Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
/*	$NetBSD: ntp-keygen.c,v 1.12 2017/04/13 20:17:43 christos Exp $	*/

/*
 * Program to generate cryptographic keys for ntp clients and servers
 *
 * This program generates password encrypted data files for use with the
 * Autokey security protocol and Network Time Protocol Version 4. Files
 * are prefixed with a header giving the name and date of creation
 * followed by a type-specific descriptive label and PEM-encoded data
 * structure compatible with programs of the OpenSSL library.
 *
 * All file names are like "ntpkey_<type>_<hostname>.<filestamp>", where
 * <type> is the file type, <hostname> the generating host name and
 * <filestamp> the generation time in NTP seconds. The NTP programs
 * expect generic names such as "ntpkey_<type>_whimsy.udel.edu" with the
 * association maintained by soft links. Following is a list of file
 * types; the first line is the file name and the second link name.
 *
 * ntpkey_MD5key_<hostname>.<filestamp>
 * 	MD5 (128-bit) keys used to compute message digests in symmetric
 *	key cryptography
 *
 * ntpkey_RSAhost_<hostname>.<filestamp>
 * ntpkey_host_<hostname>
 *	RSA private/public host key pair used for public key signatures
 *
 * ntpkey_RSAsign_<hostname>.<filestamp>
 * ntpkey_sign_<hostname>
 *	RSA private/public sign key pair used for public key signatures
 *
 * ntpkey_DSAsign_<hostname>.<filestamp>
 * ntpkey_sign_<hostname>
 *	DSA Private/public sign key pair used for public key signatures
 *
 * Available digest/signature schemes
 *
 * RSA:	RSA-MD2, RSA-MD5, RSA-SHA, RSA-SHA1, RSA-MDC2, EVP-RIPEMD160
 * DSA:	DSA-SHA, DSA-SHA1
 *
 * ntpkey_XXXcert_<hostname>.<filestamp>
 * ntpkey_cert_<hostname>
 *	X509v3 certificate using RSA or DSA public keys and signatures.
 *	XXX is a code identifying the message digest and signature
 *	encryption algorithm
 *
 * Identity schemes. The key type par is used for the challenge; the key
 * type key is used for the response.
 *
 * ntpkey_IFFkey_<groupname>.<filestamp>
 * ntpkey_iffkey_<groupname>
 *	Schnorr (IFF) identity parameters and keys
 *
 * ntpkey_GQkey_<groupname>.<filestamp>,
 * ntpkey_gqkey_<groupname>
 *	Guillou-Quisquater (GQ) identity parameters and keys
 *
 * ntpkey_MVkeyX_<groupname>.<filestamp>,
 * ntpkey_mvkey_<groupname>
 *	Mu-Varadharajan (MV) identity parameters and keys
 *
 * Note: Once in a while because of some statistical fluke this program
 * fails to generate and verify some cryptographic data, as indicated by
 * exit status -1. In this case simply run the program again. If the
 * program does complete with exit code 0, the data are correct as
 * verified.
 *
 * These cryptographic routines are characterized by the prime modulus
 * size in bits. The default value of 512 bits is a compromise between
 * cryptographic strength and computing time and is ordinarily
 * considered adequate for this application. The routines have been
 * tested with sizes of 256, 512, 1024 and 2048 bits. Not all message
 * digest and signature encryption schemes work with sizes less than 512
 * bits. The computing time for sizes greater than 2048 bits is
 * prohibitive on all but the fastest processors. An UltraSPARC Blade
 * 1000 took something over nine minutes to generate and verify the
 * values with size 2048. An old SPARC IPC would take a week.
 *
 * The OpenSSL library used by this program expects a random seed file.
 * As described in the OpenSSL documentation, the file name defaults to
 * first the RANDFILE environment variable in the user's home directory
 * and then .rnd in the user's home directory.
 */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>

#include "ntp.h"
#include "ntp_random.h"
#include "ntp_stdlib.h"
#include "ntp_assert.h"
#include "ntp_libopts.h"
#include "ntp_unixtime.h"
#include "ntp-keygen-opts.h"

#ifdef OPENSSL
#include "openssl/asn1.h"
#include "openssl/bn.h"
#include "openssl/crypto.h"
#include "openssl/evp.h"
#include "openssl/err.h"
#include "openssl/rand.h"
#include "openssl/opensslv.h"
#include "openssl/pem.h"
#include "openssl/x509.h"
#include "openssl/x509v3.h"
#include <openssl/objects.h>
#include "libssl_compat.h"
#endif	/* OPENSSL */
#include <ssl_applink.c>

#define _UC(str)	((char *)(intptr_t)(str))
/*
 * Cryptodefines
 */
#define	MD5KEYS		10	/* number of keys generated of each type */
#define	MD5SIZE		20	/* maximum key size */
#ifdef AUTOKEY
#define	PLEN		512	/* default prime modulus size (bits) */
#define	ILEN		256	/* default identity modulus size (bits) */
#define	MVMAX		100	/* max MV parameters */

/*
 * Strings used in X509v3 extension fields
 */
#define KEY_USAGE		"digitalSignature,keyCertSign"
#define BASIC_CONSTRAINTS	"critical,CA:TRUE"
#define EXT_KEY_PRIVATE		"private"
#define EXT_KEY_TRUST		"trustRoot"
#endif	/* AUTOKEY */

/*
 * Prototypes
 */
FILE	*fheader	(const char *, const char *, const char *);
int	gen_md5		(const char *);
void	followlink	(char *, size_t);
#ifdef AUTOKEY
EVP_PKEY *gen_rsa	(const char *);
EVP_PKEY *gen_dsa	(const char *);
EVP_PKEY *gen_iffkey	(const char *);
EVP_PKEY *gen_gqkey	(const char *);
EVP_PKEY *gen_mvkey	(const char *, EVP_PKEY **);
void	gen_mvserv	(char *, EVP_PKEY **);
int	x509		(EVP_PKEY *, const EVP_MD *, char *, const char *,
			    char *);
void	cb		(int, int, void *);
EVP_PKEY *genkey	(const char *, const char *);
EVP_PKEY *readkey	(char *, char *, u_int *, EVP_PKEY **);
void	writekey	(char *, char *, u_int *, EVP_PKEY **);
u_long	asn2ntp		(ASN1_TIME *);

static DSA* genDsaParams(int, char*);
static RSA* genRsaKeyPair(int, char*);

#endif	/* AUTOKEY */

/*
 * Program variables
 */
extern char *optarg;		/* command line argument */
char	const *progname;
u_int	lifetime = DAYSPERYEAR;	/* certificate lifetime (days) */
int	nkeys;			/* MV keys */
time_t	epoch;			/* Unix epoch (seconds) since 1970 */
u_int	fstamp;			/* NTP filestamp */
char	hostbuf[MAXHOSTNAME + 1];
char	*hostname = NULL;	/* host, used in cert filenames */
char	*groupname = NULL;	/* group name */
char	certnamebuf[2 * sizeof(hostbuf)];
char	*certname = NULL;	/* certificate subject/issuer name */
char	*passwd1 = NULL;	/* input private key password */
char	*passwd2 = NULL;	/* output private key password */
char	filename[MAXFILENAME + 1]; /* file name */
#ifdef AUTOKEY
u_int	modulus = PLEN;		/* prime modulus size (bits) */
u_int	modulus2 = ILEN;	/* identity modulus size (bits) */
long	d0, d1, d2, d3;		/* callback counters */
const EVP_CIPHER * cipher = NULL;
#endif	/* AUTOKEY */

#ifdef SYS_WINNT
BOOL init_randfile();

/*
 * Don't try to follow symbolic links on Windows.  Assume link == file.
 */
int
readlink(
	char *	link,
	char *	file,
	int	len
	)
{
	return (int)strlen(file); /* assume no overflow possible */
}

/*
 * Don't try to create symbolic links on Windows, that is supported on
 * Vista and later only.  Instead, if CreateHardLink is available (XP
 * and later), hardlink the linkname to the original filename.  On
 * earlier systems, user must rename file to match expected link for
 * ntpd to find it.  To allow building a ntp-keygen.exe which loads on
 * Windows pre-XP, runtime link to CreateHardLinkA().
 */
int
symlink(
	char *	filename,
	char*	linkname
	)
{
	typedef BOOL (WINAPI *PCREATEHARDLINKA)(
		__in LPCSTR	lpFileName,
		__in LPCSTR	lpExistingFileName,
		__reserved LPSECURITY_ATTRIBUTES lpSA
		);
	static PCREATEHARDLINKA pCreateHardLinkA;
	static int		tried;
	HMODULE			hDll;
	FARPROC			pfn;
	int			link_created;
	int			saved_errno;

	if (!tried) {
		tried = TRUE;
		hDll = LoadLibrary("kernel32");
		pfn = GetProcAddress(hDll, "CreateHardLinkA");
		pCreateHardLinkA = (PCREATEHARDLINKA)pfn;
	}

	if (NULL == pCreateHardLinkA) {
		errno = ENOSYS;
		return -1;
	}

	link_created = (*pCreateHardLinkA)(linkname, filename, NULL);
	
	if (link_created)
		return 0;

	saved_errno = GetLastError();	/* yes we play loose */
	mfprintf(stderr, "Create hard link %s to %s failed: %m\n",
		 linkname, filename);
	errno = saved_errno;
	return -1;
}

void
InitWin32Sockets() {
	WORD wVersionRequested;
	WSADATA wsaData;
	wVersionRequested = MAKEWORD(2,0);
	if (WSAStartup(wVersionRequested, &wsaData))
	{
		fprintf(stderr, "No useable winsock.dll\n");
		exit(1);
	}
}
#endif /* SYS_WINNT */


/*
 * followlink() - replace filename with its target if symlink.
 *
 * Some readlink() implementations do not null-terminate the result.
 */
void
followlink(
	char *	fname,
	size_t	bufsiz
	)
{
	int len;

