */
err = pipe->up_methods->upm_transfer(xfer);
if (err != USBD_IN_PROGRESS && err) {
/*
* The transfer made it onto the pipe queue, but didn't get
* accepted by the HCD for some reason. It needs removing
* from the pipe queue.
*/
USBHIST_LOG(usbdebug, "xfer failed: %s, reinserting",
err, 0, 0, 0);
usbd_lock_pipe(pipe);
#ifdef DIAGNOSTIC
xfer->ux_state = XFER_BUSY;
#endif
SIMPLEQ_REMOVE_HEAD(&pipe->up_queue, ux_next);
if (pipe->up_serialise)
usbd_start_next(pipe);
usbd_unlock_pipe(pipe);
}
if (!(flags & USBD_SYNCHRONOUS)) {
USBHIST_LOG(usbdebug, "<- done xfer %#jx, not sync (err %jd)",
(uintptr_t)xfer, err, 0, 0);
return err;
}
if (err != USBD_IN_PROGRESS) {
USBHIST_LOG(usbdebug, "<- done xfer %#jx, sync (err %jd)",
(uintptr_t)xfer, err, 0, 0);
return err;
}
/* Sync transfer, wait for completion. */
usbd_lock_pipe(pipe);
while (!xfer->ux_done) {
if (pipe->up_dev->ud_bus->ub_usepolling)
panic("usbd_transfer: not done");
USBHIST_LOG(usbdebug, "<- sleeping on xfer %#jx",
(uintptr_t)xfer, 0, 0, 0);
err = 0;
if ((flags & USBD_SYNCHRONOUS_SIG) != 0) {
err = cv_wait_sig(&xfer->ux_cv, pipe->up_dev->ud_bus->ub_lock);
} else {
cv_wait(&xfer->ux_cv, pipe->up_dev->ud_bus->ub_lock);
}
if (err) {
if (!xfer->ux_done)
pipe->up_methods->upm_abort(xfer);
break;
}
}
usbd_unlock_pipe(pipe);
return xfer->ux_status;
}
/* Like usbd_transfer(), but waits for completion. */
usbd_status
usbd_sync_transfer(struct usbd_xfer *xfer)
{
xfer->ux_flags |= USBD_SYNCHRONOUS;
return usbd_transfer(xfer);
}
/* Like usbd_transfer(), but waits for completion and listens for signals. */
usbd_status
usbd_sync_transfer_sig(struct usbd_xfer *xfer)
{
xfer->ux_flags |= USBD_SYNCHRONOUS | USBD_SYNCHRONOUS_SIG;
return usbd_transfer(xfer);
}
static void *
usbd_alloc_buffer(struct usbd_xfer *xfer, uint32_t size)
{
KASSERT(xfer->ux_buf == NULL);
KASSERT(size != 0);
xfer->ux_bufsize = 0;
#if NUSB_DMA > 0
struct usbd_bus *bus = xfer->ux_bus;
if (bus->ub_usedma) {
usb_dma_t *dmap = &xfer->ux_dmabuf;
int err = usb_allocmem_flags(bus, size, 0, dmap, bus->ub_dmaflags);
if (err) {
return NULL;
}
xfer->ux_buf = KERNADDR(&xfer->ux_dmabuf, 0);
xfer->ux_bufsize = size;
return xfer->ux_buf;
}
#endif
KASSERT(xfer->ux_bus->ub_usedma == false);
xfer->ux_buf = kmem_alloc(size, KM_SLEEP);
xfer->ux_bufsize = size;
return xfer->ux_buf;
}
static void
usbd_free_buffer(struct usbd_xfer *xfer)
{
KASSERT(xfer->ux_buf != NULL);
KASSERT(xfer->ux_bufsize != 0);
void *buf = xfer->ux_buf;
uint32_t size = xfer->ux_bufsize;
xfer->ux_buf = NULL;
xfer->ux_bufsize = 0;
#if NUSB_DMA > 0
struct usbd_bus *bus = xfer->ux_bus;
if (bus->ub_usedma) {
usb_dma_t *dmap = &xfer->ux_dmabuf;
usb_freemem(bus, dmap);
return;
}
#endif
KASSERT(xfer->ux_bus->ub_usedma == false);
kmem_free(buf, size);
}
void *
usbd_get_buffer(struct usbd_xfer *xfer)
{
return xfer->ux_buf;
}
struct usbd_pipe *
usbd_get_pipe0(struct usbd_device *dev)
{
return dev->ud_pipe0;
}
static struct usbd_xfer *
usbd_alloc_xfer(struct usbd_device *dev, unsigned int nframes)
{
struct usbd_xfer *xfer;
USBHIST_FUNC();
ASSERT_SLEEPABLE();
xfer = dev->ud_bus->ub_methods->ubm_allocx(dev->ud_bus, nframes);
if (xfer == NULL)
goto out;
xfer->ux_bus = dev->ud_bus;
callout_init(&xfer->ux_callout, CALLOUT_MPSAFE);
callout_setfunc(&xfer->ux_callout, usbd_xfer_timeout, xfer);
cv_init(&xfer->ux_cv, "usbxfer");
usb_init_task(&xfer->ux_aborttask, usbd_xfer_timeout_task, xfer,
USB_TASKQ_MPSAFE);
out:
USBHIST_CALLARGS(usbdebug, "returns %#jx", (uintptr_t)xfer, 0, 0, 0);
return xfer;
}
static usbd_status
usbd_free_xfer(struct usbd_xfer *xfer)
{
USBHIST_FUNC();
USBHIST_CALLARGS(usbdebug, "%#jx", (uintptr_t)xfer, 0, 0, 0);
if (xfer->ux_buf) {
usbd_free_buffer(xfer);
}
/* Wait for any straggling timeout to complete. */
mutex_enter(xfer->ux_bus->ub_lock);
xfer->ux_timeout_reset = false; /* do not resuscitate */
callout_halt(&xfer->ux_callout, xfer->ux_bus->ub_lock);
usb_rem_task_wait(xfer->ux_pipe->up_dev, &xfer->ux_aborttask,
USB_TASKQ_HC, xfer->ux_bus->ub_lock);
