Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
/*
 * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <stdlib.h>
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include "modes_local.h"
#include "internal/thread_once.h"
#include "rand_local.h"

/*
 * Implementation of NIST SP 800-90A CTR DRBG.
 */

static void inc_128(RAND_DRBG_CTR *ctr)
{
    unsigned char *p = &ctr->V[0];
    u32 n = 16, c = 1;

    do {
        --n;
        c += p[n];
        p[n] = (u8)c;
        c >>= 8;
    } while (n);
}

static void ctr_XOR(RAND_DRBG_CTR *ctr, const unsigned char *in, size_t inlen)
{
    size_t i, n;

    if (in == NULL || inlen == 0)
        return;

    /*
     * Any zero padding will have no effect on the result as we
     * are XORing. So just process however much input we have.
     */
    n = inlen < ctr->keylen ? inlen : ctr->keylen;
    for (i = 0; i < n; i++)
        ctr->K[i] ^= in[i];
    if (inlen <= ctr->keylen)
        return;

    n = inlen - ctr->keylen;
    if (n > 16) {
        /* Should never happen */
        n = 16;
    }
    for (i = 0; i < n; i++)
        ctr->V[i] ^= in[i + ctr->keylen];
}

/*
 * Process a complete block using BCC algorithm of SP 800-90A 10.3.3
 */
__owur static int ctr_BCC_block(RAND_DRBG_CTR *ctr, unsigned char *out,
                                const unsigned char *in, int len)
{
    int i, outlen = AES_BLOCK_SIZE;

    for (i = 0; i < len; i++)
        out[i] ^= in[i];

    if (!EVP_CipherUpdate(ctr->ctx_df, out, &outlen, out, len)
        || outlen != len)
        return 0;
    return 1;
}


/*
 * Handle several BCC operations for as much data as we need for K and X
 */
__owur static int ctr_BCC_blocks(RAND_DRBG_CTR *ctr, const unsigned char *in)
{
    unsigned char in_tmp[48];
    unsigned char num_of_blk = 2;

    memcpy(in_tmp, in, 16);
    memcpy(in_tmp + 16, in, 16);
    if (ctr->keylen != 16) {
        memcpy(in_tmp + 32, in, 16);
        num_of_blk = 3;
    }
    return ctr_BCC_block(ctr, ctr->KX, in_tmp, AES_BLOCK_SIZE * num_of_blk);
}

/*
 * Initialise BCC blocks: these have the value 0,1,2 in leftmost positions:
 * see 10.3.1 stage 7.
 */
__owur static int ctr_BCC_init(RAND_DRBG_CTR *ctr)
{
    unsigned char bltmp[48] = {0};
    unsigned char num_of_blk;

    memset(ctr->KX, 0, 48);
    num_of_blk = ctr->keylen == 16 ? 2 : 3;
    bltmp[(AES_BLOCK_SIZE * 1) + 3] = 1;
    bltmp[(AES_BLOCK_SIZE * 2) + 3] = 2;
    return ctr_BCC_block(ctr, ctr->KX, bltmp, num_of_blk * AES_BLOCK_SIZE);
}

/*
 * Process several blocks into BCC algorithm, some possibly partial
 */
__owur static int ctr_BCC_update(RAND_DRBG_CTR *ctr,
                                 const unsigned char *in, size_t inlen)
{
    if (in == NULL || inlen == 0)
        return 1;

    /* If we have partial block handle it first */
    if (ctr->bltmp_pos) {
        size_t left = 16 - ctr->bltmp_pos;

        /* If we now have a complete block process it */
        if (inlen >= left) {
            memcpy(ctr->bltmp + ctr->bltmp_pos, in, left);
            if (!ctr_BCC_blocks(ctr, ctr->bltmp))
                return 0;
            ctr->bltmp_pos = 0;
            inlen -= left;
            in += left;
        }
    }

    /* Process zero or more complete blocks */
    for (; inlen >= 16; in += 16, inlen -= 16) {
        if (!ctr_BCC_blocks(ctr, in))
            return 0;
    }

