/* $NetBSD: ffs_vfsops.c,v 1.362 2019/06/20 03:31:30 pgoyette Exp $ */
/*-
* Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Wasabi Systems, Inc, and by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1989, 1991, 1993, 1994
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.362 2019/06/20 03:31:30 pgoyette Exp $");
#if defined(_KERNEL_OPT)
#include "opt_ffs.h"
#include "opt_quota.h"
#include "opt_wapbl.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/vnode.h>
#include <sys/socket.h>
#include <sys/mount.h>
#include <sys/buf.h>
#include <sys/device.h>
#include <sys/disk.h>
#include <sys/file.h>
#include <sys/disklabel.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/kmem.h>
#include <sys/pool.h>
#include <sys/lock.h>
#include <sys/sysctl.h>
#include <sys/conf.h>
#include <sys/kauth.h>
#include <sys/wapbl.h>
#include <sys/module.h>
#include <miscfs/genfs/genfs.h>
#include <miscfs/specfs/specdev.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/dir.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ufs/ufs_bswap.h>
#include <ufs/ufs/ufs_wapbl.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
#ifdef WAPBL
MODULE(MODULE_CLASS_VFS, ffs, "ufs,wapbl");
#else
MODULE(MODULE_CLASS_VFS, ffs, "ufs");
#endif
static int ffs_vfs_fsync(vnode_t *, int);
static int ffs_superblock_validate(struct fs *);
static int ffs_is_appleufs(struct vnode *, struct fs *);
static int ffs_init_vnode(struct ufsmount *, struct vnode *, ino_t);
static void ffs_deinit_vnode(struct ufsmount *, struct vnode *);
static struct sysctllog *ffs_sysctl_log;
static kauth_listener_t ffs_snapshot_listener;
/* how many times ffs_init() was called */
int ffs_initcount = 0;
#ifdef DEBUG_FFS_MOUNT
#define DPRINTF(_fmt, args...) printf("%s: " _fmt "\n", __func__, ##args)
#else
#define DPRINTF(_fmt, args...) do {} while (/*CONSTCOND*/0)
#endif
extern const struct vnodeopv_desc ffs_vnodeop_opv_desc;
extern const struct vnodeopv_desc ffs_specop_opv_desc;
extern const struct vnodeopv_desc ffs_fifoop_opv_desc;
const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = {
&ffs_vnodeop_opv_desc,
&ffs_specop_opv_desc,
&ffs_fifoop_opv_desc,
NULL,
};
struct vfsops ffs_vfsops = {
.vfs_name = MOUNT_FFS,
.vfs_min_mount_data = sizeof (struct ufs_args),
.vfs_mount = ffs_mount,
.vfs_start = ufs_start,
.vfs_unmount = ffs_unmount,
.vfs_root = ufs_root,
.vfs_quotactl = ufs_quotactl,
.vfs_statvfs = ffs_statvfs,
.vfs_sync = ffs_sync,
.vfs_vget = ufs_vget,
.vfs_loadvnode = ffs_loadvnode,
.vfs_newvnode = ffs_newvnode,
.vfs_fhtovp = ffs_fhtovp,
.vfs_vptofh = ffs_vptofh,
.vfs_init = ffs_init,
.vfs_reinit = ffs_reinit,
.vfs_done = ffs_done,
.vfs_mountroot = ffs_mountroot,
.vfs_snapshot = ffs_snapshot,
.vfs_extattrctl = ffs_extattrctl,
.vfs_suspendctl = genfs_suspendctl,
.vfs_renamelock_enter = genfs_renamelock_enter,
.vfs_renamelock_exit = genfs_renamelock_exit,
.vfs_fsync = ffs_vfs_fsync,
.vfs_opv_descs = ffs_vnodeopv_descs
};
static const struct genfs_ops ffs_genfsops = {
.gop_size = ffs_gop_size,
.gop_alloc = ufs_gop_alloc,
.gop_write = genfs_gop_write,
.gop_markupdate = ufs_gop_markupdate,
.gop_putrange = genfs_gop_putrange,
};
static const struct ufs_ops ffs_ufsops = {
.uo_itimes = ffs_itimes,
.uo_update = ffs_update,
.uo_truncate = ffs_truncate,
.uo_balloc = ffs_balloc,
.uo_snapgone = ffs_snapgone,
.uo_bufrd = ffs_bufrd,
.uo_bufwr = ffs_bufwr,
};
static int
ffs_checkrange(struct mount *mp, uint32_t ino)
{
struct fs *fs = VFSTOUFS(mp)->um_fs;
if (ino < UFS_ROOTINO || ino >= fs->fs_ncg * fs->fs_ipg) {
DPRINTF("out of range %u\n", ino);
return ESTALE;
}
/*
* Need to check if inode is initialized because ffsv2 does
* lazy initialization and we can get here from nfs_fhtovp
*/
if (fs->fs_magic != FS_UFS2_MAGIC)
return 0;
struct buf *bp;
int cg = ino_to_cg(fs, ino);
struct ufsmount *ump = VFSTOUFS(mp);
int error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
(int)fs->fs_cgsize, B_MODIFY, &bp);
if (error) {
DPRINTF("error %d reading cg %d ino %u\n", error, cg, ino);
return error;
}
const int needswap = UFS_FSNEEDSWAP(fs);
struct cg *cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp, needswap)) {
brelse(bp, 0);
DPRINTF("bad cylinder group magic cg %d ino %u\n", cg, ino);
return ESTALE;
}
int32_t initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
brelse(bp, 0);
if (cg * fs->fs_ipg + initediblk < ino) {
DPRINTF("cg=%d fs->fs_ipg=%d initediblk=%d ino=%u\n",
cg, fs->fs_ipg, initediblk, ino);
return ESTALE;
}
return 0;
}
static int
ffs_snapshot_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
void *arg0, void *arg1, void *arg2, void *arg3)
{
vnode_t *vp = arg2;
int result = KAUTH_RESULT_DEFER;
if (action != KAUTH_SYSTEM_FS_SNAPSHOT)
return result;
if (VTOI(vp)->i_uid == kauth_cred_geteuid(cred))
result = KAUTH_RESULT_ALLOW;
return result;
}
static int
ffs_modcmd(modcmd_t cmd, void *arg)
{
int error;
#if 0
extern int doasyncfree;
#endif
#ifdef UFS_EXTATTR
extern int ufs_extattr_autocreate;
#endif
extern int ffs_log_changeopt;
switch (cmd) {
case MODULE_CMD_INIT:
error = vfs_attach(&ffs_vfsops);
if (error != 0)
break;
sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "ffs",
SYSCTL_DESCR("Berkeley Fast File System"),
NULL, 0, NULL, 0,
CTL_VFS, 1, CTL_EOL);
/*
* @@@ should we even bother with these first three?
*/
sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "doclusterread", NULL,
sysctl_notavail, 0, NULL, 0,
CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL);
sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "doclusterwrite", NULL,
sysctl_notavail, 0, NULL, 0,
CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL);
sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "doreallocblks", NULL,
sysctl_notavail, 0, NULL, 0,
CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL);
#if 0
sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "doasyncfree",
SYSCTL_DESCR("Release dirty blocks asynchronously"),
NULL, 0, &doasyncfree, 0,
CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL);
#endif
sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "log_changeopt",
SYSCTL_DESCR("Log changes in optimization strategy"),
NULL, 0, &ffs_log_changeopt, 0,
CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL);
#ifdef UFS_EXTATTR
sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "extattr_autocreate",
SYSCTL_DESCR("Size of attribute for "
"backing file autocreation"),
NULL, 0, &ufs_extattr_autocreate, 0,
CTL_VFS, 1, FFS_EXTATTR_AUTOCREATE, CTL_EOL);
#endif /* UFS_EXTATTR */
ffs_snapshot_listener = kauth_listen_scope(KAUTH_SCOPE_SYSTEM,
ffs_snapshot_cb, NULL);
if (ffs_snapshot_listener == NULL)
printf("ffs_modcmd: can't listen on system scope.\n");
break;
case MODULE_CMD_FINI:
error = vfs_detach(&ffs_vfsops);
if (error != 0)
break;
sysctl_teardown(&ffs_sysctl_log);
if (ffs_snapshot_listener != NULL)
kauth_unlisten_scope(ffs_snapshot_listener);
break;
default:
error = ENOTTY;
break;
}
return (error);
}
pool_cache_t ffs_inode_cache;
pool_cache_t ffs_dinode1_cache;
pool_cache_t ffs_dinode2_cache;
static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t);
static void ffs_oldfscompat_write(struct fs *, struct ufsmount *);
/*
* Called by main() when ffs is going to be mounted as root.