	REQUIRE(bufsiz > 0);

	len = readlink(fname, fname, (int)bufsiz);
	if (len < 0 ) {
		fname[0] = '\0';
		return;
	}
	if (len > (int)bufsiz - 1)
		len = (int)bufsiz - 1;
	fname[len] = '\0';
}


/*
 * Main program
 */
int
main(
	int	argc,		/* command line options */
	char	**argv
	)
{
	struct timeval tv;	/* initialization vector */
	int	md5key = 0;	/* generate MD5 keys */
	int	optct;		/* option count */
#ifdef AUTOKEY
	X509	*cert = NULL;	/* X509 certificate */
	EVP_PKEY *pkey_host = NULL; /* host key */
	EVP_PKEY *pkey_sign = NULL; /* sign key */
	EVP_PKEY *pkey_iffkey = NULL; /* IFF sever keys */
	EVP_PKEY *pkey_gqkey = NULL; /* GQ server keys */
	EVP_PKEY *pkey_mvkey = NULL; /* MV trusted agen keys */
	EVP_PKEY *pkey_mvpar[MVMAX]; /* MV cleient keys */
	int	hostkey = 0;	/* generate RSA keys */
	int	iffkey = 0;	/* generate IFF keys */
	int	gqkey = 0;	/* generate GQ keys */
	int	mvkey = 0;	/* update MV keys */
	int	mvpar = 0;	/* generate MV parameters */
	char	*sign = NULL;	/* sign key */
	EVP_PKEY *pkey = NULL;	/* temp key */
	const EVP_MD *ectx;	/* EVP digest */
	char	pathbuf[MAXFILENAME + 1];
	const char *scheme = NULL; /* digest/signature scheme */
	const char *ciphername = NULL; /* to encrypt priv. key */
	const char *exten = NULL;	/* private extension */
	char	*grpkey = NULL;	/* identity extension */
	int	nid;		/* X509 digest/signature scheme */
	FILE	*fstr = NULL;	/* file handle */
	char	groupbuf[MAXHOSTNAME + 1];
	u_int	temp;
	BIO *	bp;
	int	i, cnt;
	char *	ptr;
#endif	/* AUTOKEY */
#ifdef OPENSSL
	const char *sslvtext;
	int sslvmatch;
#endif /* OPENSSL */

	progname = argv[0];

#ifdef SYS_WINNT
	/* Initialize before OpenSSL checks */
	InitWin32Sockets();
	if (!init_randfile())
		fprintf(stderr, "Unable to initialize .rnd file\n");
	ssl_applink();
#endif

#ifdef OPENSSL
	ssl_check_version();
#endif	/* OPENSSL */

	ntp_crypto_srandom();

	/*
	 * Process options, initialize host name and timestamp.
	 * gethostname() won't null-terminate if hostname is exactly the
	 * length provided for the buffer.
	 */
	gethostname(hostbuf, sizeof(hostbuf) - 1);
	hostbuf[COUNTOF(hostbuf) - 1] = '\0';
	hostname = hostbuf;
	groupname = hostbuf;
	passwd1 = hostbuf;
	passwd2 = NULL;
	GETTIMEOFDAY(&tv, NULL);
	epoch = tv.tv_sec;
	fstamp = (u_int)(epoch + JAN_1970);

	optct = ntpOptionProcess(&ntp_keygenOptions, argc, argv);
	argc -= optct;	// Just in case we care later.
	argv += optct;	// Just in case we care later.

#ifdef OPENSSL
	sslvtext = OpenSSL_version(OPENSSL_VERSION);
	sslvmatch = OpenSSL_version_num() == OPENSSL_VERSION_NUMBER;
	if (sslvmatch)
		fprintf(stderr, "Using OpenSSL version %s\n",
			sslvtext);
	else
		fprintf(stderr, "Built against OpenSSL %s, using version %s\n",
			OPENSSL_VERSION_TEXT, sslvtext);
#endif /* OPENSSL */

	debug = OPT_VALUE_SET_DEBUG_LEVEL;

	if (HAVE_OPT( MD5KEY ))
		md5key++;
#ifdef AUTOKEY
	if (HAVE_OPT( PASSWORD ))
		passwd1 = estrdup(OPT_ARG( PASSWORD ));

	if (HAVE_OPT( EXPORT_PASSWD ))
		passwd2 = estrdup(OPT_ARG( EXPORT_PASSWD ));

	if (HAVE_OPT( HOST_KEY ))
		hostkey++;

	if (HAVE_OPT( SIGN_KEY ))
		sign = estrdup(OPT_ARG( SIGN_KEY ));

	if (HAVE_OPT( GQ_PARAMS ))
		gqkey++;

	if (HAVE_OPT( IFFKEY ))
		iffkey++;

	if (HAVE_OPT( MV_PARAMS )) {
		mvkey++;
		nkeys = OPT_VALUE_MV_PARAMS;
	}
	if (HAVE_OPT( MV_KEYS )) {
		mvpar++;
		nkeys = OPT_VALUE_MV_KEYS;
	}

	if (HAVE_OPT( IMBITS ))
		modulus2 = OPT_VALUE_IMBITS;

	if (HAVE_OPT( MODULUS ))
		modulus = OPT_VALUE_MODULUS;

	if (HAVE_OPT( CERTIFICATE ))
		scheme = OPT_ARG( CERTIFICATE );

	if (HAVE_OPT( CIPHER ))
		ciphername = OPT_ARG( CIPHER );

	if (HAVE_OPT( SUBJECT_NAME ))
		hostname = estrdup(OPT_ARG( SUBJECT_NAME ));

	if (HAVE_OPT( IDENT ))
		groupname = estrdup(OPT_ARG( IDENT ));

	if (HAVE_OPT( LIFETIME ))
		lifetime = OPT_VALUE_LIFETIME;

	if (HAVE_OPT( PVT_CERT ))
		exten = EXT_KEY_PRIVATE;

	if (HAVE_OPT( TRUSTED_CERT ))
		exten = EXT_KEY_TRUST;

	/*
	 * Remove the group name from the hostname variable used
	 * in host and sign certificate file names.
	 */
	if (hostname != hostbuf)
		ptr = strchr(hostname, '@');
	else
		ptr = NULL;
	if (ptr != NULL) {
		*ptr = '\0';
		groupname = estrdup(ptr + 1);
		/* -s @group is equivalent to -i group, host unch. */
		if (ptr == hostname)
			hostname = hostbuf;
	}

	/*
	 * Derive host certificate issuer/subject names from host name
	 * and optional group.  If no groupname is provided, the issuer
	 * and subject is the hostname with no '@group', and the
	 * groupname variable is pointed to hostname for use in IFF, GQ,
	 * and MV parameters file names.
	 */
	if (groupname == hostbuf) {
		certname = hostname;
	} else {
		snprintf(certnamebuf, sizeof(certnamebuf), "%s@%s",
			 hostname, groupname);
		certname = certnamebuf;
	}

	/*
	 * Seed random number generator and grow weeds.
	 */
#if OPENSSL_VERSION_NUMBER < 0x10100000L
	ERR_load_crypto_strings();
	OpenSSL_add_all_algorithms();
#endif /* OPENSSL_VERSION_NUMBER */
	if (!RAND_status()) {
		if (RAND_file_name(pathbuf, sizeof(pathbuf)) == NULL) {
			fprintf(stderr, "RAND_file_name %s\n",
			    ERR_error_string(ERR_get_error(), NULL));
			exit (-1);
		}
		temp = RAND_load_file(pathbuf, -1);
		if (temp == 0) {
			fprintf(stderr,
			    "RAND_load_file %s not found or empty\n",
			    pathbuf);
			exit (-1);
		}
		fprintf(stderr,
		    "Random seed file %s %u bytes\n", pathbuf, temp);
		RAND_add(&epoch, sizeof(epoch), 4.0);
	}
#endif	/* AUTOKEY */

	/*
	 * Create new unencrypted MD5 keys file if requested. If this
	 * option is selected, ignore all other options.
	 */
	if (md5key) {
		gen_md5("md5");
		exit (0);
	}

#ifdef AUTOKEY
	/*
	 * Load previous certificate if available.
	 */
	snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname);
	if ((fstr = fopen(filename, "r")) != NULL) {
		cert = PEM_read_X509(fstr, NULL, NULL, NULL);
		fclose(fstr);
	}
	if (cert != NULL) {

		/*
		 * Extract subject name.
		 */
		X509_NAME_oneline(X509_get_subject_name(cert), groupbuf,
		    MAXFILENAME);

		/*
		 * Extract digest/signature scheme.
		 */
		if (scheme == NULL) {
			nid = X509_get_signature_nid(cert);
			scheme = OBJ_nid2sn(nid);
		}

		/*
		 * If a key_usage extension field is present, determine
		 * whether this is a trusted or private certificate.
		 */
		if (exten == NULL) {
			ptr = strstr(groupbuf, "CN=");
			cnt = X509_get_ext_count(cert);
			for (i = 0; i < cnt; i++) {
				X509_EXTENSION *ext;
				ASN1_OBJECT *obj;

				ext = X509_get_ext(cert, i);
				obj = X509_EXTENSION_get_object(ext);

				if (OBJ_obj2nid(obj) ==
				    NID_ext_key_usage) {
					bp = BIO_new(BIO_s_mem());
					X509V3_EXT_print(bp, ext, 0, 0);
					BIO_gets(bp, pathbuf,
					    MAXFILENAME);
					BIO_free(bp);
					if (strcmp(pathbuf,
					    "Trust Root") == 0)
						exten = EXT_KEY_TRUST;
					else if (strcmp(pathbuf,
					    "Private") == 0)
						exten = EXT_KEY_PRIVATE;
					certname = estrdup(ptr + 3);
				}
			}
		}
	}
	if (scheme == NULL)
		scheme = "RSA-MD5";
	if (ciphername == NULL)
		ciphername = "des-ede3-cbc";
	cipher = EVP_get_cipherbyname(ciphername);
	if (cipher == NULL) {
		fprintf(stderr, "Unknown cipher %s\n", ciphername);
		exit(-1);
	}
	fprintf(stderr, "Using host %s group %s\n", hostname,
	    groupname);