mutex_exit(xfer->ux_bus->ub_lock);
cv_destroy(&xfer->ux_cv);
xfer->ux_bus->ub_methods->ubm_freex(xfer->ux_bus, xfer);
return USBD_NORMAL_COMPLETION;
}
int
usbd_create_xfer(struct usbd_pipe *pipe, size_t len, unsigned int flags,
unsigned int nframes, struct usbd_xfer **xp)
{
KASSERT(xp != NULL);
void *buf = NULL;
struct usbd_xfer *xfer = usbd_alloc_xfer(pipe->up_dev, nframes);
if (xfer == NULL)
return ENOMEM;
xfer->ux_pipe = pipe;
xfer->ux_flags = flags;
xfer->ux_nframes = nframes;
xfer->ux_methods = pipe->up_methods;
if (len) {
buf = usbd_alloc_buffer(xfer, len);
if (!buf) {
usbd_free_xfer(xfer);
return ENOMEM;
}
}
if (xfer->ux_methods->upm_init) {
int err = xfer->ux_methods->upm_init(xfer);
if (err) {
usbd_free_xfer(xfer);
return err;
}
}
*xp = xfer;
return 0;
}
void
usbd_destroy_xfer(struct usbd_xfer *xfer)
{
if (xfer->ux_methods->upm_fini) {
xfer->ux_methods->upm_fini(xfer);
}
usbd_free_xfer(xfer);
}
void
usbd_setup_xfer(struct usbd_xfer *xfer, void *priv, void *buffer,
uint32_t length, uint16_t flags, uint32_t timeout, usbd_callback callback)
{
KASSERT(xfer->ux_pipe);
xfer->ux_priv = priv;
xfer->ux_buffer = buffer;
xfer->ux_length = length;
xfer->ux_actlen = 0;
xfer->ux_flags = flags;
xfer->ux_timeout = timeout;
xfer->ux_status = USBD_NOT_STARTED;
xfer->ux_callback = callback;
xfer->ux_rqflags &= ~URQ_REQUEST;
xfer->ux_nframes = 0;
}
void
usbd_setup_default_xfer(struct usbd_xfer *xfer, struct usbd_device *dev,
void *priv, uint32_t timeout, usb_device_request_t *req, void *buffer,
uint32_t length, uint16_t flags, usbd_callback callback)
{
KASSERT(xfer->ux_pipe == dev->ud_pipe0);
xfer->ux_priv = priv;
xfer->ux_buffer = buffer;
xfer->ux_length = length;
xfer->ux_actlen = 0;
xfer->ux_flags = flags;
xfer->ux_timeout = timeout;
xfer->ux_status = USBD_NOT_STARTED;
xfer->ux_callback = callback;
xfer->ux_request = *req;
xfer->ux_rqflags |= URQ_REQUEST;
xfer->ux_nframes = 0;
}
void
usbd_setup_isoc_xfer(struct usbd_xfer *xfer, void *priv, uint16_t *frlengths,
uint32_t nframes, uint16_t flags, usbd_callback callback)
{
xfer->ux_priv = priv;
xfer->ux_buffer = NULL;
xfer->ux_length = 0;
xfer->ux_actlen = 0;
xfer->ux_flags = flags;
xfer->ux_timeout = USBD_NO_TIMEOUT;
xfer->ux_status = USBD_NOT_STARTED;
xfer->ux_callback = callback;
xfer->ux_rqflags &= ~URQ_REQUEST;
xfer->ux_frlengths = frlengths;
xfer->ux_nframes = nframes;
}
void
usbd_get_xfer_status(struct usbd_xfer *xfer, void **priv,
void **buffer, uint32_t *count, usbd_status *status)
{
if (priv != NULL)
*priv = xfer->ux_priv;
if (buffer != NULL)
*buffer = xfer->ux_buffer;
if (count != NULL)
*count = xfer->ux_actlen;
if (status != NULL)
*status = xfer->ux_status;
}
usb_config_descriptor_t *
usbd_get_config_descriptor(struct usbd_device *dev)
{
KASSERT(dev != NULL);
return dev->ud_cdesc;
}
usb_interface_descriptor_t *
usbd_get_interface_descriptor(struct usbd_interface *iface)
{
KASSERT(iface != NULL);
return iface->ui_idesc;
}
usb_device_descriptor_t *
usbd_get_device_descriptor(struct usbd_device *dev)
{
KASSERT(dev != NULL);
return &dev->ud_ddesc;
}
usb_endpoint_descriptor_t *
usbd_interface2endpoint_descriptor(struct usbd_interface *iface, uint8_t index)
{
if (index >= iface->ui_idesc->bNumEndpoints)
return NULL;
return iface->ui_endpoints[index].ue_edesc;
}
/* Some drivers may wish to abort requests on the default pipe, *
* but there is no mechanism for getting a handle on it. */
usbd_status
usbd_abort_default_pipe(struct usbd_device *device)
{
return usbd_abort_pipe(device->ud_pipe0);
}
usbd_status
usbd_abort_pipe(struct usbd_pipe *pipe)
{
usbd_status err;
KASSERT(pipe != NULL);
usbd_lock_pipe(pipe);
err = usbd_ar_pipe(pipe);
usbd_unlock_pipe(pipe);
return err;
}
usbd_status
usbd_clear_endpoint_stall(struct usbd_pipe *pipe)
{
struct usbd_device *dev = pipe->up_dev;
usb_device_request_t req;
usbd_status err;
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
/*
* Clearing en endpoint stall resets the endpoint toggle, so
* do the same to the HC toggle.