*/
int
ffs_mountroot(void)
{
struct fs *fs;
struct mount *mp;
struct lwp *l = curlwp; /* XXX */
struct ufsmount *ump;
int error;
if (device_class(root_device) != DV_DISK)
return (ENODEV);
if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) {
vrele(rootvp);
return (error);
}
/*
* We always need to be able to mount the root file system.
*/
mp->mnt_flag |= MNT_FORCE;
if ((error = ffs_mountfs(rootvp, mp, l)) != 0) {
vfs_unbusy(mp);
vfs_rele(mp);
return (error);
}
mp->mnt_flag &= ~MNT_FORCE;
mountlist_append(mp);
ump = VFSTOUFS(mp);
fs = ump->um_fs;
memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt));
(void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0);
(void)ffs_statvfs(mp, &mp->mnt_stat);
vfs_unbusy(mp);
setrootfstime((time_t)fs->fs_time);
return (0);
}
/*
* VFS Operations.
*
* mount system call
*/
int
ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
{
struct lwp *l = curlwp;
struct vnode *devvp = NULL;
struct ufs_args *args = data;
struct ufsmount *ump = NULL;
struct fs *fs;
int error = 0, flags, update;
mode_t accessmode;
if (args == NULL) {
DPRINTF("NULL args");
return EINVAL;
}
if (*data_len < sizeof(*args)) {
DPRINTF("bad size args %zu != %zu", *data_len, sizeof(*args));
return EINVAL;
}
ump = VFSTOUFS(mp);
if ((mp->mnt_flag & (MNT_GETARGS|MNT_UPDATE)) && ump == NULL) {
DPRINTF("no ump");
return EIO;
}
if (mp->mnt_flag & MNT_GETARGS) {
args->fspec = NULL;
*data_len = sizeof *args;
return 0;
}
update = mp->mnt_flag & MNT_UPDATE;
/* Check arguments */
if (args->fspec == NULL) {
if (!update) {
/* New mounts must have a filename for the device */
DPRINTF("no filename for mount");
return EINVAL;
}
} else {
/*
* Look up the name and verify that it's sane.
*/
error = namei_simple_user(args->fspec,
NSM_FOLLOW_NOEMULROOT, &devvp);
if (error != 0) {
DPRINTF("namei_simple_user returned %d", error);
return error;
}
/*
* Be sure this is a valid block device
*/
if (devvp->v_type != VBLK) {
DPRINTF("non block device %d", devvp->v_type);
error = ENOTBLK;
goto fail;
}
if (bdevsw_lookup(devvp->v_rdev) == NULL) {
DPRINTF("can't find block device 0x%jx",
devvp->v_rdev);
error = ENXIO;
goto fail;
}
if (update) {
/*
* Be sure we're still naming the same device
* used for our initial mount
*/
if (devvp != ump->um_devvp &&
devvp->v_rdev != ump->um_devvp->v_rdev) {
DPRINTF("wrong device 0x%jx != 0x%jx",
(uintmax_t)devvp->v_rdev,
(uintmax_t)ump->um_devvp->v_rdev);
error = EINVAL;
goto fail;
}
vrele(devvp);
devvp = NULL;
}
}
if (devvp == NULL) {
devvp = ump->um_devvp;
vref(devvp);
}
/*
* If mount by non-root, then verify that user has necessary
* permissions on the device.
*
* Permission to update a mount is checked higher, so here we presume
* updating the mount is okay (for example, as far as securelevel goes)
* which leaves us with the normal check.
*/
accessmode = VREAD;
if (update ? (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
(mp->mnt_flag & MNT_RDONLY) == 0)
accessmode |= VWRITE;
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MOUNT,
KAUTH_REQ_SYSTEM_MOUNT_DEVICE, mp, devvp, KAUTH_ARG(accessmode));
VOP_UNLOCK(devvp);
if (error) {
DPRINTF("kauth returned %d", error);
goto fail;
}
#ifdef WAPBL
/* WAPBL can only be enabled on a r/w mount. */
if (((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) ||
(mp->mnt_iflag & IMNT_WANTRDONLY)) {
mp->mnt_flag &= ~MNT_LOG;
}
#else /* !WAPBL */
mp->mnt_flag &= ~MNT_LOG;
#endif /* !WAPBL */
if (!update) {
int xflags;
if (mp->mnt_flag & MNT_RDONLY)
xflags = FREAD;
else
xflags = FREAD | FWRITE;
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
error = VOP_OPEN(devvp, xflags, FSCRED);
VOP_UNLOCK(devvp);
if (error) {
DPRINTF("VOP_OPEN returned %d", error);
goto fail;
}
error = ffs_mountfs(devvp, mp, l);
if (error) {
DPRINTF("ffs_mountfs returned %d", error);
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
(void)VOP_CLOSE(devvp, xflags, NOCRED);
VOP_UNLOCK(devvp);
goto fail;
}
ump = VFSTOUFS(mp);
fs = ump->um_fs;
} else {
/*
* Update the mount.
*/
/*
* The initial mount got a reference on this
* device, so drop the one obtained via
* namei(), above.
*/
vrele(devvp);
ump = VFSTOUFS(mp);
fs = ump->um_fs;
if (fs->fs_ronly == 0 && (mp->mnt_iflag & IMNT_WANTRDONLY)) {
/*
* Changing from r/w to r/o
*/
flags = WRITECLOSE;
if (mp->mnt_flag & MNT_FORCE)
flags |= FORCECLOSE;
error = ffs_flushfiles(mp, flags, l);
if (error)
return error;
error = UFS_WAPBL_BEGIN(mp);
if (error) {
DPRINTF("wapbl %d", error);
return error;
}
if (ffs_cgupdate(ump, MNT_WAIT) == 0 &&
fs->fs_clean & FS_WASCLEAN) {
if (mp->mnt_flag & MNT_SOFTDEP)
fs->fs_flags &= ~FS_DOSOFTDEP;
fs->fs_clean = FS_ISCLEAN;
(void) ffs_sbupdate(ump, MNT_WAIT);
}
UFS_WAPBL_END(mp);
}
#ifdef WAPBL
if ((mp->mnt_flag & MNT_LOG) == 0) {
error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE);
if (error) {
DPRINTF("ffs_wapbl_stop returned %d", error);
return error;
}
}
#endif /* WAPBL */
if (fs->fs_ronly == 0 && (mp->mnt_iflag & IMNT_WANTRDONLY)) {
/*
* Finish change from r/w to r/o
*/
fs->fs_ronly = 1;
fs->fs_fmod = 0;
}
if (mp->mnt_flag & MNT_RELOAD) {
error = ffs_reload(mp, l->l_cred, l);
if (error) {
DPRINTF("ffs_reload returned %d", error);
return error;
}
}
if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
/*
* Changing from read-only to read/write
*/
#ifndef QUOTA2
if (fs->fs_flags & FS_DOQUOTA2) {
ump->um_flags |= UFS_QUOTA2;
uprintf("%s: options QUOTA2 not enabled%s\n",
mp->mnt_stat.f_mntonname,
(mp->mnt_flag & MNT_FORCE) ? "" :
", not mounting");
DPRINTF("ffs_quota2 %d", EINVAL);
return EINVAL;
}
#endif
fs->fs_ronly = 0;
fs->fs_clean <<= 1;
fs->fs_fmod = 1;
#ifdef WAPBL
if (fs->fs_flags & FS_DOWAPBL) {
const char *nm = mp->mnt_stat.f_mntonname;
if (!mp->mnt_wapbl_replay) {
printf("%s: log corrupted;"
" replay cancelled\n", nm);
return EFTYPE;
}
printf("%s: replaying log to disk\n", nm);
error = wapbl_replay_write(mp->mnt_wapbl_replay,
devvp);
if (error) {
DPRINTF("%s: wapbl_replay_write %d",
nm, error);
return error;
}
wapbl_replay_stop(mp->mnt_wapbl_replay);
fs->fs_clean = FS_WASCLEAN;
}
#endif /* WAPBL */
if (fs->fs_snapinum[0] != 0)
ffs_snapshot_mount(mp);
}
#ifdef WAPBL
error = ffs_wapbl_start(mp);
if (error) {
DPRINTF("ffs_wapbl_start returned %d", error);
return error;
}
#endif /* WAPBL */
#ifdef QUOTA2
if (!fs->fs_ronly) {
error = ffs_quota2_mount(mp);
if (error) {
DPRINTF("ffs_quota2_mount returned %d", error);
return error;
}
}
#endif
if ((mp->mnt_flag & MNT_DISCARD) && !(ump->um_discarddata))
ump->um_discarddata = ffs_discard_init(devvp, fs);
if (args->fspec == NULL)
return 0;
}
error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
if (error == 0)
(void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname,
sizeof(fs->fs_fsmnt));
else {
DPRINTF("set_statvfs_info returned %d", error);
}
fs->fs_flags &= ~FS_DOSOFTDEP;
if (fs->fs_fmod != 0) { /* XXX */
int err;
fs->fs_fmod = 0;
if (fs->fs_clean & FS_WASCLEAN)
fs->fs_time = time_second;
else {
printf("%s: file system not clean (fs_clean=%#x); "
"please fsck(8)\n", mp->mnt_stat.f_mntfromname,
fs->fs_clean);
printf("%s: lost blocks %" PRId64 " files %d\n",
mp->mnt_stat.f_mntfromname, fs->fs_pendingblocks,
fs->fs_pendinginodes);
}
err = UFS_WAPBL_BEGIN(mp);
if (err == 0) {
(void) ffs_cgupdate(ump, MNT_WAIT);
UFS_WAPBL_END(mp);
}
}
if ((mp->mnt_flag & MNT_SOFTDEP) != 0) {
printf("%s: `-o softdep' is no longer supported, "
"consider `-o log'\n", mp->mnt_stat.f_mntfromname);
mp->mnt_flag &= ~MNT_SOFTDEP;
}
return (error);
fail:
vrele(devvp);
return (error);
}
/*
* Reload all incore data for a filesystem (used after running fsck on
* the root filesystem and finding things to fix). The filesystem must
* be mounted read-only.