    /* Copy any remaining partial block to the temporary buffer */
    if (inlen > 0) {
        memcpy(ctr->bltmp + ctr->bltmp_pos, in, inlen);
        ctr->bltmp_pos += inlen;
    }
    return 1;
}

__owur static int ctr_BCC_final(RAND_DRBG_CTR *ctr)
{
    if (ctr->bltmp_pos) {
        memset(ctr->bltmp + ctr->bltmp_pos, 0, 16 - ctr->bltmp_pos);
        if (!ctr_BCC_blocks(ctr, ctr->bltmp))
            return 0;
    }
    return 1;
}

__owur static int ctr_df(RAND_DRBG_CTR *ctr,
                         const unsigned char *in1, size_t in1len,
                         const unsigned char *in2, size_t in2len,
                         const unsigned char *in3, size_t in3len)
{
    static unsigned char c80 = 0x80;
    size_t inlen;
    unsigned char *p = ctr->bltmp;
    int outlen = AES_BLOCK_SIZE;

    if (!ctr_BCC_init(ctr))
        return 0;
    if (in1 == NULL)
        in1len = 0;
    if (in2 == NULL)
        in2len = 0;
    if (in3 == NULL)
        in3len = 0;
    inlen = in1len + in2len + in3len;
    /* Initialise L||N in temporary block */
    *p++ = (inlen >> 24) & 0xff;
    *p++ = (inlen >> 16) & 0xff;
    *p++ = (inlen >> 8) & 0xff;
    *p++ = inlen & 0xff;

    /* NB keylen is at most 32 bytes */
    *p++ = 0;
    *p++ = 0;
    *p++ = 0;
    *p = (unsigned char)((ctr->keylen + 16) & 0xff);
    ctr->bltmp_pos = 8;
    if (!ctr_BCC_update(ctr, in1, in1len)
        || !ctr_BCC_update(ctr, in2, in2len)
        || !ctr_BCC_update(ctr, in3, in3len)
        || !ctr_BCC_update(ctr, &c80, 1)
        || !ctr_BCC_final(ctr))
        return 0;
    /* Set up key K */
    if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->KX, NULL, -1))
        return 0;
    /* X follows key K */
    if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX, &outlen, ctr->KX + ctr->keylen,
                          AES_BLOCK_SIZE)
        || outlen != AES_BLOCK_SIZE)
        return 0;
    if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX + 16, &outlen, ctr->KX,
                          AES_BLOCK_SIZE)
        || outlen != AES_BLOCK_SIZE)
        return 0;
    if (ctr->keylen != 16)
        if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX + 32, &outlen,
                              ctr->KX + 16, AES_BLOCK_SIZE)
            || outlen != AES_BLOCK_SIZE)
            return 0;
    return 1;
}

/*
 * NB the no-df Update in SP800-90A specifies a constant input length
 * of seedlen, however other uses of this algorithm pad the input with
 * zeroes if necessary and have up to two parameters XORed together,
 * so we handle both cases in this function instead.
 */
__owur static int ctr_update(RAND_DRBG *drbg,
                             const unsigned char *in1, size_t in1len,
                             const unsigned char *in2, size_t in2len,
                             const unsigned char *nonce, size_t noncelen)
{
    RAND_DRBG_CTR *ctr = &drbg->data.ctr;
    int outlen = AES_BLOCK_SIZE;
    unsigned char V_tmp[48], out[48];
    unsigned char len;

    /* correct key is already set up. */
    memcpy(V_tmp, ctr->V, 16);
    inc_128(ctr);
    memcpy(V_tmp + 16, ctr->V, 16);
    if (ctr->keylen == 16) {
        len = 32;
    } else {
        inc_128(ctr);
        memcpy(V_tmp + 32, ctr->V, 16);
        len = 48;
    }
    if (!EVP_CipherUpdate(ctr->ctx_ecb, out, &outlen, V_tmp, len)
            || outlen != len)
        return 0;
    memcpy(ctr->K, out, ctr->keylen);
    memcpy(ctr->V, out + ctr->keylen, 16);