*/
pipe->up_methods->upm_cleartoggle(pipe);
req.bmRequestType = UT_WRITE_ENDPOINT;
req.bRequest = UR_CLEAR_FEATURE;
USETW(req.wValue, UF_ENDPOINT_HALT);
USETW(req.wIndex, pipe->up_endpoint->ue_edesc->bEndpointAddress);
USETW(req.wLength, 0);
err = usbd_do_request(dev, &req, 0);
#if 0
XXX should we do this?
if (!err) {
pipe->state = USBD_PIPE_ACTIVE;
/* XXX activate pipe */
}
#endif
return err;
}
void
usbd_clear_endpoint_stall_task(void *arg)
{
struct usbd_pipe *pipe = arg;
struct usbd_device *dev = pipe->up_dev;
usb_device_request_t req;
pipe->up_methods->upm_cleartoggle(pipe);
req.bmRequestType = UT_WRITE_ENDPOINT;
req.bRequest = UR_CLEAR_FEATURE;
USETW(req.wValue, UF_ENDPOINT_HALT);
USETW(req.wIndex, pipe->up_endpoint->ue_edesc->bEndpointAddress);
USETW(req.wLength, 0);
(void)usbd_do_request(dev, &req, 0);
}
void
usbd_clear_endpoint_stall_async(struct usbd_pipe *pipe)
{
usb_add_task(pipe->up_dev, &pipe->up_async_task, USB_TASKQ_DRIVER);
}
void
usbd_clear_endpoint_toggle(struct usbd_pipe *pipe)
{
pipe->up_methods->upm_cleartoggle(pipe);
}
usbd_status
usbd_endpoint_count(struct usbd_interface *iface, uint8_t *count)
{
KASSERT(iface != NULL);
KASSERT(iface->ui_idesc != NULL);
*count = iface->ui_idesc->bNumEndpoints;
return USBD_NORMAL_COMPLETION;
}
usbd_status
usbd_interface_count(struct usbd_device *dev, uint8_t *count)
{
if (dev->ud_cdesc == NULL)
return USBD_NOT_CONFIGURED;
*count = dev->ud_cdesc->bNumInterface;
return USBD_NORMAL_COMPLETION;
}
void
usbd_interface2device_handle(struct usbd_interface *iface,
struct usbd_device **dev)
{
*dev = iface->ui_dev;
}
usbd_status
usbd_device2interface_handle(struct usbd_device *dev,
uint8_t ifaceno, struct usbd_interface **iface)
{
if (dev->ud_cdesc == NULL)
return USBD_NOT_CONFIGURED;
if (ifaceno >= dev->ud_cdesc->bNumInterface)
return USBD_INVAL;
*iface = &dev->ud_ifaces[ifaceno];
return USBD_NORMAL_COMPLETION;
}
struct usbd_device *
usbd_pipe2device_handle(struct usbd_pipe *pipe)
{
KASSERT(pipe != NULL);
return pipe->up_dev;
}
/* XXXX use altno */
usbd_status
usbd_set_interface(struct usbd_interface *iface, int altidx)
{
usb_device_request_t req;
usbd_status err;
void *endpoints;
USBHIST_FUNC();
if (LIST_FIRST(&iface->ui_pipes) != NULL)
return USBD_IN_USE;
endpoints = iface->ui_endpoints;
int nendpt = iface->ui_idesc->bNumEndpoints;
USBHIST_CALLARGS(usbdebug, "iface %#jx endpoints = %#jx nendpt %jd",
(uintptr_t)iface, (uintptr_t)endpoints,
iface->ui_idesc->bNumEndpoints, 0);
err = usbd_fill_iface_data(iface->ui_dev, iface->ui_index, altidx);
if (err)
return err;
/* new setting works, we can free old endpoints */
if (endpoints != NULL) {
USBHIST_LOG(usbdebug, "iface %#jx endpoints = %#jx nendpt %jd",
(uintptr_t)iface, (uintptr_t)endpoints, nendpt, 0);
kmem_free(endpoints, nendpt * sizeof(struct usbd_endpoint));
}
KASSERT(iface->ui_idesc != NULL);
req.bmRequestType = UT_WRITE_INTERFACE;
req.bRequest = UR_SET_INTERFACE;
USETW(req.wValue, iface->ui_idesc->bAlternateSetting);
USETW(req.wIndex, iface->ui_idesc->bInterfaceNumber);
USETW(req.wLength, 0);
return usbd_do_request(iface->ui_dev, &req, 0);
}
int
usbd_get_no_alts(usb_config_descriptor_t *cdesc, int ifaceno)
{
char *p = (char *)cdesc;
char *end = p + UGETW(cdesc->wTotalLength);
usb_interface_descriptor_t *d;
int n;
for (n = 0; p < end; p += d->bLength) {
d = (usb_interface_descriptor_t *)p;
if (p + d->bLength <= end &&
d->bDescriptorType == UDESC_INTERFACE &&
d->bInterfaceNumber == ifaceno)
n++;
}
return n;
}
int
usbd_get_interface_altindex(struct usbd_interface *iface)
{
return iface->ui_altindex;
}
usbd_status
usbd_get_interface(struct usbd_interface *iface, uint8_t *aiface)
{
usb_device_request_t req;
req.bmRequestType = UT_READ_INTERFACE;
req.bRequest = UR_GET_INTERFACE;
USETW(req.wValue, 0);
USETW(req.wIndex, iface->ui_idesc->bInterfaceNumber);
USETW(req.wLength, 1);
return usbd_do_request(iface->ui_dev, &req, aiface);
}
/*** Internal routines ***/
/* Dequeue all pipe operations, called with bus lock held. */
Static usbd_status
usbd_ar_pipe(struct usbd_pipe *pipe)