*
* Things to do to update the mount:
* 1) invalidate all cached meta-data.
* 2) re-read superblock from disk.
* 3) re-read summary information from disk.
* 4) invalidate all inactive vnodes.
* 5) invalidate all cached file data.
* 6) re-read inode data for all active vnodes.
*/
int
ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l)
{
struct vnode *vp, *devvp;
struct inode *ip;
void *space;
struct buf *bp;
struct fs *fs, *newfs;
int i, bsize, blks, error;
int32_t *lp, fs_sbsize;
struct ufsmount *ump;
daddr_t sblockloc;
struct vnode_iterator *marker;
if ((mp->mnt_flag & MNT_RDONLY) == 0)
return (EINVAL);
ump = VFSTOUFS(mp);
/*
* Step 1: invalidate all cached meta-data.
*/
devvp = ump->um_devvp;
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
error = vinvalbuf(devvp, 0, cred, l, 0, 0);
VOP_UNLOCK(devvp);
if (error)
panic("%s: dirty1", __func__);
/*
* Step 2: re-read superblock from disk. XXX: We don't handle
* possibility that superblock moved. Which implies that we don't
* want its size to change either.
*/
fs = ump->um_fs;
fs_sbsize = fs->fs_sbsize;
error = bread(devvp, fs->fs_sblockloc / DEV_BSIZE, fs_sbsize,
0, &bp);
if (error)
return (error);
newfs = kmem_alloc(fs_sbsize, KM_SLEEP);
memcpy(newfs, bp->b_data, fs_sbsize);
#ifdef FFS_EI
if (ump->um_flags & UFS_NEEDSWAP) {
ffs_sb_swap((struct fs *)bp->b_data, newfs);
newfs->fs_flags |= FS_SWAPPED;
} else
#endif
newfs->fs_flags &= ~FS_SWAPPED;
brelse(bp, 0);
if ((newfs->fs_magic != FS_UFS1_MAGIC) &&
(newfs->fs_magic != FS_UFS2_MAGIC)) {
kmem_free(newfs, fs_sbsize);
return (EIO); /* XXX needs translation */
}
if (!ffs_superblock_validate(newfs)) {
kmem_free(newfs, fs_sbsize);
return (EINVAL);
}
/*
* The current implementation doesn't handle the possibility that
* these values may have changed.
*/
if ((newfs->fs_sbsize != fs_sbsize) ||
(newfs->fs_cssize != fs->fs_cssize) ||
(newfs->fs_contigsumsize != fs->fs_contigsumsize) ||
(newfs->fs_ncg != fs->fs_ncg)) {
kmem_free(newfs, fs_sbsize);
return (EINVAL);
}
/* Store off old fs_sblockloc for fs_oldfscompat_read. */
sblockloc = fs->fs_sblockloc;
/*
* Copy pointer fields back into superblock before copying in XXX
* new superblock. These should really be in the ufsmount. XXX
* Note that important parameters (eg fs_ncg) are unchanged.
*/
newfs->fs_csp = fs->fs_csp;
newfs->fs_maxcluster = fs->fs_maxcluster;
newfs->fs_contigdirs = fs->fs_contigdirs;
newfs->fs_ronly = fs->fs_ronly;
newfs->fs_active = fs->fs_active;
memcpy(fs, newfs, (u_int)fs_sbsize);
kmem_free(newfs, fs_sbsize);
/*
* Recheck for Apple UFS filesystem.
*/
ump->um_flags &= ~UFS_ISAPPLEUFS;
if (ffs_is_appleufs(devvp, fs)) {
#ifdef APPLE_UFS
ump->um_flags |= UFS_ISAPPLEUFS;
#else
DPRINTF("AppleUFS not supported");
return (EIO); /* XXX: really? */
#endif
}
if (UFS_MPISAPPLEUFS(ump)) {
/* see comment about NeXT below */
ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
mp->mnt_iflag |= IMNT_DTYPE;
} else {
ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
ump->um_dirblksiz = UFS_DIRBLKSIZ;
if (ump->um_maxsymlinklen > 0)
mp->mnt_iflag |= IMNT_DTYPE;
else
mp->mnt_iflag &= ~IMNT_DTYPE;
}
ffs_oldfscompat_read(fs, ump, sblockloc);
mutex_enter(&ump->um_lock);
ump->um_maxfilesize = fs->fs_maxfilesize;
if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
mp->mnt_stat.f_mntonname, fs->fs_flags,
(mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
if ((mp->mnt_flag & MNT_FORCE) == 0) {
mutex_exit(&ump->um_lock);
return (EINVAL);
}
}
if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
fs->fs_pendingblocks = 0;
fs->fs_pendinginodes = 0;
}
mutex_exit(&ump->um_lock);
ffs_statvfs(mp, &mp->mnt_stat);
/*
* Step 3: re-read summary information from disk.
*/
blks = howmany(fs->fs_cssize, fs->fs_fsize);
space = fs->fs_csp;
for (i = 0; i < blks; i += fs->fs_frag) {
bsize = fs->fs_bsize;
if (i + fs->fs_frag > blks)
bsize = (blks - i) * fs->fs_fsize;
error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize,
0, &bp);
if (error) {
return (error);
}
#ifdef FFS_EI
if (UFS_FSNEEDSWAP(fs))
ffs_csum_swap((struct csum *)bp->b_data,
(struct csum *)space, bsize);
else
#endif
memcpy(space, bp->b_data, (size_t)bsize);
space = (char *)space + bsize;
brelse(bp, 0);
}
/*
* We no longer know anything about clusters per cylinder group.
*/
if (fs->fs_contigsumsize > 0) {
lp = fs->fs_maxcluster;
for (i = 0; i < fs->fs_ncg; i++)
*lp++ = fs->fs_contigsumsize;
}
vfs_vnode_iterator_init(mp, &marker);
while ((vp = vfs_vnode_iterator_next(marker, NULL, NULL))) {
/*
* Step 4: invalidate all inactive vnodes.
*/
if (vrecycle(vp))
continue;
/*
* Step 5: invalidate all cached file data.
*/
if (vn_lock(vp, LK_EXCLUSIVE)) {
vrele(vp);
continue;
}
if (vinvalbuf(vp, 0, cred, l, 0, 0))
panic("%s: dirty2", __func__);
/*
* Step 6: re-read inode data for all active vnodes.
*/
ip = VTOI(vp);
error = bread(devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ip->i_number)),
(int)fs->fs_bsize, 0, &bp);
if (error) {
vput(vp);
break;
}
ffs_load_inode(bp, ip, fs, ip->i_number);
brelse(bp, 0);
vput(vp);
}
vfs_vnode_iterator_destroy(marker);
return (error);
}
/*
* Possible superblock locations ordered from most to least likely.
*/
static const int sblock_try[] = SBLOCKSEARCH;
static int
ffs_superblock_validate(struct fs *fs)
{
int32_t i, fs_bshift = 0, fs_fshift = 0, fs_fragshift = 0, fs_frag;
int32_t fs_inopb;
/* Check the superblock size */
if (fs->fs_sbsize > SBLOCKSIZE || fs->fs_sbsize < sizeof(struct fs))
return 0;
/* Check the file system blocksize */
if (fs->fs_bsize > MAXBSIZE || fs->fs_bsize < MINBSIZE)
return 0;
if (!powerof2(fs->fs_bsize))
return 0;
/* Check the size of frag blocks */
if (!powerof2(fs->fs_fsize))
return 0;
if (fs->fs_fsize == 0)
return 0;
/*
* XXX: these values are just zero-checked to prevent obvious
* bugs. We need more strict checks.