	/*
	 * Create a new encrypted RSA host key file if requested;
	 * otherwise, look for an existing host key file. If not found,
	 * create a new encrypted RSA host key file. If that fails, go
	 * no further.
	 */
	if (hostkey)
		pkey_host = genkey("RSA", "host");
	if (pkey_host == NULL) {
		snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname);
		pkey_host = readkey(filename, passwd1, &fstamp, NULL);
		if (pkey_host != NULL) {
			followlink(filename, sizeof(filename));
			fprintf(stderr, "Using host key %s\n",
			    filename);
		} else {
			pkey_host = genkey("RSA", "host");
		}
	}
	if (pkey_host == NULL) {
		fprintf(stderr, "Generating host key fails\n");
		exit(-1);
	}

	/*
	 * Create new encrypted RSA or DSA sign keys file if requested;
	 * otherwise, look for an existing sign key file. If not found,
	 * use the host key instead.
	 */
	if (sign != NULL)
		pkey_sign = genkey(sign, "sign");
	if (pkey_sign == NULL) {
		snprintf(filename, sizeof(filename), "ntpkey_sign_%s",
			 hostname);
		pkey_sign = readkey(filename, passwd1, &fstamp, NULL);
		if (pkey_sign != NULL) {
			followlink(filename, sizeof(filename));
			fprintf(stderr, "Using sign key %s\n",
			    filename);
		} else {
			pkey_sign = pkey_host;
			fprintf(stderr, "Using host key as sign key\n");
		}
	}

	/*
	 * Create new encrypted GQ server keys file if requested;
	 * otherwise, look for an exisiting file. If found, fetch the
	 * public key for the certificate.
	 */
	if (gqkey)
		pkey_gqkey = gen_gqkey("gqkey");
	if (pkey_gqkey == NULL) {
		snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s",
		    groupname);
		pkey_gqkey = readkey(filename, passwd1, &fstamp, NULL);
		if (pkey_gqkey != NULL) {
			followlink(filename, sizeof(filename));
			fprintf(stderr, "Using GQ parameters %s\n",
			    filename);
		}
	}
	if (pkey_gqkey != NULL) {
		RSA	*rsa;
		const BIGNUM *q;

		rsa = EVP_PKEY_get0_RSA(pkey_gqkey);
		RSA_get0_factors(rsa, NULL, &q);
		grpkey = BN_bn2hex(q);
	}

	/*
	 * Write the nonencrypted GQ client parameters to the stdout
	 * stream. The parameter file is the server key file with the
	 * private key obscured.
	 */
	if (pkey_gqkey != NULL && HAVE_OPT(ID_KEY)) {
		RSA	*rsa;

		snprintf(filename, sizeof(filename),
		    "ntpkey_gqpar_%s.%u", groupname, fstamp);
		fprintf(stderr, "Writing GQ parameters %s to stdout\n",
		    filename);
		fprintf(stdout, "# %s\n# %s\n", filename,
		    ctime(&epoch));
		/* XXX: This modifies the private key and should probably use a
		 * copy of it instead. */
		rsa = EVP_PKEY_get0_RSA(pkey_gqkey);
		RSA_set0_factors(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one()));
		pkey = EVP_PKEY_new();
		EVP_PKEY_assign_RSA(pkey, rsa);
		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
		    NULL, NULL);
		fflush(stdout);
		if (debug)
			RSA_print_fp(stderr, rsa, 0);
	}

	/*
	 * Write the encrypted GQ server keys to the stdout stream.
	 */
	if (pkey_gqkey != NULL && passwd2 != NULL) {
		RSA	*rsa;

		snprintf(filename, sizeof(filename),
		    "ntpkey_gqkey_%s.%u", groupname, fstamp);
		fprintf(stderr, "Writing GQ keys %s to stdout\n",
		    filename);
		fprintf(stdout, "# %s\n# %s\n", filename,
		    ctime(&epoch));
		rsa = EVP_PKEY_get0_RSA(pkey_gqkey);
		pkey = EVP_PKEY_new();
		EVP_PKEY_assign_RSA(pkey, rsa);
		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
		    NULL, passwd2);
		fflush(stdout);
		if (debug)
			RSA_print_fp(stderr, rsa, 0);
	}

	/*
	 * Create new encrypted IFF server keys file if requested;
	 * otherwise, look for existing file.
	 */
	if (iffkey)
		pkey_iffkey = gen_iffkey("iffkey");
	if (pkey_iffkey == NULL) {
		snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s",
		    groupname);
		pkey_iffkey = readkey(filename, passwd1, &fstamp, NULL);
		if (pkey_iffkey != NULL) {
			followlink(filename, sizeof(filename));
			fprintf(stderr, "Using IFF keys %s\n",
			    filename);
		}
	}

	/*
	 * Write the nonencrypted IFF client parameters to the stdout
	 * stream. The parameter file is the server key file with the
	 * private key obscured.
	 */
	if (pkey_iffkey != NULL && HAVE_OPT(ID_KEY)) {
		DSA	*dsa;

		snprintf(filename, sizeof(filename),
		    "ntpkey_iffpar_%s.%u", groupname, fstamp);
		fprintf(stderr, "Writing IFF parameters %s to stdout\n",
		    filename);
		fprintf(stdout, "# %s\n# %s\n", filename,
		    ctime(&epoch));
		/* XXX: This modifies the private key and should probably use a
		 * copy of it instead. */
		dsa = EVP_PKEY_get0_DSA(pkey_iffkey);
		DSA_set0_key(dsa, NULL, BN_dup(BN_value_one()));
		pkey = EVP_PKEY_new();
		EVP_PKEY_assign_DSA(pkey, dsa);
		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
		    NULL, NULL);
		fflush(stdout);
		if (debug)
			DSA_print_fp(stderr, dsa, 0);
	}

	/*
	 * Write the encrypted IFF server keys to the stdout stream.
	 */
	if (pkey_iffkey != NULL && passwd2 != NULL) {
		DSA	*dsa;

		snprintf(filename, sizeof(filename),
		    "ntpkey_iffkey_%s.%u", groupname, fstamp);
		fprintf(stderr, "Writing IFF keys %s to stdout\n",
		    filename);
		fprintf(stdout, "# %s\n# %s\n", filename,
		    ctime(&epoch));
		dsa = EVP_PKEY_get0_DSA(pkey_iffkey);
		pkey = EVP_PKEY_new();
		EVP_PKEY_assign_DSA(pkey, dsa);
		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
		    NULL, passwd2);
		fflush(stdout);
		if (debug)
			DSA_print_fp(stderr, dsa, 0);
	}

	/*
	 * Create new encrypted MV trusted-authority keys file if
	 * requested; otherwise, look for existing keys file.
	 */
	if (mvkey)
		pkey_mvkey = gen_mvkey("mv", pkey_mvpar);
	if (pkey_mvkey == NULL) {
		snprintf(filename, sizeof(filename), "ntpkey_mvta_%s",
		    groupname);
		pkey_mvkey = readkey(filename, passwd1, &fstamp,
		    pkey_mvpar);
		if (pkey_mvkey != NULL) {
			followlink(filename, sizeof(filename));
			fprintf(stderr, "Using MV keys %s\n",
			    filename);
		}
	}

	/*
	 * Write the nonencrypted MV client parameters to the stdout
	 * stream. For the moment, we always use the client parameters
	 * associated with client key 1.
	 */
	if (pkey_mvkey != NULL && HAVE_OPT(ID_KEY)) {
		snprintf(filename, sizeof(filename),
		    "ntpkey_mvpar_%s.%u", groupname, fstamp);
		fprintf(stderr, "Writing MV parameters %s to stdout\n",
		    filename);
		fprintf(stdout, "# %s\n# %s\n", filename,
		    ctime(&epoch));
		pkey = pkey_mvpar[2];
		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
		    NULL, NULL);
		fflush(stdout);
		if (debug)
			DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0);
	}

	/*
	 * Write the encrypted MV server keys to the stdout stream.
	 */
	if (pkey_mvkey != NULL && passwd2 != NULL) {
		snprintf(filename, sizeof(filename),
		    "ntpkey_mvkey_%s.%u", groupname, fstamp);
		fprintf(stderr, "Writing MV keys %s to stdout\n",
		    filename);
		fprintf(stdout, "# %s\n# %s\n", filename,
		    ctime(&epoch));
		pkey = pkey_mvpar[1];
		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
		    NULL, passwd2);
		fflush(stdout);
		if (debug)
			DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0);
	}

	/*
	 * Decode the digest/signature scheme and create the
	 * certificate. Do this every time we run the program.
	 */
	ectx = EVP_get_digestbyname(scheme);
	if (ectx == NULL) {
		fprintf(stderr,
		    "Invalid digest/signature combination %s\n",
		    scheme);
			exit (-1);
	}
	x509(pkey_sign, ectx, grpkey, exten, certname);
#endif	/* AUTOKEY */
	exit(0);
}