{
struct usbd_xfer *xfer;
USBHIST_FUNC();
USBHIST_CALLARGS(usbdebug, "pipe = %#jx", (uintptr_t)pipe, 0, 0, 0);
KASSERT(mutex_owned(pipe->up_dev->ud_bus->ub_lock));
#ifdef USB_DEBUG
if (usbdebug > 5)
usbd_dump_queue(pipe);
#endif
pipe->up_repeat = 0;
pipe->up_running = 0;
pipe->up_aborting = 1;
while ((xfer = SIMPLEQ_FIRST(&pipe->up_queue)) != NULL) {
USBHIST_LOG(usbdebug, "pipe = %#jx xfer = %#jx "
"(methods = %#jx)", (uintptr_t)pipe, (uintptr_t)xfer,
(uintptr_t)pipe->up_methods, 0);
if (xfer->ux_status == USBD_NOT_STARTED) {
#ifdef DIAGNOSTIC
xfer->ux_state = XFER_BUSY;
#endif
SIMPLEQ_REMOVE_HEAD(&pipe->up_queue, ux_next);
} else {
/* Make the HC abort it (and invoke the callback). */
pipe->up_methods->upm_abort(xfer);
/* XXX only for non-0 usbd_clear_endpoint_stall(pipe); */
}
}
pipe->up_aborting = 0;
return USBD_NORMAL_COMPLETION;
}
/* Called with USB lock held. */
void
usb_transfer_complete(struct usbd_xfer *xfer)
{
struct usbd_pipe *pipe = xfer->ux_pipe;
struct usbd_bus *bus = pipe->up_dev->ud_bus;
int sync = xfer->ux_flags & USBD_SYNCHRONOUS;
int erred;
int polling = bus->ub_usepolling;
int repeat = pipe->up_repeat;
USBHIST_FUNC();
USBHIST_CALLARGS(usbdebug, "pipe = %#jx xfer = %#jx status = %jd "
"actlen = %jd", (uintptr_t)pipe, (uintptr_t)xfer, xfer->ux_status,
xfer->ux_actlen);
KASSERT(polling || mutex_owned(pipe->up_dev->ud_bus->ub_lock));
KASSERTMSG(xfer->ux_state == XFER_ONQU, "xfer %p state is %x", xfer,
xfer->ux_state);
KASSERT(pipe != NULL);
/*
* If device is known to miss out ack, then pretend that
* output timeout is a success. Userland should handle
* the logic to verify that the operation succeeded.
*/
if (pipe->up_dev->ud_quirks &&
pipe->up_dev->ud_quirks->uq_flags & UQ_MISS_OUT_ACK &&
xfer->ux_status == USBD_TIMEOUT &&
!usbd_xfer_isread(xfer)) {
USBHIST_LOG(usbdebug, "Possible output ack miss for xfer %#jx: "
"hiding write timeout to %d.%s for %d bytes written",
(uintptr_t)xfer, curlwp->l_proc->p_pid, curlwp->l_lid,
xfer->ux_length);
xfer->ux_status = USBD_NORMAL_COMPLETION;
xfer->ux_actlen = xfer->ux_length;
}
erred = xfer->ux_status == USBD_CANCELLED ||
xfer->ux_status == USBD_TIMEOUT;
if (!repeat) {
/* Remove request from queue. */
KASSERTMSG(!SIMPLEQ_EMPTY(&pipe->up_queue),
"pipe %p is empty, but xfer %p wants to complete", pipe,
xfer);
KASSERTMSG(xfer == SIMPLEQ_FIRST(&pipe->up_queue),
"xfer %p is not start of queue (%p is at start)", xfer,
SIMPLEQ_FIRST(&pipe->up_queue));
#ifdef DIAGNOSTIC
xfer->ux_state = XFER_BUSY;
#endif
SIMPLEQ_REMOVE_HEAD(&pipe->up_queue, ux_next);
}
USBHIST_LOG(usbdebug, "xfer %#jx: repeat %jd new head = %#jx",
(uintptr_t)xfer, repeat, (uintptr_t)SIMPLEQ_FIRST(&pipe->up_queue),
0);
/* Count completed transfers. */
++pipe->up_dev->ud_bus->ub_stats.uds_requests
[pipe->up_endpoint->ue_edesc->bmAttributes & UE_XFERTYPE];
xfer->ux_done = 1;
if (!xfer->ux_status && xfer->ux_actlen < xfer->ux_length &&
!(xfer->ux_flags & USBD_SHORT_XFER_OK)) {
USBHIST_LOG(usbdebug, "short transfer %jd < %jd",
xfer->ux_actlen, xfer->ux_length, 0, 0);
xfer->ux_status = USBD_SHORT_XFER;
}
USBHIST_LOG(usbdebug, "xfer %#jx doing done %#jx", (uintptr_t)xfer,
(uintptr_t)pipe->up_methods->upm_done, 0, 0);
pipe->up_methods->upm_done(xfer);
if (xfer->ux_length != 0 && xfer->ux_buffer != xfer->ux_buf) {
KDASSERTMSG(xfer->ux_actlen <= xfer->ux_length,
"actlen %d length %d",xfer->ux_actlen, xfer->ux_length);
/* Only if IN transfer */
if (usbd_xfer_isread(xfer)) {
memcpy(xfer->ux_buffer, xfer->ux_buf, xfer->ux_actlen);
}
}
USBHIST_LOG(usbdebug, "xfer %#jx doing callback %#jx status %jd",
(uintptr_t)xfer, (uintptr_t)xfer->ux_callback, xfer->ux_status, 0);
if (xfer->ux_callback) {
if (!polling) {
mutex_exit(pipe->up_dev->ud_bus->ub_lock);
if (!(pipe->up_flags & USBD_MPSAFE))
KERNEL_LOCK(1, curlwp);
}
xfer->ux_callback(xfer, xfer->ux_priv, xfer->ux_status);
if (!polling) {
if (!(pipe->up_flags & USBD_MPSAFE))
KERNEL_UNLOCK_ONE(curlwp);
mutex_enter(pipe->up_dev->ud_bus->ub_lock);
}
}
if (sync && !polling) {
USBHIST_LOG(usbdebug, "<- done xfer %#jx, wakeup",