    if ((drbg->flags & RAND_DRBG_FLAG_CTR_NO_DF) == 0) {
        /* If no input reuse existing derived value */
        if (in1 != NULL || nonce != NULL || in2 != NULL)
            if (!ctr_df(ctr, in1, in1len, nonce, noncelen, in2, in2len))
                return 0;
        /* If this a reuse input in1len != 0 */
        if (in1len)
            ctr_XOR(ctr, ctr->KX, drbg->seedlen);
    } else {
        ctr_XOR(ctr, in1, in1len);
        ctr_XOR(ctr, in2, in2len);
    }

    if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->K, NULL, -1)
        || !EVP_CipherInit_ex(ctr->ctx_ctr, NULL, NULL, ctr->K, NULL, -1))
        return 0;
    return 1;
}

__owur static int drbg_ctr_instantiate(RAND_DRBG *drbg,
                                       const unsigned char *entropy, size_t entropylen,
                                       const unsigned char *nonce, size_t noncelen,
                                       const unsigned char *pers, size_t perslen)
{
    RAND_DRBG_CTR *ctr = &drbg->data.ctr;

    if (entropy == NULL)
        return 0;

    memset(ctr->K, 0, sizeof(ctr->K));
    memset(ctr->V, 0, sizeof(ctr->V));
    if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->K, NULL, -1))
        return 0;

    inc_128(ctr);
    if (!ctr_update(drbg, entropy, entropylen, pers, perslen, nonce, noncelen))
        return 0;
    return 1;
}

__owur static int drbg_ctr_reseed(RAND_DRBG *drbg,
                                  const unsigned char *entropy, size_t entropylen,
                                  const unsigned char *adin, size_t adinlen)
{
    RAND_DRBG_CTR *ctr = &drbg->data.ctr;

    if (entropy == NULL)
        return 0;

    inc_128(ctr);
    if (!ctr_update(drbg, entropy, entropylen, adin, adinlen, NULL, 0))
        return 0;
    return 1;
}

static void ctr96_inc(unsigned char *counter)
{
    u32 n = 12, c = 1;

    do {
        --n;
        c += counter[n];
        counter[n] = (u8)c;
        c >>= 8;
    } while (n);
}

__owur static int drbg_ctr_generate(RAND_DRBG *drbg,
                                    unsigned char *out, size_t outlen,
                                    const unsigned char *adin, size_t adinlen)
{
    RAND_DRBG_CTR *ctr = &drbg->data.ctr;
    unsigned int ctr32, blocks;
    int outl, buflen;

    if (adin != NULL && adinlen != 0) {
        inc_128(ctr);

        if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0))
            return 0;
        /* This means we reuse derived value */
        if ((drbg->flags & RAND_DRBG_FLAG_CTR_NO_DF) == 0) {
            adin = NULL;
            adinlen = 1;
        }
    } else {
        adinlen = 0;
    }

    inc_128(ctr);

    if (outlen == 0) {
        inc_128(ctr);

        if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0))
            return 0;
        return 1;
    }

    memset(out, 0, outlen);

    do {
        if (!EVP_CipherInit_ex(ctr->ctx_ctr,
                               NULL, NULL, NULL, ctr->V, -1))
            return 0;

        /*-
         * outlen has type size_t while EVP_CipherUpdate takes an
         * int argument and thus cannot be guaranteed to process more
         * than 2^31-1 bytes at a time. We process such huge generate
         * requests in 2^30 byte chunks, which is the greatest multiple
         * of AES block size lower than or equal to 2^31-1.
         */
        buflen = outlen > (1U << 30) ? (1U << 30) : outlen;
        blocks = (buflen + 15) / 16;

        ctr32 = GETU32(ctr->V + 12) + blocks;
        if (ctr32 < blocks) {
            /* 32-bit counter overflow into V. */
            if (ctr32 != 0) {
                blocks -= ctr32;
                buflen = blocks * 16;
                ctr32 = 0;
            }
            ctr96_inc(ctr->V);
        }
        PUTU32(ctr->V + 12, ctr32);