/*
 * Generate semi-random MD5 keys compatible with NTPv3 and NTPv4. Also,
 * if OpenSSL is around, generate random SHA1 keys compatible with
 * symmetric key cryptography.
 */
int
gen_md5(
	const char *id		/* file name id */
	)
{
	u_char	md5key[MD5SIZE + 1];	/* MD5 key */
	FILE	*str;
	int	i, j;
#ifdef OPENSSL
	u_char	keystr[MD5SIZE];
	u_char	hexstr[2 * MD5SIZE + 1];
	u_char	hex[] = "0123456789abcdef";
#endif	/* OPENSSL */

	str = fheader("MD5key", id, groupname);
	for (i = 1; i <= MD5KEYS; i++) {
		for (j = 0; j < MD5SIZE; j++) {
			u_char temp;

			while (1) {
				int rc;

				rc = ntp_crypto_random_buf(
				    &temp, sizeof(temp));
				if (-1 == rc) {
					fprintf(stderr, "ntp_crypto_random_buf() failed.\n");
					exit (-1);
				}
				if (temp == '#')
					continue;

				if (temp > 0x20 && temp < 0x7f)
					break;
			}
			md5key[j] = temp;
		}
		md5key[j] = '\0';
		fprintf(str, "%2d MD5 %s  # MD5 key\n", i,
		    md5key);
	}
#ifdef OPENSSL
	for (i = 1; i <= MD5KEYS; i++) {
		RAND_bytes(keystr, 20);
		for (j = 0; j < MD5SIZE; j++) {
			hexstr[2 * j] = hex[keystr[j] >> 4];
			hexstr[2 * j + 1] = hex[keystr[j] & 0xf];
		}
		hexstr[2 * MD5SIZE] = '\0';
		fprintf(str, "%2d SHA1 %s  # SHA1 key\n", i + MD5KEYS,
		    hexstr);
	}
#endif	/* OPENSSL */
	fclose(str);
	return (1);
}


#ifdef AUTOKEY
/*
 * readkey - load cryptographic parameters and keys
 *
 * This routine loads a PEM-encoded file of given name and password and
 * extracts the filestamp from the file name. It returns a pointer to
 * the first key if valid, NULL if not.
 */
EVP_PKEY *			/* public/private key pair */
readkey(
	char	*cp,		/* file name */
	char	*passwd,	/* password */
	u_int	*estamp,	/* file stamp */
	EVP_PKEY **evpars	/* parameter list pointer */
	)
{
	FILE	*str;		/* file handle */
	EVP_PKEY *pkey = NULL;	/* public/private key */
	u_int	gstamp;		/* filestamp */
	char	linkname[MAXFILENAME]; /* filestamp buffer) */
	EVP_PKEY *parkey;
	char	*ptr;
	int	i;

	/*
	 * Open the key file.
	 */
	str = fopen(cp, "r");
	if (str == NULL)
		return (NULL);

	/*
	 * Read the filestamp, which is contained in the first line.
	 */
	if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
		fprintf(stderr, "Empty key file %s\n", cp);
		fclose(str);
		return (NULL);
	}
	if ((ptr = strrchr(ptr, '.')) == NULL) {
		fprintf(stderr, "No filestamp found in %s\n", cp);
		fclose(str);
		return (NULL);
	}
	if (sscanf(++ptr, "%u", &gstamp) != 1) {
		fprintf(stderr, "Invalid filestamp found in %s\n", cp);
		fclose(str);
		return (NULL);
	}

	/*
	 * Read and decrypt PEM-encoded private keys. The first one
	 * found is returned. If others are expected, add them to the
	 * parameter list.
	 */
	for (i = 0; i <= MVMAX - 1;) {
		parkey = PEM_read_PrivateKey(str, NULL, NULL, passwd);
		if (evpars != NULL) {
			evpars[i++] = parkey;
			evpars[i] = NULL;
		}
		if (parkey == NULL)
			break;

		if (pkey == NULL)
			pkey = parkey;
		if (debug) {
			if (EVP_PKEY_base_id(parkey) == EVP_PKEY_DSA)
				DSA_print_fp(stderr, EVP_PKEY_get0_DSA(parkey),
				    0);
			else if (EVP_PKEY_base_id(parkey) == EVP_PKEY_RSA)
				RSA_print_fp(stderr, EVP_PKEY_get0_RSA(parkey),
				    0);
		}
	}
	fclose(str);
	if (pkey == NULL) {
		fprintf(stderr, "Corrupt file %s or wrong key %s\n%s\n",
		    cp, passwd, ERR_error_string(ERR_get_error(),
		    NULL));
		exit (-1);
	}
	*estamp = gstamp;
	return (pkey);
}


/*
 * Generate RSA public/private key pair
 */
EVP_PKEY *			/* public/private key pair */
gen_rsa(
	const char *id		/* file name id */
	)
{
	EVP_PKEY *pkey;		/* private key */
	RSA	*rsa;		/* RSA parameters and key pair */
	FILE	*str;

	fprintf(stderr, "Generating RSA keys (%d bits)...\n", modulus);
	rsa = genRsaKeyPair(modulus, _UC("RSA"));
	fprintf(stderr, "\n");
	if (rsa == NULL) {
		fprintf(stderr, "RSA generate keys fails\n%s\n",
		    ERR_error_string(ERR_get_error(), NULL));
		return (NULL);
	}

	/*
	 * For signature encryption it is not necessary that the RSA
	 * parameters be strictly groomed and once in a while the
	 * modulus turns out to be non-prime. Just for grins, we check
	 * the primality.
	 */
	if (!RSA_check_key(rsa)) {
		fprintf(stderr, "Invalid RSA key\n%s\n",
		    ERR_error_string(ERR_get_error(), NULL));
		RSA_free(rsa);
		return (NULL);
	}

	/*
	 * Write the RSA parameters and keys as a RSA private key
	 * encoded in PEM.
	 */
	if (strcmp(id, "sign") == 0)
		str = fheader("RSAsign", id, hostname);
	else
		str = fheader("RSAhost", id, hostname);
	pkey = EVP_PKEY_new();
	EVP_PKEY_assign_RSA(pkey, rsa);
	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
	    passwd1);
	fclose(str);
	if (debug)
		RSA_print_fp(stderr, rsa, 0);
	return (pkey);
}


/*
 * Generate DSA public/private key pair
 */
EVP_PKEY *			/* public/private key pair */
gen_dsa(
	const char *id		/* file name id */
	)
{
	EVP_PKEY *pkey;		/* private key */
	DSA	*dsa;		/* DSA parameters */
	FILE	*str;

	/*
	 * Generate DSA parameters.
	 */
	fprintf(stderr,
	    "Generating DSA parameters (%d bits)...\n", modulus);
	dsa = genDsaParams(modulus, _UC("DSA"));
	fprintf(stderr, "\n");
	if (dsa == NULL) {
		fprintf(stderr, "DSA generate parameters fails\n%s\n",
		    ERR_error_string(ERR_get_error(), NULL));
		return (NULL);
	}

	/*
	 * Generate DSA keys.
	 */
	fprintf(stderr, "Generating DSA keys (%d bits)...\n", modulus);
	if (!DSA_generate_key(dsa)) {
		fprintf(stderr, "DSA generate keys fails\n%s\n",
		    ERR_error_string(ERR_get_error(), NULL));
		DSA_free(dsa);
		return (NULL);
	}

	/*
	 * Write the DSA parameters and keys as a DSA private key
	 * encoded in PEM.
	 */
	str = fheader("DSAsign", id, hostname);
	pkey = EVP_PKEY_new();
	EVP_PKEY_assign_DSA(pkey, dsa);
	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
	    passwd1);
	fclose(str);
	if (debug)
		DSA_print_fp(stderr, dsa, 0);
	return (pkey);
}


/*
 ***********************************************************************
 *								       *
 * The following routines implement the Schnorr (IFF) identity scheme  *
 *								       *
 ***********************************************************************
 *
 * The Schnorr (IFF) identity scheme is intended for use when
 * certificates are generated by some other trusted certificate
 * authority and the certificate cannot be used to convey public
 * parameters. There are two kinds of files: encrypted server files that
 * contain private and public values and nonencrypted client files that
 * contain only public values. New generations of server files must be
 * securely transmitted to all servers of the group; client files can be
 * distributed by any means. The scheme is self contained and
 * independent of new generations of host keys, sign keys and
 * certificates.
 *
 * The IFF values hide in a DSA cuckoo structure which uses the same
 * parameters. The values are used by an identity scheme based on DSA
 * cryptography and described in Stimson p. 285. The p is a 512-bit
 * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
 * private random group key b (0 < b < q) and public key v = g^b, then
 * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
 * Alice challenges Bob to confirm identity using the protocol described
 * below.
 *
 * How it works
 *
 * The scheme goes like this. Both Alice and Bob have the public primes
 * p, q and generator g. The TA gives private key b to Bob and public
 * key v to Alice.
 *
 * Alice rolls new random challenge r (o < r < q) and sends to Bob in
 * the IFF request message. Bob rolls new random k (0 < k < q), then
 * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
 * to Alice in the response message. Besides making the response
 * shorter, the hash makes it effectivey impossible for an intruder to
 * solve for b by observing a number of these messages.
 * 
 * Alice receives the response and computes g^y v^r mod p. After a bit
 * of algebra, this simplifies to g^k. If the hash of this result
 * matches hash(x), Alice knows that Bob has the group key b. The signed
 * response binds this knowledge to Bob's private key and the public key
 * previously received in his certificate.
 */
/*
 * Generate Schnorr (IFF) keys.
 */
EVP_PKEY *			/* DSA cuckoo nest */
gen_iffkey(
	const char *id		/* file name id */
	)
{
	EVP_PKEY *pkey;		/* private key */
	DSA	*dsa;		/* DSA parameters */
	BN_CTX	*ctx;		/* BN working space */
	BIGNUM	*b, *r, *k, *u, *v, *w; /* BN temp */
	FILE	*str;
	u_int	temp;
	const BIGNUM *p, *q, *g;
	BIGNUM *pub_key, *priv_key;
	
	/*
	 * Generate DSA parameters for use as IFF parameters.
	 */
	fprintf(stderr, "Generating IFF keys (%d bits)...\n",
	    modulus2);
	dsa = genDsaParams(modulus2, _UC("IFF"));
	fprintf(stderr, "\n");
	if (dsa == NULL) {
		fprintf(stderr, "DSA generate parameters fails\n%s\n",
		    ERR_error_string(ERR_get_error(), NULL));
		return (NULL);
	}
	DSA_get0_pqg(dsa, &p, &q, &g);