(uintptr_t)xfer, 0, 0, 0);
cv_broadcast(&xfer->ux_cv);
}
if (repeat) {
xfer->ux_actlen = 0;
xfer->ux_status = USBD_NOT_STARTED;
} else {
/* XXX should we stop the queue on all errors? */
if (erred && pipe->up_iface != NULL) /* not control pipe */
pipe->up_running = 0;
}
if (pipe->up_running && pipe->up_serialise)
usbd_start_next(pipe);
}
/* Called with USB lock held. */
usbd_status
usb_insert_transfer(struct usbd_xfer *xfer)
{
struct usbd_pipe *pipe = xfer->ux_pipe;
usbd_status err;
USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug,
"xfer = %#jx pipe = %#jx running = %jd timeout = %jd",
(uintptr_t)xfer, (uintptr_t)pipe,
pipe->up_running, xfer->ux_timeout);
KASSERT(mutex_owned(pipe->up_dev->ud_bus->ub_lock));
KASSERTMSG(xfer->ux_state == XFER_BUSY, "xfer %p state is %x", xfer,
xfer->ux_state);
#ifdef DIAGNOSTIC
xfer->ux_state = XFER_ONQU;
#endif
SIMPLEQ_INSERT_TAIL(&pipe->up_queue, xfer, ux_next);
if (pipe->up_running && pipe->up_serialise)
err = USBD_IN_PROGRESS;
else {
pipe->up_running = 1;
err = USBD_NORMAL_COMPLETION;
}
USBHIST_LOG(usbdebug, "<- done xfer %#jx, err %jd", (uintptr_t)xfer,
err, 0, 0);
return err;
}
/* Called with USB lock held. */
void
usbd_start_next(struct usbd_pipe *pipe)
{
struct usbd_xfer *xfer;
usbd_status err;
USBHIST_FUNC();
KASSERT(pipe != NULL);
KASSERT(pipe->up_methods != NULL);
KASSERT(pipe->up_methods->upm_start != NULL);
KASSERT(pipe->up_serialise == true);
int polling = pipe->up_dev->ud_bus->ub_usepolling;
KASSERT(polling || mutex_owned(pipe->up_dev->ud_bus->ub_lock));
/* Get next request in queue. */
xfer = SIMPLEQ_FIRST(&pipe->up_queue);
USBHIST_CALLARGS(usbdebug, "pipe = %#jx, xfer = %#jx", (uintptr_t)pipe,
(uintptr_t)xfer, 0, 0);
if (xfer == NULL) {
pipe->up_running = 0;
} else {
if (!polling)
mutex_exit(pipe->up_dev->ud_bus->ub_lock);
err = pipe->up_methods->upm_start(xfer);
if (!polling)
mutex_enter(pipe->up_dev->ud_bus->ub_lock);
if (err != USBD_IN_PROGRESS) {
USBHIST_LOG(usbdebug, "error = %jd", err, 0, 0, 0);
pipe->up_running = 0;
/* XXX do what? */
}
}
KASSERT(polling || mutex_owned(pipe->up_dev->ud_bus->ub_lock));
}
usbd_status
usbd_do_request(struct usbd_device *dev, usb_device_request_t *req, void *data)
{
return usbd_do_request_flags(dev, req, data, 0, 0,
USBD_DEFAULT_TIMEOUT);
}
usbd_status
usbd_do_request_flags(struct usbd_device *dev, usb_device_request_t *req,
void *data, uint16_t flags, int *actlen, uint32_t timeout)
{
size_t len = UGETW(req->wLength);
return usbd_do_request_len(dev, req, len, data, flags, actlen, timeout);
}
usbd_status
usbd_do_request_len(struct usbd_device *dev, usb_device_request_t *req,
size_t len, void *data, uint16_t flags, int *actlen, uint32_t timeout)
{
struct usbd_xfer *xfer;
usbd_status err;
KASSERT(len >= UGETW(req->wLength));
USBHIST_FUNC();
USBHIST_CALLARGS(usbdebug, "dev=%#jx req=%jx flags=%jx len=%jx",
(uintptr_t)dev, (uintptr_t)req, flags, len);
ASSERT_SLEEPABLE();
int error = usbd_create_xfer(dev->ud_pipe0, len, 0, 0, &xfer);
if (error)
return error;
usbd_setup_default_xfer(xfer, dev, 0, timeout, req, data,
UGETW(req->wLength), flags, NULL);
KASSERT(xfer->ux_pipe == dev->ud_pipe0);
err = usbd_sync_transfer(xfer);
#if defined(USB_DEBUG) || defined(DIAGNOSTIC)
if (xfer->ux_actlen > xfer->ux_length) {
USBHIST_LOG(usbdebug, "overrun addr = %jd type = 0x%02jx",
dev->ud_addr, xfer->ux_request.bmRequestType, 0, 0);
USBHIST_LOG(usbdebug, " req = 0x%02jx val = %jd "
"index = %jd",
xfer->ux_request.bRequest, UGETW(xfer->ux_request.wValue),
UGETW(xfer->ux_request.wIndex), 0);
USBHIST_LOG(usbdebug, " rlen = %jd length = %jd "
"actlen = %jd",
UGETW(xfer->ux_request.wLength),
xfer->ux_length, xfer->ux_actlen, 0);
}
#endif
if (actlen != NULL)
*actlen = xfer->ux_actlen;
usbd_destroy_xfer(xfer);
if (err) {
USBHIST_LOG(usbdebug, "returning err = %jd", err, 0, 0, 0);
}
return err;
}
static void
usbd_request_async_cb(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
usbd_free_xfer(xfer);
}
/*
* Execute a request without waiting for completion.
* Can be used from interrupt context.
