/* $NetBSD: mertwist.c,v 1.8 2008/04/28 20:24:06 martin Exp $ */
/*-
* Copyright (c) 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Matt Thomas <matt@3am-software.com>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#if defined(_KERNEL) || defined(_STANDALONE)
#include <sys/param.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <lib/libkern/libkern.h>
#else
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include <assert.h>
#define KASSERT(x) assert(x)
#endif
/*
* Mersenne Twister. Produces identical output compared to mt19937ar.c
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
*/
#define MATRIX_A(a) (((a) & 1) ? 0x9908b0df : 0)
#define TEMPERING_MASK_B 0x9d2c5680
#define TEMPERING_MASK_C 0xefc60000
#define UPPER_MASK 0x80000000
#define LOWER_MASK 0x7fffffff
#define MIX(u,l) (((u) & UPPER_MASK) | ((l) & LOWER_MASK))
#define KNUTH_MULTIPLIER 0x6c078965
#ifndef MTPRNG_RLEN
#define MTPRNG_RLEN 624
#endif
#define MTPRNG_POS1 397
static void mtprng_refresh(struct mtprng_state *);
/*
* Initialize the generator from a seed
*/
void
mtprng_init32(struct mtprng_state *mt, uint32_t seed)
{
size_t i;
/*
* Use Knuth's algorithm for expanding this seed over its
* portion of the key space.
*/
mt->mt_elem[0] = seed;
for (i = 1; i < MTPRNG_RLEN; i++) {
mt->mt_elem[i] = KNUTH_MULTIPLIER
* (mt->mt_elem[i-1] ^ (mt->mt_elem[i-1] >> 30)) + i;
}
mtprng_refresh(mt);
}
void
mtprng_initarray(struct mtprng_state *mt, const uint32_t *key, size_t keylen)
{
uint32_t *mp;
size_t i, j, k;
/*
* Use Knuth's algorithm for expanding this seed over its
* portion of the key space.
*/
mt->mt_elem[0] = 19650218UL;
for (i = 1; i < MTPRNG_RLEN; i++) {
mt->mt_elem[i] = KNUTH_MULTIPLIER
* (mt->mt_elem[i-1] ^ (mt->mt_elem[i-1] >> 30)) + i;
}
KASSERT(keylen > 0);
i = 1;
j = 0;
k = (keylen < MTPRNG_RLEN ? MTPRNG_RLEN : keylen);
mp = &mt->mt_elem[1];
for (; k-- > 0; mp++) {
mp[0] ^= (mp[-1] ^ (mp[-1] >> 30)) * 1664525UL;
mp[0] += key[j] + j;
if (++i == MTPRNG_RLEN) {
KASSERT(mp == mt->mt_elem + MTPRNG_RLEN - 1);
mt->mt_elem[0] = mp[0];
i = 1;
mp = mt->mt_elem;
}
if (++j == keylen)
j = 0;
}
for (j = MTPRNG_RLEN; --j > 0; mp++) {
mp[0] ^= (mp[-1] ^ (mp[-1] >> 30)) * 1566083941UL;
mp[0] -= i;
if (++i == MTPRNG_RLEN) {
KASSERT(mp == mt->mt_elem + MTPRNG_RLEN - 1);
mt->mt_elem[0] = mp[0];
i = 1;
mp = mt->mt_elem;
}
}
mt->mt_elem[0] = 0x80000000;
mtprng_refresh(mt);
}
/*
* Generate an array of 624 untempered numbers
*/
void
mtprng_refresh(struct mtprng_state *mt)
{
uint32_t y;
size_t i, j;
/*
* The following has been refactored to avoid the need for 'mod 624'
*/
for (i = 0, j = MTPRNG_POS1; j < MTPRNG_RLEN; i++, j++) {
y = MIX(mt->mt_elem[i], mt->mt_elem[i+1]);
mt->mt_elem[i] = mt->mt_elem[j] ^ (y >> 1) ^ MATRIX_A(y);
}
for (j = 0; i < MTPRNG_RLEN - 1; i++, j++) {
y = MIX(mt->mt_elem[i], mt->mt_elem[i+1]);
mt->mt_elem[i] = mt->mt_elem[j] ^ (y >> 1) ^ MATRIX_A(y);
}
y = MIX(mt->mt_elem[MTPRNG_RLEN - 1], mt->mt_elem[0]);
mt->mt_elem[MTPRNG_RLEN - 1] =
mt->mt_elem[MTPRNG_POS1 - 1] ^ (y >> 1) ^ MATRIX_A(y);
}
/*
* Extract a tempered PRN based on the current index. Then recompute a
* new value for the index. This avoids having to regenerate the array
* every 624 iterations. We can do this since recomputing only the next
* element and the [(i + 397) % 624] one.
*/
uint32_t
mtprng_rawrandom(struct mtprng_state *mt)
{
uint32_t x, y;
const size_t i = mt->mt_idx;
size_t j;
/*
* First generate the random value for the current position.
*/
x = mt->mt_elem[i];
x ^= x >> 11;
x ^= (x << 7) & TEMPERING_MASK_B;
x ^= (x << 15) & TEMPERING_MASK_C;
x ^= x >> 18;
/*
* Next recalculate the next sequence for the current position.
*/
y = mt->mt_elem[i];
if (__predict_true(i < MTPRNG_RLEN - 1)) {
/*
* Avoid doing % since it can be expensive.
* j = (i + MTPRNG_POS1) % MTPRNG_RLEN;
*/
j = i + MTPRNG_POS1;
if (j >= MTPRNG_RLEN)
j -= MTPRNG_RLEN;
mt->mt_idx++;
} else {
j = MTPRNG_POS1 - 1;
mt->mt_idx = 0;
}
y = MIX(y, mt->mt_elem[mt->mt_idx]);
mt->mt_elem[i] = mt->mt_elem[j] ^ (y >> 1) ^ MATRIX_A(y);
/*
* Return the value calculated in the first step.
*/
return x;
}
/*
* This is a non-standard routine which attempts to return a cryptographically
* strong random number by collapsing 2 32bit values outputed by the twister
* into one 32bit value.
*/
uint32_t
mtprng_random(struct mtprng_state *mt)
{
uint32_t a;
mt->mt_count = (mt->mt_count + 13) & 31;
a = mtprng_rawrandom(mt);
a = (a << mt->mt_count) | (a >> (32 - mt->mt_count));
return a + mtprng_rawrandom(mt);
}