	/*
	 * Generate the private and public keys. The DSA parameters and
	 * private key are distributed to the servers, while all except
	 * the private key are distributed to the clients.
	 */
	b = BN_new(); r = BN_new(); k = BN_new();
	u = BN_new(); v = BN_new(); w = BN_new(); ctx = BN_CTX_new();
	BN_rand(b, BN_num_bits(q), -1, 0);	/* a */
	BN_mod(b, b, q, ctx);
	BN_sub(v, q, b);
	BN_mod_exp(v, g, v, p, ctx); /* g^(q - b) mod p */
	BN_mod_exp(u, g, b, p, ctx);	/* g^b mod p */
	BN_mod_mul(u, u, v, p, ctx);
	temp = BN_is_one(u);
	fprintf(stderr,
	    "Confirm g^(q - b) g^b = 1 mod p: %s\n", temp == 1 ?
	    "yes" : "no");
	if (!temp) {
		BN_free(b); BN_free(r); BN_free(k);
		BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
		return (NULL);
	}
	pub_key = BN_dup(v);
	priv_key = BN_dup(b);
	DSA_set0_key(dsa, pub_key, priv_key);

	/*
	 * Here is a trial round of the protocol. First, Alice rolls
	 * random nonce r mod q and sends it to Bob. She needs only
	 * q from parameters.
	 */
	BN_rand(r, BN_num_bits(q), -1, 0);	/* r */
	BN_mod(r, r, q, ctx);

	/*
	 * Bob rolls random nonce k mod q, computes y = k + b r mod q
	 * and x = g^k mod p, then sends (y, x) to Alice. He needs
	 * p, q and b from parameters and r from Alice.
	 */
	BN_rand(k, BN_num_bits(q), -1, 0);	/* k, 0 < k < q  */
	BN_mod(k, k, q, ctx);
	BN_mod_mul(v, priv_key, r, q, ctx); /* b r mod q */
	BN_add(v, v, k);
	BN_mod(v, v, q, ctx);		/* y = k + b r mod q */
	BN_mod_exp(u, g, k, p, ctx);	/* x = g^k mod p */

	/*
	 * Alice verifies x = g^y v^r to confirm that Bob has group key
	 * b. She needs p, q, g from parameters, (y, x) from Bob and the
	 * original r. We omit the detail here thatt only the hash of y
	 * is sent.
	 */
	BN_mod_exp(v, g, v, p, ctx); /* g^y mod p */
	BN_mod_exp(w, pub_key, r, p, ctx); /* v^r */
	BN_mod_mul(v, w, v, p, ctx);	/* product mod p */
	temp = BN_cmp(u, v);
	fprintf(stderr,
	    "Confirm g^k = g^(k + b r) g^(q - b) r: %s\n", temp ==
	    0 ? "yes" : "no");
	BN_free(b); BN_free(r);	BN_free(k);
	BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
	if (temp != 0) {
		DSA_free(dsa);
		return (NULL);
	}

	/*
	 * Write the IFF keys as an encrypted DSA private key encoded in
	 * PEM.
	 *
	 * p	modulus p
	 * q	modulus q
	 * g	generator g
	 * priv_key b
	 * public_key v
	 * kinv	not used
	 * r	not used
	 */
	str = fheader("IFFkey", id, groupname);
	pkey = EVP_PKEY_new();
	EVP_PKEY_assign_DSA(pkey, dsa);
	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
	    passwd1);
	fclose(str);
	if (debug)
		DSA_print_fp(stderr, dsa, 0);
	return (pkey);
}


/*
 ***********************************************************************
 *								       *
 * The following routines implement the Guillou-Quisquater (GQ)        *
 * identity scheme                                                     *
 *								       *
 ***********************************************************************
 *
 * The Guillou-Quisquater (GQ) identity scheme is intended for use when
 * the certificate can be used to convey public parameters. The scheme
 * uses a X509v3 certificate extension field do convey the public key of
 * a private key known only to servers. There are two kinds of files:
 * encrypted server files that contain private and public values and
 * nonencrypted client files that contain only public values. New
 * generations of server files must be securely transmitted to all
 * servers of the group; client files can be distributed by any means.
 * The scheme is self contained and independent of new generations of
 * host keys and sign keys. The scheme is self contained and independent
 * of new generations of host keys and sign keys.
 *
 * The GQ parameters hide in a RSA cuckoo structure which uses the same
 * parameters. The values are used by an identity scheme based on RSA
 * cryptography and described in Stimson p. 300 (with errors). The 512-
 * bit public modulus is n = p q, where p and q are secret large primes.
 * The TA rolls private random group key b as RSA exponent. These values
 * are known to all group members.
 *
 * When rolling new certificates, a server recomputes the private and
 * public keys. The private key u is a random roll, while the public key
 * is the inverse obscured by the group key v = (u^-1)^b. These values
 * replace the private and public keys normally generated by the RSA
 * scheme. Alice challenges Bob to confirm identity using the protocol
 * described below.
 *
 * How it works
 *
 * The scheme goes like this. Both Alice and Bob have the same modulus n
 * and some random b as the group key. These values are computed and
 * distributed in advance via secret means, although only the group key
 * b is truly secret. Each has a private random private key u and public
 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
 * can regenerate the key pair from time to time without affecting
 * operations. The public key is conveyed on the certificate in an
 * extension field; the private key is never revealed.
 *
 * Alice rolls new random challenge r and sends to Bob in the GQ
 * request message. Bob rolls new random k, then computes y = k u^r mod
 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
 * message. Besides making the response shorter, the hash makes it
 * effectivey impossible for an intruder to solve for b by observing
 * a number of these messages.
 * 
 * Alice receives the response and computes y^b v^r mod n. After a bit
 * of algebra, this simplifies to k^b. If the hash of this result
 * matches hash(x), Alice knows that Bob has the group key b. The signed
 * response binds this knowledge to Bob's private key and the public key
 * previously received in his certificate.
 */
/*
 * Generate Guillou-Quisquater (GQ) parameters file.
 */
EVP_PKEY *			/* RSA cuckoo nest */
gen_gqkey(
	const char *id		/* file name id */
	)
{
	EVP_PKEY *pkey;		/* private key */
	RSA	*rsa;		/* RSA parameters */
	BN_CTX	*ctx;		/* BN working space */
	BIGNUM	*u, *v, *g, *k, *r, *y; /* BN temps */
	FILE	*str;
	u_int	temp;
	BIGNUM	*b;
	const BIGNUM	*n;
	
	/*
	 * Generate RSA parameters for use as GQ parameters.
	 */
	fprintf(stderr,
	    "Generating GQ parameters (%d bits)...\n",
	     modulus2);
	rsa = genRsaKeyPair(modulus2, _UC("GQ"));
	fprintf(stderr, "\n");
	if (rsa == NULL) {
		fprintf(stderr, "RSA generate keys fails\n%s\n",
		    ERR_error_string(ERR_get_error(), NULL));
		return (NULL);
	}
	RSA_get0_key(rsa, &n, NULL, NULL);
	u = BN_new(); v = BN_new(); g = BN_new();
	k = BN_new(); r = BN_new(); y = BN_new();
	b = BN_new();

	/*
	 * Generate the group key b, which is saved in the e member of
	 * the RSA structure. The group key is transmitted to each group
	 * member encrypted by the member private key.
	 */
	ctx = BN_CTX_new();
	BN_rand(b, BN_num_bits(n), -1, 0); /* b */
	BN_mod(b, b, n, ctx);

	/*
	 * When generating his certificate, Bob rolls random private key
	 * u, then computes inverse v = u^-1. 
	 */
	BN_rand(u, BN_num_bits(n), -1, 0); /* u */
	BN_mod(u, u, n, ctx);
	BN_mod_inverse(v, u, n, ctx);	/* u^-1 mod n */
	BN_mod_mul(k, v, u, n, ctx);

	/*
	 * Bob computes public key v = (u^-1)^b, which is saved in an
	 * extension field on his certificate. We check that u^b v =
	 * 1 mod n.
	 */
	BN_mod_exp(v, v, b, n, ctx);
	BN_mod_exp(g, u, b, n, ctx); /* u^b */
	BN_mod_mul(g, g, v, n, ctx); /* u^b (u^-1)^b */
	temp = BN_is_one(g);
	fprintf(stderr,
	    "Confirm u^b (u^-1)^b = 1 mod n: %s\n", temp ? "yes" :
	    "no");
	if (!temp) {
		BN_free(u); BN_free(v);
		BN_free(g); BN_free(k); BN_free(r); BN_free(y);
		BN_CTX_free(ctx);
		RSA_free(rsa);
		return (NULL);
	}
	/* setting 'u' and 'v' into a RSA object takes over ownership.
	 * Since we use these values again, we have to pass in dupes,
	 * or we'll corrupt the program!
	 */
	RSA_set0_factors(rsa, BN_dup(u), BN_dup(v));

	/*
	 * Here is a trial run of the protocol. First, Alice rolls
	 * random nonce r mod n and sends it to Bob. She needs only n
	 * from parameters.
	 */
	BN_rand(r, BN_num_bits(n), -1, 0);	/* r */
	BN_mod(r, r, n, ctx);

	/*
	 * Bob rolls random nonce k mod n, computes y = k u^r mod n and
	 * g = k^b mod n, then sends (y, g) to Alice. He needs n, u, b
	 * from parameters and r from Alice. 
	 */
	BN_rand(k, BN_num_bits(n), -1, 0);	/* k */
	BN_mod(k, k, n, ctx);
	BN_mod_exp(y, u, r, n, ctx);	/* u^r mod n */
	BN_mod_mul(y, k, y, n, ctx);	/* y = k u^r mod n */
	BN_mod_exp(g, k, b, n, ctx);	/* g = k^b mod n */