*/
usbd_status
usbd_request_async(struct usbd_device *dev, struct usbd_xfer *xfer,
usb_device_request_t *req, void *priv, usbd_callback callback)
{
usbd_status err;
if (callback == NULL)
callback = usbd_request_async_cb;
usbd_setup_default_xfer(xfer, dev, priv,
USBD_DEFAULT_TIMEOUT, req, NULL, UGETW(req->wLength), 0,
callback);
err = usbd_transfer(xfer);
if (err != USBD_IN_PROGRESS) {
usbd_free_xfer(xfer);
return (err);
}
return (USBD_NORMAL_COMPLETION);
}
const struct usbd_quirks *
usbd_get_quirks(struct usbd_device *dev)
{
#ifdef DIAGNOSTIC
if (dev == NULL) {
printf("usbd_get_quirks: dev == NULL\n");
return 0;
}
#endif
return dev->ud_quirks;
}
/* XXX do periodic free() of free list */
/*
* Called from keyboard driver when in polling mode.
*/
void
usbd_dopoll(struct usbd_interface *iface)
{
iface->ui_dev->ud_bus->ub_methods->ubm_dopoll(iface->ui_dev->ud_bus);
}
/*
* This is for keyboard driver as well, which only operates in polling
* mode from the ask root, etc., prompt and from DDB.
*/
void
usbd_set_polling(struct usbd_device *dev, int on)
{
if (on)
dev->ud_bus->ub_usepolling++;
else
dev->ud_bus->ub_usepolling--;
/* Kick the host controller when switching modes */
mutex_enter(dev->ud_bus->ub_lock);
dev->ud_bus->ub_methods->ubm_softint(dev->ud_bus);
mutex_exit(dev->ud_bus->ub_lock);
}
usb_endpoint_descriptor_t *
usbd_get_endpoint_descriptor(struct usbd_interface *iface, uint8_t address)
{
struct usbd_endpoint *ep;
int i;
for (i = 0; i < iface->ui_idesc->bNumEndpoints; i++) {
ep = &iface->ui_endpoints[i];
if (ep->ue_edesc->bEndpointAddress == address)
return iface->ui_endpoints[i].ue_edesc;
}
return NULL;
}
/*
* usbd_ratecheck() can limit the number of error messages that occurs.
* When a device is unplugged it may take up to 0.25s for the hub driver
* to notice it. If the driver continuously tries to do I/O operations
* this can generate a large number of messages.
*/
int
usbd_ratecheck(struct timeval *last)
{
static struct timeval errinterval = { 0, 250000 }; /* 0.25 s*/
return ratecheck(last, &errinterval);
}
/*
* Search for a vendor/product pair in an array. The item size is
* given as an argument.
*/
const struct usb_devno *
usb_match_device(const struct usb_devno *tbl, u_int nentries, u_int sz,
uint16_t vendor, uint16_t product)
{
while (nentries-- > 0) {
uint16_t tproduct = tbl->ud_product;
if (tbl->ud_vendor == vendor &&
(tproduct == product || tproduct == USB_PRODUCT_ANY))
return tbl;
tbl = (const struct usb_devno *)((const char *)tbl + sz);
}
return NULL;
}
void
usb_desc_iter_init(struct usbd_device *dev, usbd_desc_iter_t *iter)
{
const usb_config_descriptor_t *cd = usbd_get_config_descriptor(dev);
iter->cur = (const uByte *)cd;
iter->end = (const uByte *)cd + UGETW(cd->wTotalLength);
}
const usb_descriptor_t *
usb_desc_iter_next(usbd_desc_iter_t *iter)
{
const usb_descriptor_t *desc;
if (iter->cur + sizeof(usb_descriptor_t) >= iter->end) {
if (iter->cur != iter->end)
printf("usb_desc_iter_next: bad descriptor\n");
return NULL;
}
desc = (const usb_descriptor_t *)iter->cur;
if (desc->bLength == 0) {
printf("usb_desc_iter_next: descriptor length = 0\n");
return NULL;
}
iter->cur += desc->bLength;
if (iter->cur > iter->end) {
printf("usb_desc_iter_next: descriptor length too large\n");
return NULL;
}
return desc;
}
usbd_status
usbd_get_string(struct usbd_device *dev, int si, char *buf)
{
return usbd_get_string0(dev, si, buf, 1);
}
usbd_status
usbd_get_string0(struct usbd_device *dev, int si, char *buf, int unicode)
{
int swap = dev->ud_quirks->uq_flags & UQ_SWAP_UNICODE;
usb_string_descriptor_t us;
char *s;
int i, n;
uint16_t c;
usbd_status err;
int size;
USBHIST_FUNC(); USBHIST_CALLED(usbdebug);
buf[0] = '\0';
if (si == 0)
return USBD_INVAL;
if (dev->ud_quirks->uq_flags & UQ_NO_STRINGS)
return USBD_STALLED;
if (dev->ud_langid == USBD_NOLANG) {
/* Set up default language */
err = usbd_get_string_desc(dev, USB_LANGUAGE_TABLE, 0, &us,
&size);
if (err || size < 4) {
USBHIST_LOG(usbdebug, "getting lang failed, using 0",
0, 0, 0, 0);
dev->ud_langid = 0; /* Well, just pick something then */
} else {
/* Pick the first language as the default. */
dev->ud_langid = UGETW(us.bString[0]);
}
}
err = usbd_get_string_desc(dev, si, dev->ud_langid, &us, &size);
if (err)
return err;
s = buf;
n = size / 2 - 1;
if (unicode) {
for (i = 0; i < n; i++) {
c = UGETW(us.bString[i]);
if (swap)
c = (c >> 8) | (c << 8);
s += wput_utf8(s, 3, c);
}
*s++ = 0;
}
#ifdef COMPAT_30
else {
for (i = 0; i < n; i++) {
c = UGETW(us.bString[i]);
if (swap)
c = (c >> 8) | (c << 8);
*s++ = (c < 0x80) ? c : '?';
}
*s++ = 0;
}
#endif
return USBD_NORMAL_COMPLETION;
}
/*
* usbd_xfer_trycomplete(xfer)
*
* Try to claim xfer for completion. Return true if successful,
* false if the xfer has been synchronously aborted or has timed
* out.
*
* If this returns true, caller is responsible for setting
* xfer->ux_status and calling usb_transfer_complete. To be used
* in a host controller interrupt handler.