*/
if (fs->fs_size == 0 && fs->fs_old_size == 0)
return 0;
if (fs->fs_cssize == 0)
return 0;
if (fs->fs_ipg == 0)
return 0;
if (fs->fs_fpg == 0)
return 0;
if (fs->fs_ncg == 0)
return 0;
if (fs->fs_maxbpg == 0)
return 0;
/* Check the number of inodes per block */
if (fs->fs_magic == FS_UFS1_MAGIC)
fs_inopb = fs->fs_bsize / sizeof(struct ufs1_dinode);
else /* fs->fs_magic == FS_UFS2_MAGIC */
fs_inopb = fs->fs_bsize / sizeof(struct ufs2_dinode);
if (fs->fs_inopb != fs_inopb)
return 0;
/* Block size cannot be smaller than fragment size */
if (fs->fs_bsize < fs->fs_fsize)
return 0;
/* Compute fs_bshift and ensure it is consistent */
for (i = fs->fs_bsize; i > 1; i >>= 1)
fs_bshift++;
if (fs->fs_bshift != fs_bshift)
return 0;
/* Compute fs_fshift and ensure it is consistent */
for (i = fs->fs_fsize; i > 1; i >>= 1)
fs_fshift++;
if (fs->fs_fshift != fs_fshift)
return 0;
/* Compute fs_fragshift and ensure it is consistent */
for (i = fs->fs_frag; i > 1; i >>= 1)
fs_fragshift++;
if (fs->fs_fragshift != fs_fragshift)
return 0;
/* Check the masks */
if (fs->fs_bmask != ~(fs->fs_bsize - 1))
return 0;
if (fs->fs_fmask != ~(fs->fs_fsize - 1))
return 0;
/*
* Now that the shifts and masks are sanitized, we can use the ffs_ API.
*/
/* Check the number of frag blocks */
if ((fs_frag = ffs_numfrags(fs, fs->fs_bsize)) > MAXFRAG)
return 0;
if (fs->fs_frag != fs_frag)
return 0;
/* Check the size of cylinder groups */
if ((fs->fs_cgsize < sizeof(struct cg)) ||
(fs->fs_cgsize > fs->fs_bsize))
return 0;
return 1;
}
static int
ffs_is_appleufs(struct vnode *devvp, struct fs *fs)
{
struct dkwedge_info dkw;
int ret = 0;
/*
* First check to see if this is tagged as an Apple UFS filesystem
* in the disklabel.
*/
if (getdiskinfo(devvp, &dkw) == 0 &&
strcmp(dkw.dkw_ptype, DKW_PTYPE_APPLEUFS) == 0)
ret = 1;
#ifdef APPLE_UFS
else {
struct appleufslabel *applefs;
struct buf *bp;
daddr_t blkno = APPLEUFS_LABEL_OFFSET / DEV_BSIZE;
int error;
/*
* Manually look for an Apple UFS label, and if a valid one
* is found, then treat it like an Apple UFS filesystem anyway.
*/
error = bread(devvp, blkno, APPLEUFS_LABEL_SIZE, 0, &bp);
if (error) {
DPRINTF("bread@0x%jx returned %d", (intmax_t)blkno, error);
return 0;
}
applefs = (struct appleufslabel *)bp->b_data;
error = ffs_appleufs_validate(fs->fs_fsmnt, applefs, NULL);
if (error == 0)
ret = 1;
brelse(bp, 0);
}
#endif
return ret;
}
/*
* Common code for mount and mountroot
*/
int
ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
{
struct ufsmount *ump = NULL;
struct buf *bp = NULL;
struct fs *fs = NULL;
dev_t dev;
void *space;
daddr_t sblockloc = 0;
int blks, fstype = 0;
int error, i, bsize, ronly, bset = 0;
#ifdef FFS_EI
int needswap = 0; /* keep gcc happy */
#endif
int32_t *lp;
kauth_cred_t cred;
u_int32_t allocsbsize, fs_sbsize = 0;
dev = devvp->v_rdev;
cred = l ? l->l_cred : NOCRED;
/* Flush out any old buffers remaining from a previous use. */
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
VOP_UNLOCK(devvp);
if (error) {
DPRINTF("vinvalbuf returned %d", error);
return error;
}
ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
ump = kmem_zalloc(sizeof(*ump), KM_SLEEP);
mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE);
error = ffs_snapshot_init(ump);
if (error) {
DPRINTF("ffs_snapshot_init returned %d", error);
goto out;
}
ump->um_ops = &ffs_ufsops;
#ifdef WAPBL
sbagain:
#endif
/*
* Try reading the superblock in each of its possible locations.
*/
for (i = 0; ; i++) {
daddr_t fs_sblockloc;
if (bp != NULL) {
brelse(bp, BC_NOCACHE);
bp = NULL;
}
if (sblock_try[i] == -1) {
DPRINTF("no superblock found");
error = EINVAL;
fs = NULL;
goto out;
}
error = bread(devvp, sblock_try[i] / DEV_BSIZE, SBLOCKSIZE,
0, &bp);
if (error) {
DPRINTF("bread@0x%x returned %d",
sblock_try[i] / DEV_BSIZE, error);
fs = NULL;
goto out;
}
fs = (struct fs *)bp->b_data;
sblockloc = sblock_try[i];
DPRINTF("fs_magic 0x%x", fs->fs_magic);
/*
* Swap: here, we swap fs->fs_sbsize in order to get the correct
* size to read the superblock. Once read, we swap the whole
* superblock structure.
*/
if (fs->fs_magic == FS_UFS1_MAGIC) {
fs_sbsize = fs->fs_sbsize;
fstype = UFS1;
#ifdef FFS_EI
needswap = 0;
} else if (fs->fs_magic == FS_UFS1_MAGIC_SWAPPED) {
fs_sbsize = bswap32(fs->fs_sbsize);
fstype = UFS1;
needswap = 1;
#endif
} else if (fs->fs_magic == FS_UFS2_MAGIC) {
fs_sbsize = fs->fs_sbsize;
fstype = UFS2;
#ifdef FFS_EI
needswap = 0;
} else if (fs->fs_magic == FS_UFS2_MAGIC_SWAPPED) {
fs_sbsize = bswap32(fs->fs_sbsize);
fstype = UFS2;
needswap = 1;
#endif
} else
continue;
/* fs->fs_sblockloc isn't defined for old filesystems */
if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) {
if (sblockloc == SBLOCK_UFS2)
/*
* This is likely to be the first alternate
* in a filesystem with 64k blocks.
* Don't use it.
*/
continue;
fs_sblockloc = sblockloc;
} else {
fs_sblockloc = fs->fs_sblockloc;
#ifdef FFS_EI
if (needswap)
fs_sblockloc = bswap64(fs_sblockloc);
#endif
}
/* Check we haven't found an alternate superblock */
if (fs_sblockloc != sblockloc)
continue;
/* Check the superblock size */
if (fs_sbsize > SBLOCKSIZE || fs_sbsize < sizeof(struct fs))
continue;
fs = kmem_alloc((u_long)fs_sbsize, KM_SLEEP);
memcpy(fs, bp->b_data, fs_sbsize);
/* Swap the whole superblock structure, if necessary. */
#ifdef FFS_EI
if (needswap) {
ffs_sb_swap((struct fs*)bp->b_data, fs);
fs->fs_flags |= FS_SWAPPED;
} else
#endif
fs->fs_flags &= ~FS_SWAPPED;
/*
* Now that everything is swapped, the superblock is ready to
* be sanitized.