	/*
	 * Alice verifies g = v^r y^b mod n to confirm that Bob has
	 * private key u. She needs n, g from parameters, public key v =
	 * (u^-1)^b from the certificate, (y, g) from Bob and the
	 * original r. We omit the detaul here that only the hash of g
	 * is sent.
	 */
	BN_mod_exp(v, v, r, n, ctx);	/* v^r mod n */
	BN_mod_exp(y, y, b, n, ctx);	/* y^b mod n */
	BN_mod_mul(y, v, y, n, ctx);	/* v^r y^b mod n */
	temp = BN_cmp(y, g);
	fprintf(stderr, "Confirm g^k = v^r y^b mod n: %s\n", temp == 0 ?
	    "yes" : "no");
	BN_CTX_free(ctx); BN_free(u); BN_free(v);
	BN_free(g); BN_free(k); BN_free(r); BN_free(y);
	if (temp != 0) {
		RSA_free(rsa);
		return (NULL);
	}

	/*
	 * Write the GQ parameter file as an encrypted RSA private key
	 * encoded in PEM.
	 *
	 * n	modulus n
	 * e	group key b
	 * d	not used
	 * p	private key u
	 * q	public key (u^-1)^b
	 * dmp1	not used
	 * dmq1	not used
	 * iqmp	not used
	 */
	RSA_set0_key(rsa, NULL, b, BN_dup(BN_value_one()));
	RSA_set0_crt_params(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one()),
		BN_dup(BN_value_one()));
	str = fheader("GQkey", id, groupname);
	pkey = EVP_PKEY_new();
	EVP_PKEY_assign_RSA(pkey, rsa);
	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
	    passwd1);
	fclose(str);
	if (debug)
		RSA_print_fp(stderr, rsa, 0);
	return (pkey);
}


/*
 ***********************************************************************
 *								       *
 * The following routines implement the Mu-Varadharajan (MV) identity  *
 * scheme                                                              *
 *								       *
 ***********************************************************************
 *
 * The Mu-Varadharajan (MV) cryptosystem was originally intended when
 * servers broadcast messages to clients, but clients never send
 * messages to servers. There is one encryption key for the server and a
 * separate decryption key for each client. It operated something like a
 * pay-per-view satellite broadcasting system where the session key is
 * encrypted by the broadcaster and the decryption keys are held in a
 * tamperproof set-top box.
 *
 * The MV parameters and private encryption key hide in a DSA cuckoo
 * structure which uses the same parameters, but generated in a
 * different way. The values are used in an encryption scheme similar to
 * El Gamal cryptography and a polynomial formed from the expansion of
 * product terms (x - x[j]), as described in Mu, Y., and V.
 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
 * 223-231. The paper has significant errors and serious omissions.
 *
 * Let q be the product of n distinct primes s1[j] (j = 1...n), where
 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
 * that q and each s1[j] divide p - 1 and p has M = n * m + 1
 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
 * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
 * project into Zp* as exponents of g. Sometimes we have to compute an
 * inverse b^-1 of random b in Zq, but for that purpose we require
 * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
 * relatively small, like 30. These are the parameters of the scheme and
 * they are expensive to compute.
 *
 * We set up an instance of the scheme as follows. A set of random
 * values x[j] mod q (j = 1...n), are generated as the zeros of a
 * polynomial of order n. The product terms (x - x[j]) are expanded to
 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
 * used as exponents of the generator g mod p to generate the private
 * encryption key A. The pair (gbar, ghat) of public server keys and the
 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
 * to construct the decryption keys. The devil is in the details.
 *
 * This routine generates a private server encryption file including the
 * private encryption key E and partial decryption keys gbar and ghat.
 * It then generates public client decryption files including the public
 * keys xbar[j] and xhat[j] for each client j. The partial decryption
 * files are used to compute the inverse of E. These values are suitably
 * blinded so secrets are not revealed.
 *
 * The distinguishing characteristic of this scheme is the capability to
 * revoke keys. Included in the calculation of E, gbar and ghat is the
 * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
 * subsequently removed from the product and E, gbar and ghat
 * recomputed, the jth client will no longer be able to compute E^-1 and
 * thus unable to decrypt the messageblock.
 *
 * How it works
 *
 * The scheme goes like this. Bob has the server values (p, E, q,
 * gbar, ghat) and Alice has the client values (p, xbar, xhat).
 *
 * Alice rolls new random nonce r mod p and sends to Bob in the MV
 * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
 * mod p and sends (y, gbar^k, ghat^k) to Alice.
 * 
 * Alice receives the response and computes the inverse (E^k)^-1 from
 * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
 * decrypts y and verifies it matches the original r. The signed
 * response binds this knowledge to Bob's private key and the public key
 * previously received in his certificate.
 */
EVP_PKEY *			/* DSA cuckoo nest */
gen_mvkey(
	const char *id,		/* file name id */
	EVP_PKEY **evpars	/* parameter list pointer */
	)
{
	EVP_PKEY *pkey, *pkey1;	/* private keys */
	DSA	*dsa, *dsa2, *sdsa; /* DSA parameters */
	BN_CTX	*ctx;		/* BN working space */
	BIGNUM	*a[MVMAX];	/* polynomial coefficient vector */
	BIGNUM	*gs[MVMAX];	/* public key vector */
	BIGNUM	*s1[MVMAX];	/* private enabling keys */
	BIGNUM	*x[MVMAX];	/* polynomial zeros vector */
	BIGNUM	*xbar[MVMAX], *xhat[MVMAX]; /* private keys vector */
	BIGNUM	*b;		/* group key */
	BIGNUM	*b1;		/* inverse group key */
	BIGNUM	*s;		/* enabling key */
	BIGNUM	*biga;		/* master encryption key */
	BIGNUM	*bige;		/* session encryption key */
	BIGNUM	*gbar, *ghat;	/* public key */
	BIGNUM	*u, *v, *w;	/* BN scratch */
	BIGNUM	*p, *q, *g, *priv_key, *pub_key;
	int	i, j, n;
	FILE	*str;
	u_int	temp;

	/*
	 * Generate MV parameters.
	 *
	 * The object is to generate a multiplicative group Zp* modulo a
	 * prime p and a subset Zq mod q, where q is the product of n
	 * distinct primes s1[j] (j = 1...n) and q divides p - 1. We
	 * first generate n m-bit primes, where the product n m is in
	 * the order of 512 bits. One or more of these may have to be
	 * replaced later. As a practical matter, it is tough to find
	 * more than 31 distinct primes for 512 bits or 61 primes for
	 * 1024 bits. The latter can take several hundred iterations
	 * and several minutes on a Sun Blade 1000.
	 */
	n = nkeys;
	fprintf(stderr,
	    "Generating MV parameters for %d keys (%d bits)...\n", n,
	    modulus2 / n);
	ctx = BN_CTX_new(); u = BN_new(); v = BN_new(); w = BN_new();
	b = BN_new(); b1 = BN_new();
	dsa = DSA_new();
	p = BN_new(); q = BN_new(); g = BN_new();
	priv_key = BN_new(); pub_key = BN_new();
	temp = 0;
	for (j = 1; j <= n; j++) {
		s1[j] = BN_new();
		while (1) {
			BN_generate_prime_ex(s1[j], modulus2 / n, 0,
					     NULL, NULL, NULL);
			for (i = 1; i < j; i++) {
				if (BN_cmp(s1[i], s1[j]) == 0)
					break;
			}
			if (i == j)
				break;
			temp++;
		}
	}
	fprintf(stderr, "Birthday keys regenerated %d\n", temp);

	/*
	 * Compute the modulus q as the product of the primes. Compute
	 * the modulus p as 2 * q + 1 and test p for primality. If p
	 * is composite, replace one of the primes with a new distinct
	 * one and try again. Note that q will hardly be a secret since
	 * we have to reveal p to servers, but not clients. However,
	 * factoring q to find the primes should be adequately hard, as
	 * this is the same problem considered hard in RSA. Question: is
	 * it as hard to find n small prime factors totalling n bits as
	 * it is to find two large prime factors totalling n bits?
	 * Remember, the bad guy doesn't know n.
	 */
	temp = 0;
	while (1) {
		BN_one(q);
		for (j = 1; j <= n; j++)
			BN_mul(q, q, s1[j], ctx);
		BN_copy(p, q);
		BN_add(p, p, p);
		BN_add_word(p, 1);
		if (BN_is_prime_ex(p, BN_prime_checks, ctx, NULL))
			break;

		temp++;
		j = temp % n + 1;
		while (1) {
			BN_generate_prime_ex(u, modulus2 / n, 0,
					     NULL, NULL, NULL);
			for (i = 1; i <= n; i++) {
				if (BN_cmp(u, s1[i]) == 0)
					break;
			}
			if (i > n)
				break;
		}
		BN_copy(s1[j], u);
	}
	fprintf(stderr, "Defective keys regenerated %d\n", temp);

	/*
	 * Compute the generator g using a random roll such that
	 * gcd(g, p - 1) = 1 and g^q = 1. This is a generator of p, not
	 * q. This may take several iterations.
	 */
	BN_copy(v, p);
	BN_sub_word(v, 1);
	while (1) {
		BN_rand(g, BN_num_bits(p) - 1, 0, 0);
		BN_mod(g, g, p, ctx);
		BN_gcd(u, g, v, ctx);
		if (!BN_is_one(u))
			continue;

		BN_mod_exp(u, g, q, p, ctx);
		if (BN_is_one(u))
			break;
	}

	DSA_set0_pqg(dsa, p, q, g);

	/*
	 * Setup is now complete. Roll random polynomial roots x[j]
	 * (j = 1...n) for all j. While it may not be strictly
	 * necessary, Make sure each root has no factors in common with
	 * q.
	 */
	fprintf(stderr,
	    "Generating polynomial coefficients for %d roots (%d bits)\n",
	    n, BN_num_bits(q));
	for (j = 1; j <= n; j++) {
		x[j] = BN_new();

		while (1) {
			BN_rand(x[j], BN_num_bits(q), 0, 0);
			BN_mod(x[j], x[j], q, ctx);
			BN_gcd(u, x[j], q, ctx);
			if (BN_is_one(u))
				break;
		}
	}