*
* Caller must either hold the bus lock or have the bus in polling
* mode.
*/
bool
usbd_xfer_trycomplete(struct usbd_xfer *xfer)
{
struct usbd_bus *bus __diagused = xfer->ux_bus;
KASSERT(bus->ub_usepolling || mutex_owned(bus->ub_lock));
/*
* If software has completed it, either by synchronous abort or
* by timeout, too late.
*/
if (xfer->ux_status != USBD_IN_PROGRESS)
return false;
/*
* We are completing the xfer. Cancel the timeout if we can,
* but only asynchronously. See usbd_xfer_cancel_timeout_async
* for why we need not wait for the callout or task here.
*/
usbd_xfer_cancel_timeout_async(xfer);
/* Success! Note: Caller must set xfer->ux_status afterwar. */
return true;
}
/*
* usbd_xfer_abort(xfer)
*
* Try to claim xfer to abort. If successful, mark it completed
* with USBD_CANCELLED and call the bus-specific method to abort
* at the hardware level.
*
* To be called in thread context from struct
* usbd_pipe_methods::upm_abort.
*
* Caller must hold the bus lock.
*/
void
usbd_xfer_abort(struct usbd_xfer *xfer)
{
struct usbd_bus *bus = xfer->ux_bus;
KASSERT(mutex_owned(bus->ub_lock));
/*
* If host controller interrupt or timer interrupt has
* completed it, too late. But the xfer cannot be
* cancelled already -- only one caller can synchronously
* abort.
*/
KASSERT(xfer->ux_status != USBD_CANCELLED);
if (xfer->ux_status != USBD_IN_PROGRESS)
return;
/*
* Cancel the timeout if we can, but only asynchronously; see
* usbd_xfer_cancel_timeout_async for why we need not wait for
* the callout or task here.
*/
usbd_xfer_cancel_timeout_async(xfer);
/*
* We beat everyone else. Claim the status as cancelled and do
* the bus-specific dance to abort the hardware.
*/
xfer->ux_status = USBD_CANCELLED;
bus->ub_methods->ubm_abortx(xfer);
}
/*
* usbd_xfer_timeout(xfer)
*
* Called at IPL_SOFTCLOCK when too much time has elapsed waiting
* for xfer to complete. Since we can't abort the xfer at
* IPL_SOFTCLOCK, defer to a usb_task to run it in thread context,
* unless the xfer has completed or aborted concurrently -- and if
* the xfer has also been resubmitted, take care of rescheduling
* the callout.
*/
static void
usbd_xfer_timeout(void *cookie)
{
struct usbd_xfer *xfer = cookie;
struct usbd_bus *bus = xfer->ux_bus;
struct usbd_device *dev = xfer->ux_pipe->up_dev;
/* Acquire the lock so we can transition the timeout state. */
mutex_enter(bus->ub_lock);
/*
* Use usbd_xfer_probe_timeout to check whether the timeout is
* still valid, or to reschedule the callout if necessary. If
* it is still valid, schedule the task.
*/
if (usbd_xfer_probe_timeout(xfer))
usb_add_task(dev, &xfer->ux_aborttask, USB_TASKQ_HC);
/*
* Notify usbd_xfer_cancel_timeout_async that we may have
* scheduled the task. This causes callout_invoking to return
* false in usbd_xfer_cancel_timeout_async so that it can tell
* which stage in the callout->task->abort process we're at.
*/
callout_ack(&xfer->ux_callout);
/* All done -- release the lock. */
mutex_exit(bus->ub_lock);
}
/*
* usbd_xfer_timeout_task(xfer)
*
* Called in thread context when too much time has elapsed waiting
* for xfer to complete. Abort the xfer with USBD_TIMEOUT, unless
* it has completed or aborted concurrently -- and if the xfer has
* also been resubmitted, take care of rescheduling the callout.
*/
static void
usbd_xfer_timeout_task(void *cookie)
{
struct usbd_xfer *xfer = cookie;
struct usbd_bus *bus = xfer->ux_bus;
/* Acquire the lock so we can transition the timeout state. */
mutex_enter(bus->ub_lock);
/*
* Use usbd_xfer_probe_timeout to check whether the timeout is
* still valid, or to reschedule the callout if necessary. If
* it is not valid -- the timeout has been asynchronously
* cancelled, or the xfer has already been resubmitted -- then
* we're done here.
*/
if (!usbd_xfer_probe_timeout(xfer))
goto out;
/*
* May have completed or been aborted, but we're the only one
* who can time it out. If it has completed or been aborted,
* no need to timeout.
*/
KASSERT(xfer->ux_status != USBD_TIMEOUT);
if (xfer->ux_status != USBD_IN_PROGRESS)
goto out;
/*
* We beat everyone else. Claim the status as timed out and do
* the bus-specific dance to abort the hardware.
*/
xfer->ux_status = USBD_TIMEOUT;
bus->ub_methods->ubm_abortx(xfer);
out: /* All done -- release the lock. */
mutex_exit(bus->ub_lock);
}
/*
* usbd_xfer_probe_timeout(xfer)
*
* Probe the status of xfer's timeout. Acknowledge and process a
* request to reschedule. Return true if the timeout is still
* valid and the caller should take further action (queueing a
* task or aborting the xfer), false if it must stop here.
*/
static bool
usbd_xfer_probe_timeout(struct usbd_xfer *xfer)
{
struct usbd_bus *bus = xfer->ux_bus;
bool valid;
KASSERT(bus->ub_usepolling || mutex_owned(bus->ub_lock));
/* The timeout must be set. */
KASSERT(xfer->ux_timeout_set);
/*
* Neither callout nor task may be pending; they execute
* alternately in lock step.