*/
if (!ffs_superblock_validate(fs)) {
kmem_free(fs, fs_sbsize);
continue;
}
/* Ok seems to be a good superblock */
break;
}
ump->um_fs = fs;
#ifdef WAPBL
if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) {
error = ffs_wapbl_replay_start(mp, fs, devvp);
if (error && (mp->mnt_flag & MNT_FORCE) == 0) {
DPRINTF("ffs_wapbl_replay_start returned %d", error);
goto out;
}
if (!error) {
if (!ronly) {
/* XXX fsmnt may be stale. */
printf("%s: replaying log to disk\n",
fs->fs_fsmnt);
error = wapbl_replay_write(mp->mnt_wapbl_replay,
devvp);
if (error) {
DPRINTF("wapbl_replay_write returned %d",
error);
goto out;
}
wapbl_replay_stop(mp->mnt_wapbl_replay);
fs->fs_clean = FS_WASCLEAN;
} else {
/* XXX fsmnt may be stale */
printf("%s: replaying log to memory\n",
fs->fs_fsmnt);
}
/* Force a re-read of the superblock */
brelse(bp, BC_INVAL);
bp = NULL;
kmem_free(fs, fs_sbsize);
fs = NULL;
goto sbagain;
}
}
#else /* !WAPBL */
if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) {
error = EPERM;
DPRINTF("no force %d", error);
goto out;
}
#endif /* !WAPBL */
ffs_oldfscompat_read(fs, ump, sblockloc);
ump->um_maxfilesize = fs->fs_maxfilesize;
if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
mp->mnt_stat.f_mntonname, fs->fs_flags,
(mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
if ((mp->mnt_flag & MNT_FORCE) == 0) {
error = EINVAL;
DPRINTF("no force %d", error);
goto out;
}
}
if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
fs->fs_pendingblocks = 0;
fs->fs_pendinginodes = 0;
}
ump->um_fstype = fstype;
if (fs->fs_sbsize < SBLOCKSIZE)
brelse(bp, BC_INVAL);
else
brelse(bp, 0);
bp = NULL;
if (ffs_is_appleufs(devvp, fs)) {
#ifdef APPLE_UFS
ump->um_flags |= UFS_ISAPPLEUFS;
#else
DPRINTF("AppleUFS not supported");
error = EINVAL;
goto out;
#endif
}
#if 0
/*
* XXX This code changes the behaviour of mounting dirty filesystems, to
* XXX require "mount -f ..." to mount them. This doesn't match what
* XXX mount(8) describes and is disabled for now.
*/
/*
* If the file system is not clean, don't allow it to be mounted
* unless MNT_FORCE is specified. (Note: MNT_FORCE is always set
* for the root file system.)
*/
if (fs->fs_flags & FS_DOWAPBL) {
/*
* wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL
* bit is set, although there's a window in unmount where it
* could be FS_ISCLEAN
*/
if ((mp->mnt_flag & MNT_FORCE) == 0 &&
(fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) {
error = EPERM;
goto out;
}
} else
if ((fs->fs_clean & FS_ISCLEAN) == 0 &&
(mp->mnt_flag & MNT_FORCE) == 0) {
error = EPERM;
goto out;
}
#endif
/*
* Verify that we can access the last block in the fs
* if we're mounting read/write.
*/
if (!ronly) {
error = bread(devvp, FFS_FSBTODB(fs, fs->fs_size - 1),
fs->fs_fsize, 0, &bp);
if (error) {
DPRINTF("bread@0x%jx returned %d",
(intmax_t)FFS_FSBTODB(fs, fs->fs_size - 1),
error);
bset = BC_INVAL;
goto out;
}
if (bp->b_bcount != fs->fs_fsize) {
DPRINTF("bcount %x != fsize %x", bp->b_bcount,
fs->fs_fsize);
error = EINVAL;
bset = BC_INVAL;
goto out;
}
brelse(bp, BC_INVAL);
bp = NULL;
}
fs->fs_ronly = ronly;
/* Don't bump fs_clean if we're replaying journal */
if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN))) {
if (ronly == 0) {
fs->fs_clean <<= 1;
fs->fs_fmod = 1;
}
}
bsize = fs->fs_cssize;
blks = howmany(bsize, fs->fs_fsize);
if (fs->fs_contigsumsize > 0)
bsize += fs->fs_ncg * sizeof(int32_t);
bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
allocsbsize = bsize;
space = kmem_alloc((u_long)allocsbsize, KM_SLEEP);
fs->fs_csp = space;
for (i = 0; i < blks; i += fs->fs_frag) {
bsize = fs->fs_bsize;
if (i + fs->fs_frag > blks)
bsize = (blks - i) * fs->fs_fsize;
error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize,
0, &bp);
if (error) {
DPRINTF("bread@0x%jx %d",
(intmax_t)FFS_FSBTODB(fs, fs->fs_csaddr + i),
error);
goto out1;
}
#ifdef FFS_EI
if (needswap)
ffs_csum_swap((struct csum *)bp->b_data,
(struct csum *)space, bsize);
else
#endif
memcpy(space, bp->b_data, (u_int)bsize);
space = (char *)space + bsize;
brelse(bp, 0);
bp = NULL;
}
if (fs->fs_contigsumsize > 0) {
fs->fs_maxcluster = lp = space;
for (i = 0; i < fs->fs_ncg; i++)
*lp++ = fs->fs_contigsumsize;
space = lp;
}
bsize = fs->fs_ncg * sizeof(*fs->fs_contigdirs);
fs->fs_contigdirs = space;
space = (char *)space + bsize;
memset(fs->fs_contigdirs, 0, bsize);
/* Compatibility for old filesystems - XXX */
if (fs->fs_avgfilesize <= 0)
fs->fs_avgfilesize = AVFILESIZ;
if (fs->fs_avgfpdir <= 0)
fs->fs_avgfpdir = AFPDIR;
fs->fs_active = NULL;
mp->mnt_data = ump;
mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS);
mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
mp->mnt_stat.f_namemax = FFS_MAXNAMLEN;
if (UFS_MPISAPPLEUFS(ump)) {
/* NeXT used to keep short symlinks in the inode even
* when using FS_42INODEFMT. In that case fs->fs_maxsymlinklen
* is probably -1, but we still need to be able to identify
* short symlinks.
*/
ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
mp->mnt_iflag |= IMNT_DTYPE;
} else {
ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
ump->um_dirblksiz = UFS_DIRBLKSIZ;
if (ump->um_maxsymlinklen > 0)
mp->mnt_iflag |= IMNT_DTYPE;
else
mp->mnt_iflag &= ~IMNT_DTYPE;
}
mp->mnt_fs_bshift = fs->fs_bshift;
mp->mnt_dev_bshift = DEV_BSHIFT; /* XXX */
mp->mnt_flag |= MNT_LOCAL;
mp->mnt_iflag |= IMNT_MPSAFE | IMNT_CAN_RWTORO;
#ifdef FFS_EI
if (needswap)
ump->um_flags |= UFS_NEEDSWAP;
#endif
ump->um_mountp = mp;
ump->um_dev = dev;
ump->um_devvp = devvp;
ump->um_nindir = fs->fs_nindir;
ump->um_lognindir = ffs(fs->fs_nindir) - 1;
ump->um_bptrtodb = fs->fs_fshift - DEV_BSHIFT;
ump->um_seqinc = fs->fs_frag;
for (i = 0; i < MAXQUOTAS; i++)
ump->um_quotas[i] = NULLVP;
spec_node_setmountedfs(devvp, mp);
if (ronly == 0 && fs->fs_snapinum[0] != 0)
ffs_snapshot_mount(mp);
#ifdef WAPBL
if (!ronly) {
KDASSERT(fs->fs_ronly == 0);
/*
* ffs_wapbl_start() needs mp->mnt_stat initialised if it
* needs to create a new log file in-filesystem.
*/
error = ffs_statvfs(mp, &mp->mnt_stat);
if (error) {
DPRINTF("ffs_statvfs returned %d", error);
goto out1;
}
error = ffs_wapbl_start(mp);
if (error) {
DPRINTF("ffs_wapbl_start returned %d", error);
goto out1;
}
}
#endif /* WAPBL */
if (ronly == 0) {
#ifdef QUOTA2
error = ffs_quota2_mount(mp);
if (error) {
DPRINTF("ffs_quota2_mount returned %d", error);
goto out1;
}
#else
if (fs->fs_flags & FS_DOQUOTA2) {
ump->um_flags |= UFS_QUOTA2;
uprintf("%s: options QUOTA2 not enabled%s\n",
mp->mnt_stat.f_mntonname,
(mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
if ((mp->mnt_flag & MNT_FORCE) == 0) {
error = EINVAL;
DPRINTF("quota disabled %d", error);
goto out1;
}
}
#endif
}
if (mp->mnt_flag & MNT_DISCARD)
ump->um_discarddata = ffs_discard_init(devvp, fs);
return (0);
out1:
kmem_free(fs->fs_csp, allocsbsize);
out:
#ifdef WAPBL
if (mp->mnt_wapbl_replay) {
wapbl_replay_stop(mp->mnt_wapbl_replay);
wapbl_replay_free(mp->mnt_wapbl_replay);
mp->mnt_wapbl_replay = 0;
}
#endif
if (fs)
kmem_free(fs, fs->fs_sbsize);
spec_node_setmountedfs(devvp, NULL);
if (bp)
brelse(bp, bset);
if (ump) {
if (ump->um_oldfscompat)
kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t));
mutex_destroy(&ump->um_lock);
kmem_free(ump, sizeof(*ump));
mp->mnt_data = NULL;
}
return (error);
}
/*
* Sanity checks for loading old filesystem superblocks.