	/*
	 * Generate polynomial coefficients a[i] (i = 0...n) from the
	 * expansion of root products (x - x[j]) mod q for all j. The
	 * method is a present from Charlie Boncelet.
	 */
	for (i = 0; i <= n; i++) {
		a[i] = BN_new();
		BN_one(a[i]);
	}
	for (j = 1; j <= n; j++) {
		BN_zero(w);
		for (i = 0; i < j; i++) {
			BN_copy(u, q);
			BN_mod_mul(v, a[i], x[j], q, ctx);
			BN_sub(u, u, v);
			BN_add(u, u, w);
			BN_copy(w, a[i]);
			BN_mod(a[i], u, q, ctx);
		}
	}

	/*
	 * Generate gs[i] = g^a[i] mod p for all i and the generator g.
	 */
	for (i = 0; i <= n; i++) {
		gs[i] = BN_new();
		BN_mod_exp(gs[i], g, a[i], p, ctx);
	}

	/*
	 * Verify prod(gs[i]^(a[i] x[j]^i)) = 1 for all i, j. Note the
	 * a[i] x[j]^i exponent is computed mod q, but the gs[i] is
	 * computed mod p. also note the expression given in the paper
	 * is incorrect.
	 */
	temp = 1;
	for (j = 1; j <= n; j++) {
		BN_one(u);
		for (i = 0; i <= n; i++) {
			BN_set_word(v, i);
			BN_mod_exp(v, x[j], v, q, ctx);
			BN_mod_mul(v, v, a[i], q, ctx);
			BN_mod_exp(v, g, v, p, ctx);
			BN_mod_mul(u, u, v, p, ctx);
		}
		if (!BN_is_one(u))
			temp = 0;
	}
	fprintf(stderr,
	    "Confirm prod(gs[i]^(x[j]^i)) = 1 for all i, j: %s\n", temp ?
	    "yes" : "no");
	if (!temp) {
		return (NULL);
	}

	/*
	 * Make private encryption key A. Keep it around for awhile,
	 * since it is expensive to compute.
	 */
	biga = BN_new();

	BN_one(biga);
	for (j = 1; j <= n; j++) {
		for (i = 0; i < n; i++) {
			BN_set_word(v, i);
			BN_mod_exp(v, x[j], v, q, ctx);
			BN_mod_exp(v, gs[i], v, p, ctx);
			BN_mod_mul(biga, biga, v, p, ctx);
		}
	}

	/*
	 * Roll private random group key b mod q (0 < b < q), where
	 * gcd(b, q) = 1 to guarantee b^-1 exists, then compute b^-1
	 * mod q. If b is changed, the client keys must be recomputed.
	 */
	while (1) {
		BN_rand(b, BN_num_bits(q), 0, 0);
		BN_mod(b, b, q, ctx);
		BN_gcd(u, b, q, ctx);
		if (BN_is_one(u))
			break;
	}
	BN_mod_inverse(b1, b, q, ctx);

	/*
	 * Make private client keys (xbar[j], xhat[j]) for all j. Note
	 * that the keys for the jth client do not s1[j] or the product
	 * s1[j]) (j = 1...n) which is q by construction.
	 *
	 * Compute the factor w such that w s1[j] = s1[j] for all j. The
	 * easy way to do this is to compute (q + s1[j]) / s1[j].
	 * Exercise for the student: prove the remainder is always zero.
	 */
	for (j = 1; j <= n; j++) {
		xbar[j] = BN_new(); xhat[j] = BN_new();

		BN_add(w, q, s1[j]);
		BN_div(w, u, w, s1[j], ctx);
		BN_zero(xbar[j]);
		BN_set_word(v, n);
		for (i = 1; i <= n; i++) {
			if (i == j)
				continue;

			BN_mod_exp(u, x[i], v, q, ctx);
			BN_add(xbar[j], xbar[j], u);
		}
		BN_mod_mul(xbar[j], xbar[j], b1, q, ctx);
		BN_mod_exp(xhat[j], x[j], v, q, ctx);
		BN_mod_mul(xhat[j], xhat[j], w, q, ctx);
	}

	/*
	 * We revoke client j by dividing q by s1[j]. The quotient
	 * becomes the enabling key s. Note we always have to revoke
	 * one key; otherwise, the plaintext and cryptotext would be
	 * identical. For the present there are no provisions to revoke
	 * additional keys, so we sail on with only token revocations.
	 */
	s = BN_new();
	BN_copy(s, q);
	BN_div(s, u, s, s1[n], ctx);

	/*
	 * For each combination of clients to be revoked, make private
	 * encryption key E = A^s and partial decryption keys gbar = g^s
	 * and ghat = g^(s b), all mod p. The servers use these keys to
	 * compute the session encryption key and partial decryption
	 * keys. These values must be regenerated if the enabling key is
	 * changed.
	 */
	bige = BN_new(); gbar = BN_new(); ghat = BN_new();
	BN_mod_exp(bige, biga, s, p, ctx);
	BN_mod_exp(gbar, g, s, p, ctx);
	BN_mod_mul(v, s, b, q, ctx);
	BN_mod_exp(ghat, g, v, p, ctx);
	
	/*
	 * Notes: We produce the key media in three steps. The first
	 * step is to generate the system parameters p, q, g, b, A and
	 * the enabling keys s1[j]. Associated with each s1[j] are
	 * parameters xbar[j] and xhat[j]. All of these parameters are
	 * retained in a data structure protecteted by the trusted-agent
	 * password. The p, xbar[j] and xhat[j] paremeters are
	 * distributed to the j clients. When the client keys are to be
	 * activated, the enabled keys are multipied together to form
	 * the master enabling key s. This and the other parameters are
	 * used to compute the server encryption key E and the partial
	 * decryption keys gbar and ghat.
	 *
	 * In the identity exchange the client rolls random r and sends
	 * it to the server. The server rolls random k, which is used
	 * only once, then computes the session key E^k and partial
	 * decryption keys gbar^k and ghat^k. The server sends the
	 * encrypted r along with gbar^k and ghat^k to the client. The
	 * client completes the decryption and verifies it matches r.
	 */
	/*
	 * Write the MV trusted-agent parameters and keys as a DSA
	 * private key encoded in PEM.
	 *
	 * p	modulus p
	 * q	modulus q
	 * g	generator g
	 * priv_key A mod p
	 * pub_key b mod q
	 * (remaining values are not used)
	 */
	i = 0;
	str = fheader("MVta", "mvta", groupname);
	fprintf(stderr, "Generating MV trusted-authority keys\n");
	BN_copy(priv_key, biga);
	BN_copy(pub_key, b);
	DSA_set0_key(dsa, pub_key, priv_key);
	pkey = EVP_PKEY_new();
	EVP_PKEY_assign_DSA(pkey, dsa);
	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
	    passwd1);
	evpars[i++] = pkey;
	if (debug)
		DSA_print_fp(stderr, dsa, 0);

	/*
	 * Append the MV server parameters and keys as a DSA key encoded
	 * in PEM.
	 *
	 * p	modulus p
	 * q	modulus q (used only when generating k)
	 * g	bige
	 * priv_key gbar
	 * pub_key ghat
	 * (remaining values are not used)
	 */
	fprintf(stderr, "Generating MV server keys\n");
	dsa2 = DSA_new();
	DSA_set0_pqg(dsa2, BN_dup(p), BN_dup(q), BN_dup(bige));
	DSA_set0_key(dsa2, BN_dup(ghat), BN_dup(gbar));
	pkey1 = EVP_PKEY_new();
	EVP_PKEY_assign_DSA(pkey1, dsa2);
	PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0, NULL,
	    passwd1);
	evpars[i++] = pkey1;
	if (debug)
		DSA_print_fp(stderr, dsa2, 0);

	/*
	 * Append the MV client parameters for each client j as DSA keys
	 * encoded in PEM.
	 *
	 * p	modulus p
	 * priv_key xbar[j] mod q
	 * pub_key xhat[j] mod q
	 * (remaining values are not used)
	 */
	fprintf(stderr, "Generating %d MV client keys\n", n);
	for (j = 1; j <= n; j++) {
		sdsa = DSA_new();
		DSA_set0_pqg(sdsa, BN_dup(p), BN_dup(BN_value_one()),
			BN_dup(BN_value_one()));
		DSA_set0_key(sdsa, BN_dup(xhat[j]), BN_dup(xbar[j]));
		pkey1 = EVP_PKEY_new();
		EVP_PKEY_set1_DSA(pkey1, sdsa);
		PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0,
		    NULL, passwd1);
		evpars[i++] = pkey1;
		if (debug)
			DSA_print_fp(stderr, sdsa, 0);

		/*
		 * The product (gbar^k)^xbar[j] (ghat^k)^xhat[j] and E
		 * are inverses of each other. We check that the product
		 * is one for each client except the ones that have been
		 * revoked. 
		 */
		BN_mod_exp(v, gbar, xhat[j], p, ctx);
		BN_mod_exp(u, ghat, xbar[j], p, ctx);
		BN_mod_mul(u, u, v, p, ctx);
		BN_mod_mul(u, u, bige, p, ctx);
		if (!BN_is_one(u)) {
			fprintf(stderr, "Revoke key %d\n", j);
			continue;
		}
	}
	evpars[i++] = NULL;
	fclose(str);

	/*
	 * Free the countries.
	 */
	for (i = 0; i <= n; i++) {
		BN_free(a[i]); BN_free(gs[i]);
	}
	for (j = 1; j <= n; j++) {
		BN_free(x[j]); BN_free(xbar[j]); BN_free(xhat[j]);
		BN_free(s1[j]); 
	}
	return (pkey);
}