*/
KASSERT(!callout_pending(&xfer->ux_callout));
KASSERT(!usb_task_pending(xfer->ux_pipe->up_dev, &xfer->ux_aborttask));
/* There are a few cases... */
if (bus->ub_methods->ubm_dying(bus)) {
/* Host controller dying. Drop it all on the floor. */
xfer->ux_timeout_set = false;
xfer->ux_timeout_reset = false;
valid = false;
} else if (xfer->ux_timeout_reset) {
/*
* The xfer completed _and_ got resubmitted while we
* waited for the lock. Acknowledge the request to
* reschedule, and reschedule it if there is a timeout
* and the bus is not polling.
*/
xfer->ux_timeout_reset = false;
if (xfer->ux_timeout && !bus->ub_usepolling) {
KASSERT(xfer->ux_timeout_set);
callout_schedule(&xfer->ux_callout,
mstohz(xfer->ux_timeout));
} else {
/* No more callout or task scheduled. */
xfer->ux_timeout_set = false;
}
valid = false;
} else if (xfer->ux_status != USBD_IN_PROGRESS) {
/*
* The xfer has completed by hardware completion or by
* software abort, and has not been resubmitted, so the
* timeout must be unset, and is no longer valid for
* the caller.
*/
xfer->ux_timeout_set = false;
valid = false;
} else {
/*
* The xfer has not yet completed, so the timeout is
* valid.
*/
valid = true;
}
/* Any reset must have been processed. */
KASSERT(!xfer->ux_timeout_reset);
/*
* Either we claim the timeout is set, or the callout is idle.
* If the timeout is still set, we may be handing off to the
* task instead, so this is an if but not an iff.
*/
KASSERT(xfer->ux_timeout_set || !callout_pending(&xfer->ux_callout));
/*
* The task must be idle now.
*
* - If the caller is the callout, _and_ the timeout is still
* valid, the caller will schedule it, but it hasn't been
* scheduled yet. (If the timeout is not valid, the task
* should not be scheduled.)
*
* - If the caller is the task, it cannot be scheduled again
* until the callout runs again, which won't happen until we
* next release the lock.
*/
KASSERT(!usb_task_pending(xfer->ux_pipe->up_dev, &xfer->ux_aborttask));
KASSERT(bus->ub_usepolling || mutex_owned(bus->ub_lock));
return valid;
}
/*
* usbd_xfer_schedule_timeout(xfer)
*
* Ensure that xfer has a timeout. If the callout is already
* queued or the task is already running, request that they
* reschedule the callout. If not, and if we're not polling,
* schedule the callout anew.
*
* To be called in thread context from struct
* usbd_pipe_methods::upm_start.
*/
void
usbd_xfer_schedule_timeout(struct usbd_xfer *xfer)
{
struct usbd_bus *bus = xfer->ux_bus;
KASSERT(bus->ub_usepolling || mutex_owned(bus->ub_lock));
if (xfer->ux_timeout_set) {
/*
* Callout or task has fired from a prior completed
* xfer but has not yet noticed that the xfer is done.
* Ask it to reschedule itself to ux_timeout.
*/
xfer->ux_timeout_reset = true;
} else if (xfer->ux_timeout && !bus->ub_usepolling) {
/* Callout is not scheduled. Schedule it. */
KASSERT(!callout_pending(&xfer->ux_callout));
callout_schedule(&xfer->ux_callout, mstohz(xfer->ux_timeout));
xfer->ux_timeout_set = true;
}
KASSERT(bus->ub_usepolling || mutex_owned(bus->ub_lock));
}
/*
* usbd_xfer_cancel_timeout_async(xfer)
*
* Cancel the callout and the task of xfer, which have not yet run
* to completion, but don't wait for the callout or task to finish
* running.
*
* If they have already fired, at worst they are waiting for the
* bus lock. They will see that the xfer is no longer in progress
* and give up, or they will see that the xfer has been
* resubmitted with a new timeout and reschedule the callout.
*
* If a resubmitted request completed so fast that the callout
* didn't have time to process a timer reset, just cancel the
* timer reset.
*/
static void
usbd_xfer_cancel_timeout_async(struct usbd_xfer *xfer)
{
struct usbd_bus *bus __diagused = xfer->ux_bus;
KASSERT(bus->ub_usepolling || mutex_owned(bus->ub_lock));
/*
* If the timer wasn't running anyway, forget about it. This
* can happen if we are completing an isochronous transfer
* which doesn't use the same timeout logic.
*/
if (!xfer->ux_timeout_set)
return;
xfer->ux_timeout_reset = false;
if (!callout_stop(&xfer->ux_callout)) {
/*
* We stopped the callout before it ran. The timeout
* is no longer set.
*/
xfer->ux_timeout_set = false;
} else if (callout_invoking(&xfer->ux_callout)) {
/*
* The callout has begun to run but it has not yet
* acquired the lock and called callout_ack. The task
* cannot be queued yet, and the callout cannot have
* been rescheduled yet.
*
* By the time the callout acquires the lock, we will
* have transitioned from USBD_IN_PROGRESS to a
* completed status, and possibly also resubmitted the
* xfer and set xfer->ux_timeout_reset = true. In both
* cases, the callout will DTRT, so no further action
* is needed here.
*/
} else if (usb_rem_task(xfer->ux_pipe->up_dev, &xfer->ux_aborttask)) {
/*
* The callout had fired and scheduled the task, but we
* stopped the task before it could run. The timeout
* is therefore no longer set -- the next resubmission
* of the xfer must schedule a new timeout.
*
* The callout should not be be pending at this point:
* it is scheduled only under the lock, and only when
* xfer->ux_timeout_set is false, or by the callout or
* task itself when xfer->ux_timeout_reset is true.
*/
xfer->ux_timeout_set = false;
}
/*
* The callout cannot be scheduled and the task cannot be
* queued at this point. Either we cancelled them, or they are
* already running and waiting for the bus lock.
*/
KASSERT(!callout_pending(&xfer->ux_callout));
KASSERT(!usb_task_pending(xfer->ux_pipe->up_dev, &xfer->ux_aborttask));
KASSERT(bus->ub_usepolling || mutex_owned(bus->ub_lock));
}