* See ffs_oldfscompat_write below for unwound actions.
*
* XXX - Parts get retired eventually.
* Unfortunately new bits get added.
*/
static void
ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc)
{
off_t maxfilesize;
int32_t *extrasave;
if ((fs->fs_magic != FS_UFS1_MAGIC) ||
(fs->fs_old_flags & FS_FLAGS_UPDATED))
return;
if (!ump->um_oldfscompat)
ump->um_oldfscompat = kmem_alloc(512 + 3*sizeof(int32_t),
KM_SLEEP);
memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512);
extrasave = ump->um_oldfscompat;
extrasave += 512/sizeof(int32_t);
extrasave[0] = fs->fs_old_npsect;
extrasave[1] = fs->fs_old_interleave;
extrasave[2] = fs->fs_old_trackskew;
/* These fields will be overwritten by their
* original values in fs_oldfscompat_write, so it is harmless
* to modify them here.
*/
fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
fs->fs_maxbsize = fs->fs_bsize;
fs->fs_time = fs->fs_old_time;
fs->fs_size = fs->fs_old_size;
fs->fs_dsize = fs->fs_old_dsize;
fs->fs_csaddr = fs->fs_old_csaddr;
fs->fs_sblockloc = sblockloc;
fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL);
if (fs->fs_old_postblformat == FS_42POSTBLFMT) {
fs->fs_old_nrpos = 8;
fs->fs_old_npsect = fs->fs_old_nsect;
fs->fs_old_interleave = 1;
fs->fs_old_trackskew = 0;
}
if (fs->fs_magic == FS_UFS1_MAGIC &&
fs->fs_old_inodefmt < FS_44INODEFMT) {
fs->fs_maxfilesize = (u_quad_t) 1LL << 39;
fs->fs_qbmask = ~fs->fs_bmask;
fs->fs_qfmask = ~fs->fs_fmask;
}
maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1;
if (fs->fs_maxfilesize > maxfilesize)
fs->fs_maxfilesize = maxfilesize;
/* Compatibility for old filesystems */
if (fs->fs_avgfilesize <= 0)
fs->fs_avgfilesize = AVFILESIZ;
if (fs->fs_avgfpdir <= 0)
fs->fs_avgfpdir = AFPDIR;
#if 0
if (bigcgs) {
fs->fs_save_cgsize = fs->fs_cgsize;
fs->fs_cgsize = fs->fs_bsize;
}
#endif
}
/*
* Unwinding superblock updates for old filesystems.
* See ffs_oldfscompat_read above for details.
*
* XXX - Parts get retired eventually.
* Unfortunately new bits get added.
*/
static void
ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
{
int32_t *extrasave;
if ((fs->fs_magic != FS_UFS1_MAGIC) ||
(fs->fs_old_flags & FS_FLAGS_UPDATED))
return;
fs->fs_old_time = fs->fs_time;
fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
fs->fs_old_flags = fs->fs_flags;
#if 0
if (bigcgs) {
fs->fs_cgsize = fs->fs_save_cgsize;
}
#endif
memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512);
extrasave = ump->um_oldfscompat;
extrasave += 512/sizeof(int32_t);
fs->fs_old_npsect = extrasave[0];
fs->fs_old_interleave = extrasave[1];
fs->fs_old_trackskew = extrasave[2];
}
/*
* unmount vfs operation
*/
int
ffs_unmount(struct mount *mp, int mntflags)
{
struct lwp *l = curlwp;
struct ufsmount *ump = VFSTOUFS(mp);
struct fs *fs = ump->um_fs;
int error, flags;
u_int32_t bsize;
#ifdef WAPBL
extern int doforce;
#endif
if (ump->um_discarddata) {
ffs_discard_finish(ump->um_discarddata, mntflags);
ump->um_discarddata = NULL;
}
flags = 0;
if (mntflags & MNT_FORCE)
flags |= FORCECLOSE;
if ((error = ffs_flushfiles(mp, flags, l)) != 0)
return (error);
error = UFS_WAPBL_BEGIN(mp);
if (error == 0)
if (fs->fs_ronly == 0 &&
ffs_cgupdate(ump, MNT_WAIT) == 0 &&
fs->fs_clean & FS_WASCLEAN) {
fs->fs_clean = FS_ISCLEAN;
fs->fs_fmod = 0;
(void) ffs_sbupdate(ump, MNT_WAIT);
}
if (error == 0)
UFS_WAPBL_END(mp);
#ifdef WAPBL
KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl));
if (mp->mnt_wapbl_replay) {
KDASSERT(fs->fs_ronly);
wapbl_replay_stop(mp->mnt_wapbl_replay);
wapbl_replay_free(mp->mnt_wapbl_replay);
mp->mnt_wapbl_replay = 0;
}
error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE));
if (error) {
return error;
}
#endif /* WAPBL */
if (ump->um_devvp->v_type != VBAD)
spec_node_setmountedfs(ump->um_devvp, NULL);
vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
(void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE,
NOCRED);
vput(ump->um_devvp);
bsize = fs->fs_cssize;
if (fs->fs_contigsumsize > 0)
bsize += fs->fs_ncg * sizeof(int32_t);
bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
kmem_free(fs->fs_csp, bsize);
kmem_free(fs, fs->fs_sbsize);
if (ump->um_oldfscompat != NULL)
kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t));
mutex_destroy(&ump->um_lock);
ffs_snapshot_fini(ump);
kmem_free(ump, sizeof(*ump));
mp->mnt_data = NULL;
mp->mnt_flag &= ~MNT_LOCAL;
return (0);
}
/*
* Flush out all the files in a filesystem.
*/
int
ffs_flushfiles(struct mount *mp, int flags, struct lwp *l)
{
extern int doforce;
struct ufsmount *ump;
int error;
if (!doforce)
flags &= ~FORCECLOSE;
ump = VFSTOUFS(mp);
#ifdef QUOTA
if ((error = quota1_umount(mp, flags)) != 0)
return (error);
#endif
#ifdef QUOTA2
if ((error = quota2_umount(mp, flags)) != 0)
return (error);
#endif
#ifdef UFS_EXTATTR
if (ump->um_fstype == UFS1) {
if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_STARTED)
ufs_extattr_stop(mp, l);
if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_INITIALIZED)
ufs_extattr_uepm_destroy(&ump->um_extattr);
mp->mnt_flag &= ~MNT_EXTATTR;
}
#endif
if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0)
return (error);
ffs_snapshot_unmount(mp);
/*
* Flush all the files.
*/
error = vflush(mp, NULLVP, flags);
if (error)
return (error);
/*
* Flush filesystem metadata.
*/
vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0);
VOP_UNLOCK(ump->um_devvp);
if (flags & FORCECLOSE) /* XXXDBJ */
error = 0;
#ifdef WAPBL
if (error)
return error;
if (mp->mnt_wapbl) {
error = wapbl_flush(mp->mnt_wapbl, 1);
if (flags & FORCECLOSE)
error = 0;
}
#endif
return (error);
}
/*
* Get file system statistics.
*/
int
ffs_statvfs(struct mount *mp, struct statvfs *sbp)
{
struct ufsmount *ump;
struct fs *fs;
ump = VFSTOUFS(mp);
fs = ump->um_fs;
mutex_enter(&ump->um_lock);
sbp->f_bsize = fs->fs_bsize;
sbp->f_frsize = fs->fs_fsize;
sbp->f_iosize = fs->fs_bsize;
sbp->f_blocks = fs->fs_dsize;
sbp->f_bfree = ffs_blkstofrags(fs, fs->fs_cstotal.cs_nbfree) +
fs->fs_cstotal.cs_nffree + FFS_DBTOFSB(fs, fs->fs_pendingblocks);
sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t)
fs->fs_minfree) / (u_int64_t) 100;
if (sbp->f_bfree > sbp->f_bresvd)
sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
else
sbp->f_bavail = 0;
sbp->f_files = fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO;
sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
sbp->f_favail = sbp->f_ffree;
sbp->f_fresvd = 0;
mutex_exit(&ump->um_lock);
copy_statvfs_info(sbp, mp);
return (0);
}
struct ffs_sync_ctx {
int waitfor;
};
static bool
ffs_sync_selector(void *cl, struct vnode *vp)
{
struct ffs_sync_ctx *c = cl;
struct inode *ip;
KASSERT(mutex_owned(vp->v_interlock));
ip = VTOI(vp);
/*
* Skip the vnode/inode if inaccessible.