        if (!EVP_CipherUpdate(ctr->ctx_ctr, out, &outl, out, buflen)
            || outl != buflen)
            return 0;

        out += buflen;
        outlen -= buflen;
    } while (outlen);

    if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0))
        return 0;
    return 1;
}

static int drbg_ctr_uninstantiate(RAND_DRBG *drbg)
{
    EVP_CIPHER_CTX_free(drbg->data.ctr.ctx_ecb);
    EVP_CIPHER_CTX_free(drbg->data.ctr.ctx_ctr);
    EVP_CIPHER_CTX_free(drbg->data.ctr.ctx_df);
    OPENSSL_cleanse(&drbg->data.ctr, sizeof(drbg->data.ctr));
    return 1;
}

static RAND_DRBG_METHOD drbg_ctr_meth = {
    drbg_ctr_instantiate,
    drbg_ctr_reseed,
    drbg_ctr_generate,
    drbg_ctr_uninstantiate
};

int drbg_ctr_init(RAND_DRBG *drbg)
{
    RAND_DRBG_CTR *ctr = &drbg->data.ctr;
    size_t keylen;

    switch (drbg->type) {
    default:
        /* This can't happen, but silence the compiler warning. */
        return 0;
    case NID_aes_128_ctr:
        keylen = 16;
        ctr->cipher_ecb = EVP_aes_128_ecb();
        ctr->cipher_ctr = EVP_aes_128_ctr();
        break;
    case NID_aes_192_ctr:
        keylen = 24;
        ctr->cipher_ecb = EVP_aes_192_ecb();
        ctr->cipher_ctr = EVP_aes_192_ctr();
        break;
    case NID_aes_256_ctr:
        keylen = 32;
        ctr->cipher_ecb = EVP_aes_256_ecb();
        ctr->cipher_ctr = EVP_aes_256_ctr();
        break;
    }

    drbg->meth = &drbg_ctr_meth;

    ctr->keylen = keylen;
    if (ctr->ctx_ecb == NULL)
        ctr->ctx_ecb = EVP_CIPHER_CTX_new();
    if (ctr->ctx_ctr == NULL)
        ctr->ctx_ctr = EVP_CIPHER_CTX_new();
    if (ctr->ctx_ecb == NULL || ctr->ctx_ctr == NULL
        || !EVP_CipherInit_ex(ctr->ctx_ecb,
                              ctr->cipher_ecb, NULL, NULL, NULL, 1)
        || !EVP_CipherInit_ex(ctr->ctx_ctr,
                              ctr->cipher_ctr, NULL, NULL, NULL, 1))
        return 0;

    drbg->meth = &drbg_ctr_meth;
    drbg->strength = keylen * 8;
    drbg->seedlen = keylen + 16;

    if ((drbg->flags & RAND_DRBG_FLAG_CTR_NO_DF) == 0) {
        /* df initialisation */
        static const unsigned char df_key[32] = {
            0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
            0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
            0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
            0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
        };

        if (ctr->ctx_df == NULL)
            ctr->ctx_df = EVP_CIPHER_CTX_new();
        if (ctr->ctx_df == NULL)
            return 0;
        /* Set key schedule for df_key */
        if (!EVP_CipherInit_ex(ctr->ctx_df,
                               ctr->cipher_ecb, NULL, df_key, NULL, 1))
            return 0;

        drbg->min_entropylen = ctr->keylen;
        drbg->max_entropylen = DRBG_MAX_LENGTH;
        drbg->min_noncelen = drbg->min_entropylen / 2;
        drbg->max_noncelen = DRBG_MAX_LENGTH;
        drbg->max_perslen = DRBG_MAX_LENGTH;
        drbg->max_adinlen = DRBG_MAX_LENGTH;
    } else {
        drbg->min_entropylen = drbg->seedlen;
        drbg->max_entropylen = drbg->seedlen;
        /* Nonce not used */
        drbg->min_noncelen = 0;
        drbg->max_noncelen = 0;
        drbg->max_perslen = drbg->seedlen;
        drbg->max_adinlen = drbg->seedlen;
    }

    drbg->max_request = 1 << 16;

    return 1;
}