*/
if (ip == NULL || vp->v_type == VNON)
return false;
/*
* We deliberately update inode times here. This will
* prevent a massive queue of updates accumulating, only
* to be handled by a call to unmount.
*
* XXX It would be better to have the syncer trickle these
* out. Adjustment needed to allow registering vnodes for
* sync when the vnode is clean, but the inode dirty. Or
* have ufs itself trickle out inode updates.
*
* If doing a lazy sync, we don't care about metadata or
* data updates, because they are handled by each vnode's
* synclist entry. In this case we are only interested in
* writing back modified inodes.
*/
if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE |
IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 &&
(c->waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) &&
UVM_OBJ_IS_CLEAN(&vp->v_uobj))))
return false;
return true;
}
/*
* Go through the disk queues to initiate sandbagged IO;
* go through the inodes to write those that have been modified;
* initiate the writing of the super block if it has been modified.
*
* Note: we are always called with the filesystem marked `MPBUSY'.
*/
int
ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
{
struct vnode *vp;
struct ufsmount *ump = VFSTOUFS(mp);
struct fs *fs;
struct vnode_iterator *marker;
int error, allerror = 0;
struct ffs_sync_ctx ctx;
fs = ump->um_fs;
if (fs->fs_fmod != 0 && fs->fs_ronly != 0) { /* XXX */
panic("%s: rofs mod, fs=%s", __func__, fs->fs_fsmnt);
}
/*
* Write back each (modified) inode.
*/
vfs_vnode_iterator_init(mp, &marker);
ctx.waitfor = waitfor;
while ((vp = vfs_vnode_iterator_next(marker, ffs_sync_selector, &ctx)))
{
error = vn_lock(vp,
LK_EXCLUSIVE | (waitfor == MNT_LAZY ? LK_NOWAIT : 0));
if (error) {
vrele(vp);
continue;
}
if (waitfor == MNT_LAZY) {
error = UFS_WAPBL_BEGIN(vp->v_mount);
if (!error) {
error = ffs_update(vp, NULL, NULL,
UPDATE_CLOSE);
UFS_WAPBL_END(vp->v_mount);
}
} else {
error = VOP_FSYNC(vp, cred, FSYNC_NOLOG |
(waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0);
}
if (error)
allerror = error;
vput(vp);
}
vfs_vnode_iterator_destroy(marker);
/*
* Force stale file system control information to be flushed.
*/
if (waitfor != MNT_LAZY && (ump->um_devvp->v_numoutput > 0 ||
!LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd))) {
vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
if ((error = VOP_FSYNC(ump->um_devvp, cred,
(waitfor == MNT_WAIT ? FSYNC_WAIT : 0) | FSYNC_NOLOG,
0, 0)) != 0)
allerror = error;
VOP_UNLOCK(ump->um_devvp);
}
#if defined(QUOTA) || defined(QUOTA2)
qsync(mp);
#endif
/*
* Write back modified superblock.
*/
if (fs->fs_fmod != 0) {
fs->fs_fmod = 0;
fs->fs_time = time_second;
error = UFS_WAPBL_BEGIN(mp);
if (error)
allerror = error;
else {
if ((error = ffs_cgupdate(ump, waitfor)))
allerror = error;
UFS_WAPBL_END(mp);
}
}
#ifdef WAPBL
if (mp->mnt_wapbl) {
error = wapbl_flush(mp->mnt_wapbl, (waitfor == MNT_WAIT));
if (error)
allerror = error;
}
#endif
return (allerror);
}
/*
* Load inode from disk and initialize vnode.
*/
static int
ffs_init_vnode(struct ufsmount *ump, struct vnode *vp, ino_t ino)
{
struct fs *fs;
struct inode *ip;
struct buf *bp;
int error;
fs = ump->um_fs;
/* Read in the disk contents for the inode. */
error = bread(ump->um_devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ino)),
(int)fs->fs_bsize, 0, &bp);
if (error)
return error;
/* Allocate and initialize inode. */
ip = pool_cache_get(ffs_inode_cache, PR_WAITOK);
memset(ip, 0, sizeof(struct inode));
ip->i_ump = ump;
ip->i_fs = fs;
ip->i_dev = ump->um_dev;
ip->i_number = ino;
if (ump->um_fstype == UFS1)
ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache,
PR_WAITOK);
else
ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache,
PR_WAITOK);
ffs_load_inode(bp, ip, fs, ino);
brelse(bp, 0);
ip->i_vnode = vp;
#if defined(QUOTA) || defined(QUOTA2)
ufsquota_init(ip);
#endif
/* Initialise vnode with this inode. */
vp->v_tag = VT_UFS;
vp->v_op = ffs_vnodeop_p;
vp->v_vflag |= VV_LOCKSWORK;
vp->v_data = ip;
/* Initialize genfs node. */
genfs_node_init(vp, &ffs_genfsops);
return 0;
}
/*
* Undo ffs_init_vnode().
*/
static void
ffs_deinit_vnode(struct ufsmount *ump, struct vnode *vp)
{
struct inode *ip = VTOI(vp);
genfs_node_destroy(vp);
vp->v_data = NULL;
if (ump->um_fstype == UFS1)
pool_cache_put(ffs_dinode1_cache, ip->i_din.ffs1_din);
else
pool_cache_put(ffs_dinode2_cache, ip->i_din.ffs2_din);
pool_cache_put(ffs_inode_cache, ip);
}
/*
* Read an inode from disk and initialize this vnode / inode pair.
* Caller assures no other thread will try to load this inode.
*/
int
ffs_loadvnode(struct mount *mp, struct vnode *vp,
const void *key, size_t key_len, const void **new_key)
{
ino_t ino;
struct fs *fs;
struct inode *ip;
struct ufsmount *ump;
int error;
KASSERT(key_len == sizeof(ino));
memcpy(&ino, key, key_len);
ump = VFSTOUFS(mp);
fs = ump->um_fs;
error = ffs_init_vnode(ump, vp, ino);
if (error)
return error;
ip = VTOI(vp);
if (ip->i_mode == 0) {
ffs_deinit_vnode(ump, vp);
return ENOENT;
}
/* Initialize the vnode from the inode. */
ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
/* Finish inode initialization. */
ip->i_devvp = ump->um_devvp;
vref(ip->i_devvp);
/*
* Ensure that uid and gid are correct. This is a temporary
* fix until fsck has been changed to do the update.
*/
if (fs->fs_magic == FS_UFS1_MAGIC && /* XXX */
fs->fs_old_inodefmt < FS_44INODEFMT) { /* XXX */
ip->i_uid = ip->i_ffs1_ouid; /* XXX */
ip->i_gid = ip->i_ffs1_ogid; /* XXX */
} /* XXX */
uvm_vnp_setsize(vp, ip->i_size);
*new_key = &ip->i_number;
return 0;
}
/*
* Create a new inode on disk and initialize this vnode / inode pair.
*/
int
ffs_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp,
struct vattr *vap, kauth_cred_t cred, void *extra,
size_t *key_len, const void **new_key)
{
ino_t ino;
struct fs *fs;
struct inode *ip;
struct timespec ts;
struct ufsmount *ump;
int error, mode;
KASSERT(dvp->v_mount == mp);
KASSERT(vap->va_type != VNON);
*key_len = sizeof(ino);
ump = VFSTOUFS(mp);
fs = ump->um_fs;
mode = MAKEIMODE(vap->va_type, vap->va_mode);
/* Allocate fresh inode. */
error = ffs_valloc(dvp, mode, cred, &ino);
if (error)
return error;
/* Attach inode to vnode. */
error = ffs_init_vnode(ump, vp, ino);
if (error) {
if (UFS_WAPBL_BEGIN(mp) == 0) {
ffs_vfree(dvp, ino, mode);
UFS_WAPBL_END(mp);
}
return error;
}
ip = VTOI(vp);
if (ip->i_mode) {
panic("%s: dup alloc ino=%" PRId64 " on %s: mode %o/%o "
"gen %x/%x size %" PRIx64 " blocks %" PRIx64,
__func__, ino, fs->fs_fsmnt, DIP(ip, mode), ip->i_mode,
DIP(ip, gen), ip->i_gen, DIP(ip, size), DIP(ip, blocks));
}
if (DIP(ip, size) || DIP(ip, blocks)) {
printf("%s: ino=%" PRId64 " on %s: "
"gen %x/%x has non zero blocks %" PRIx64 " or size %"
PRIx64 "\n",
__func__, ino, fs->fs_fsmnt, DIP(ip, gen), ip->i_gen,
DIP(ip, blocks), DIP(ip, size));
if ((ip)->i_ump->um_fstype == UFS1)
panic("%s: dirty filesystem?", __func__);
DIP_ASSIGN(ip, blocks, 0);
DIP_ASSIGN(ip, size, 0);
}
/* Set uid / gid. */
if (cred == NOCRED || cred == FSCRED) {
ip->i_gid = 0;
ip->i_uid = 0;
} else {
ip->i_gid = VTOI(dvp)->i_gid;
ip->i_uid = kauth_cred_geteuid(cred);
}
DIP_ASSIGN(ip, gid, ip->i_gid);
DIP_ASSIGN(ip, uid, ip->i_uid);
#if defined(QUOTA) || defined(QUOTA2)
error = UFS_WAPBL_BEGIN(mp);
if (error) {
ffs_deinit_vnode(ump, vp);
return error;
}
error = chkiq(ip, 1, cred, 0);
if (error) {
ffs_vfree(dvp, ino, mode);
UFS_WAPBL_END(mp);
ffs_deinit_vnode(ump, vp);
return error;
}
UFS_WAPBL_END(mp);
#endif
/* Set type and finalize. */
ip->i_flags = 0;
DIP_ASSIGN(ip, flags, 0);
ip->i_mode = mode;
DIP_ASSIGN(ip, mode, mode);
if (vap->va_rdev != VNOVAL) {
/*
* Want to be able to use this to make badblock
* inodes, so don't truncate the dev number.
*/
if (ump->um_fstype == UFS1)
ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
UFS_MPNEEDSWAP(ump));
else
ip->i_ffs2_rdev = ufs_rw64(vap->va_rdev,
UFS_MPNEEDSWAP(ump));
}
ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
ip->i_devvp = ump->um_devvp;
vref(ip->i_devvp);
/* Set up a new generation number for this inode. */
ip->i_gen++;
DIP_ASSIGN(ip, gen, ip->i_gen);
if (fs->fs_magic == FS_UFS2_MAGIC) {
vfs_timestamp(&ts);
ip->i_ffs2_birthtime = ts.tv_sec;
ip->i_ffs2_birthnsec = ts.tv_nsec;
}
uvm_vnp_setsize(vp, ip->i_size);
*new_key = &ip->i_number;
return 0;
}
/*
* File handle to vnode
*
* Have to be really careful about stale file handles:
* - check that the inode number is valid
* - call ffs_vget() to get the locked inode
* - check for an unallocated inode (i_mode == 0)
* - check that the given client host has export rights and return
* those rights via. exflagsp and credanonp
*/
int
ffs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
{
struct ufid ufh;
int error;
if (fhp->fid_len != sizeof(struct ufid))
return EINVAL;
memcpy(&ufh, fhp, sizeof(ufh));
if ((error = ffs_checkrange(mp, ufh.ufid_ino)) != 0)
return error;
return (ufs_fhtovp(mp, &ufh, vpp));
}
/*
* Vnode pointer to File handle
*/
/* ARGSUSED */
int
ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
{
struct inode *ip;
struct ufid ufh;
if (*fh_size < sizeof(struct ufid)) {
*fh_size = sizeof(struct ufid);
return E2BIG;
}
ip = VTOI(vp);
*fh_size = sizeof(struct ufid);
memset(&ufh, 0, sizeof(ufh));
ufh.ufid_len = sizeof(struct ufid);
ufh.ufid_ino = ip->i_number;
ufh.ufid_gen = ip->i_gen;
memcpy(fhp, &ufh, sizeof(ufh));
return (0);
}
void
ffs_init(void)
{
if (ffs_initcount++ > 0)
return;
ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0,
"ffsino", NULL, IPL_NONE, NULL, NULL, NULL);
ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0,
"ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL);
ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0,
"ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL);
ufs_init();
}
void
ffs_reinit(void)
{
ufs_reinit();
}
void
ffs_done(void)
{
if (--ffs_initcount > 0)
return;
ufs_done();
pool_cache_destroy(ffs_dinode2_cache);
pool_cache_destroy(ffs_dinode1_cache);
pool_cache_destroy(ffs_inode_cache);
}
/*
* Write a superblock and associated information back to disk.
*/
int
ffs_sbupdate(struct ufsmount *mp, int waitfor)
{
struct fs *fs = mp->um_fs;
struct buf *bp;
int error;
u_int32_t saveflag;
error = ffs_getblk(mp->um_devvp,
fs->fs_sblockloc / DEV_BSIZE, FFS_NOBLK,
fs->fs_sbsize, false, &bp);
if (error)
return error;
saveflag = fs->fs_flags & FS_INTERNAL;
fs->fs_flags &= ~FS_INTERNAL;
memcpy(bp->b_data, fs, fs->fs_sbsize);
ffs_oldfscompat_write((struct fs *)bp->b_data, mp);
#ifdef FFS_EI
if (mp->um_flags & UFS_NEEDSWAP)
ffs_sb_swap((struct fs *)bp->b_data, (struct fs *)bp->b_data);
#endif
fs->fs_flags |= saveflag;
if (waitfor == MNT_WAIT)
error = bwrite(bp);
else
bawrite(bp);
return (error);
}
int
ffs_cgupdate(struct ufsmount *mp, int waitfor)
{
struct fs *fs = mp->um_fs;
struct buf *bp;
int blks;
void *space;
int i, size, error = 0, allerror = 0;
UFS_WAPBL_JLOCK_ASSERT(mp->um_mountp);
allerror = ffs_sbupdate(mp, waitfor);
blks = howmany(fs->fs_cssize, fs->fs_fsize);
space = fs->fs_csp;
for (i = 0; i < blks; i += fs->fs_frag) {
size = fs->fs_bsize;
if (i + fs->fs_frag > blks)
size = (blks - i) * fs->fs_fsize;
error = ffs_getblk(mp->um_devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i),
FFS_NOBLK, size, false, &bp);
if (error)
break;
#ifdef FFS_EI
if (mp->um_flags & UFS_NEEDSWAP)
ffs_csum_swap((struct csum*)space,
(struct csum*)bp->b_data, size);
else
#endif
memcpy(bp->b_data, space, (u_int)size);
space = (char *)space + size;
if (waitfor == MNT_WAIT)
error = bwrite(bp);
else
bawrite(bp);
}
if (!allerror && error)
allerror = error;
return (allerror);
}
int
ffs_extattrctl(struct mount *mp, int cmd, struct vnode *vp,
int attrnamespace, const char *attrname)
{
#ifdef UFS_EXTATTR
/*
* File-backed extended attributes are only supported on UFS1.
* UFS2 has native extended attributes.
*/
if (VFSTOUFS(mp)->um_fstype == UFS1)
return (ufs_extattrctl(mp, cmd, vp, attrnamespace, attrname));
#endif
return (vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname));
}
/*
* Synch vnode for a mounted file system.
*/
static int
ffs_vfs_fsync(vnode_t *vp, int flags)
{
int error, i, pflags;
#ifdef WAPBL
struct mount *mp;
#endif
KASSERT(vp->v_type == VBLK);
KASSERT(spec_node_getmountedfs(vp) != NULL);
/*
* Flush all dirty data associated with the vnode.
*/
pflags = PGO_ALLPAGES | PGO_CLEANIT;
if ((flags & FSYNC_WAIT) != 0)
pflags |= PGO_SYNCIO;
mutex_enter(vp->v_interlock);
error = VOP_PUTPAGES(vp, 0, 0, pflags);
if (error)
return error;
#ifdef WAPBL
mp = spec_node_getmountedfs(vp);
if (mp && mp->mnt_wapbl) {
/*
* Don't bother writing out metadata if the syncer is
* making the request. We will let the sync vnode
* write it out in a single burst through a call to
* VFS_SYNC().
*/
if ((flags & (FSYNC_DATAONLY | FSYNC_LAZY | FSYNC_NOLOG)) != 0)
return 0;
/*
* Don't flush the log if the vnode being flushed
* contains no dirty buffers that could be in the log.
*/
if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
error = wapbl_flush(mp->mnt_wapbl, 0);
if (error)
return error;
}
if ((flags & FSYNC_WAIT) != 0) {
mutex_enter(vp->v_interlock);
while (vp->v_numoutput)
cv_wait(&vp->v_cv, vp->v_interlock);
mutex_exit(vp->v_interlock);
}
return 0;
}
#endif /* WAPBL */
error = vflushbuf(vp, flags);
if (error == 0 && (flags & FSYNC_CACHE) != 0) {
i = 1;
(void)VOP_IOCTL(vp, DIOCCACHESYNC, &i, FWRITE,
kauth_cred_get());
}
return error;
}