/*
 * Generate X509v3 certificate.
 *
 * The certificate consists of the version number, serial number,
 * validity interval, issuer name, subject name and public key. For a
 * self-signed certificate, the issuer name is the same as the subject
 * name and these items are signed using the subject private key. The
 * validity interval extends from the current time to the same time one
 * year hence. For NTP purposes, it is convenient to use the NTP seconds
 * of the current time as the serial number.
 */
int
x509	(
	EVP_PKEY *pkey,		/* signing key */
	const EVP_MD *md,	/* signature/digest scheme */
	char	*gqpub,		/* identity extension (hex string) */
	const char *exten,	/* private cert extension */
	char	*name		/* subject/issuer name */
	)
{
	X509	*cert;		/* X509 certificate */
	X509_NAME *subj;	/* distinguished (common) name */
	X509_EXTENSION *ex;	/* X509v3 extension */
	FILE	*str;		/* file handle */
	ASN1_INTEGER *serial;	/* serial number */
	const char *id;		/* digest/signature scheme name */
	char	pathbuf[MAXFILENAME + 1];

	/*
	 * Generate X509 self-signed certificate.
	 *
	 * Set the certificate serial to the NTP seconds for grins. Set
	 * the version to 3. Set the initial validity to the current
	 * time and the finalvalidity one year hence.
	 */
 	id = OBJ_nid2sn(EVP_MD_pkey_type(md));
	fprintf(stderr, "Generating new certificate %s %s\n", name, id);
	cert = X509_new();
	X509_set_version(cert, 2L);
	serial = ASN1_INTEGER_new();
	ASN1_INTEGER_set(serial, (long)epoch + JAN_1970);
	X509_set_serialNumber(cert, serial);
	ASN1_INTEGER_free(serial);
	X509_time_adj(X509_getm_notBefore(cert), 0L, &epoch);
	X509_time_adj(X509_getm_notAfter(cert), lifetime * SECSPERDAY, &epoch);
	subj = X509_get_subject_name(cert);
	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
	    (u_char *)name, -1, -1, 0);
	subj = X509_get_issuer_name(cert);
	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
	    (u_char *)name, -1, -1, 0);
	if (!X509_set_pubkey(cert, pkey)) {
		fprintf(stderr, "Assign certificate signing key fails\n%s\n",
		    ERR_error_string(ERR_get_error(), NULL));
		X509_free(cert);
		return (0);
	}

	/*
	 * Add X509v3 extensions if present. These represent the minimum
	 * set defined in RFC3280 less the certificate_policy extension,
	 * which is seriously obfuscated in OpenSSL.
	 */
	/*
	 * The basic_constraints extension CA:TRUE allows servers to
	 * sign client certficitates.
	 */
	fprintf(stderr, "%s: %s\n", LN_basic_constraints,
	    BASIC_CONSTRAINTS);
	ex = X509V3_EXT_conf_nid(NULL, NULL, NID_basic_constraints,
	    _UC(BASIC_CONSTRAINTS));
	if (!X509_add_ext(cert, ex, -1)) {
		fprintf(stderr, "Add extension field fails\n%s\n",
		    ERR_error_string(ERR_get_error(), NULL));
		return (0);
	}
	X509_EXTENSION_free(ex);

	/*
	 * The key_usage extension designates the purposes the key can
	 * be used for.
	 */
	fprintf(stderr, "%s: %s\n", LN_key_usage, KEY_USAGE);
	ex = X509V3_EXT_conf_nid(NULL, NULL, NID_key_usage, _UC(KEY_USAGE));
	if (!X509_add_ext(cert, ex, -1)) {
		fprintf(stderr, "Add extension field fails\n%s\n",
		    ERR_error_string(ERR_get_error(), NULL));
		return (0);
	}
	X509_EXTENSION_free(ex);
	/*
	 * The subject_key_identifier is used for the GQ public key.
	 * This should not be controversial.
	 */
	if (gqpub != NULL) {
		fprintf(stderr, "%s\n", LN_subject_key_identifier);
		ex = X509V3_EXT_conf_nid(NULL, NULL,
		    NID_subject_key_identifier, gqpub);
		if (!X509_add_ext(cert, ex, -1)) {
			fprintf(stderr,
			    "Add extension field fails\n%s\n",
			    ERR_error_string(ERR_get_error(), NULL));
			return (0);
		}
		X509_EXTENSION_free(ex);
	}

	/*
	 * The extended key usage extension is used for special purpose
	 * here. The semantics probably do not conform to the designer's
	 * intent and will likely change in future.
	 * 
	 * "trustRoot" designates a root authority
	 * "private" designates a private certificate
	 */
	if (exten != NULL) {
		fprintf(stderr, "%s: %s\n", LN_ext_key_usage, exten);
		ex = X509V3_EXT_conf_nid(NULL, NULL,
		    NID_ext_key_usage, _UC(exten));
		if (!X509_add_ext(cert, ex, -1)) {
			fprintf(stderr,
			    "Add extension field fails\n%s\n",
			    ERR_error_string(ERR_get_error(), NULL));
			return (0);
		}
		X509_EXTENSION_free(ex);
	}

	/*
	 * Sign and verify.
	 */
	X509_sign(cert, pkey, md);
	if (X509_verify(cert, pkey) <= 0) {
		fprintf(stderr, "Verify %s certificate fails\n%s\n", id,
		    ERR_error_string(ERR_get_error(), NULL));
		X509_free(cert);
		return (0);
	}

	/*
	 * Write the certificate encoded in PEM.
	 */
	snprintf(pathbuf, sizeof(pathbuf), "%scert", id);
	str = fheader(pathbuf, "cert", hostname);
	PEM_write_X509(str, cert);
	fclose(str);
	if (debug)
		X509_print_fp(stderr, cert);
	X509_free(cert);
	return (1);
}

#if 0	/* asn2ntp is used only with commercial certificates */
/*
 * asn2ntp - convert ASN1_TIME time structure to NTP time
 */
u_long
asn2ntp	(
	ASN1_TIME *asn1time	/* pointer to ASN1_TIME structure */
	)
{
	char	*v;		/* pointer to ASN1_TIME string */
	struct	tm tm;		/* time decode structure time */

	/*
	 * Extract time string YYMMDDHHMMSSZ from ASN.1 time structure.
	 * Note that the YY, MM, DD fields start with one, the HH, MM,
	 * SS fiels start with zero and the Z character should be 'Z'
	 * for UTC. Also note that years less than 50 map to years
	 * greater than 100. Dontcha love ASN.1?
	 */
	if (asn1time->length > 13)
		return (-1);
	v = (char *)asn1time->data;
	tm.tm_year = (v[0] - '0') * 10 + v[1] - '0';
	if (tm.tm_year < 50)
		tm.tm_year += 100;
	tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1;
	tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0';
	tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0';
	tm.tm_min = (v[8] - '0') * 10 + v[9] - '0';
	tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0';
	tm.tm_wday = 0;
	tm.tm_yday = 0;
	tm.tm_isdst = 0;
	return (mktime(&tm) + JAN_1970);
}
#endif

/*
 * Callback routine
 */
void
cb	(
	int	n1,		/* arg 1 */
	int	n2,		/* arg 2 */
	void	*chr		/* arg 3 */
	)
{
	switch (n1) {
	case 0:
		d0++;
		fprintf(stderr, "%s %d %d %lu\r", (char *)chr, n1, n2,
		    d0);
		break;
	case 1:
		d1++;
		fprintf(stderr, "%s\t\t%d %d %lu\r", (char *)chr, n1,
		    n2, d1);
		break;
	case 2:
		d2++;
		fprintf(stderr, "%s\t\t\t\t%d %d %lu\r", (char *)chr,
		    n1, n2, d2);
		break;
	case 3:
		d3++;
		fprintf(stderr, "%s\t\t\t\t\t\t%d %d %lu\r",
		    (char *)chr, n1, n2, d3);
		break;
	}
}


/*
 * Generate key
 */
EVP_PKEY *			/* public/private key pair */
genkey(
	const char *type,	/* key type (RSA or DSA) */
	const char *id		/* file name id */
	)
{
	if (type == NULL)
		return (NULL);
	if (strcmp(type, "RSA") == 0)
		return (gen_rsa(id));

	else if (strcmp(type, "DSA") == 0)
		return (gen_dsa(id));

	fprintf(stderr, "Invalid %s key type %s\n", id, type);
	return (NULL);
}

static RSA*
genRsaKeyPair(
	int	bits,
	char *	what
	)
{
	RSA *		rsa = RSA_new();
	BN_GENCB *	gcb = BN_GENCB_new();
	BIGNUM *	bne = BN_new();
	
	if (gcb)
		BN_GENCB_set_old(gcb, cb, what);
	if (bne)
		BN_set_word(bne, 65537);
	if (!(rsa && gcb && bne && RSA_generate_key_ex(
		      rsa, bits, bne, gcb)))
	{
		RSA_free(rsa);
		rsa = NULL;
	}
	BN_GENCB_free(gcb);
	BN_free(bne);
	return rsa;
}

static DSA*
genDsaParams(
	int	bits,
	char *	what
	)
{
	
	DSA *		dsa = DSA_new();
	BN_GENCB *	gcb = BN_GENCB_new();
	u_char		seed[20];
	
	if (gcb)
		BN_GENCB_set_old(gcb, cb, what);
	RAND_bytes(seed, sizeof(seed));
	if (!(dsa && gcb && DSA_generate_parameters_ex(
		      dsa, bits, seed, sizeof(seed), NULL, NULL, gcb)))
	{
		DSA_free(dsa);
		dsa = NULL;
	}
	BN_GENCB_free(gcb);
	return dsa;
}

#endif	/* AUTOKEY */


/*
 * Generate file header and link
 */
FILE *
fheader	(
	const char *file,	/* file name id */
	const char *ulink,	/* linkname */
	const char *owner	/* owner name */
	)
{
	FILE	*str;		/* file handle */
	char	linkname[MAXFILENAME]; /* link name */
	int	temp;
#ifdef HAVE_UMASK
        mode_t  orig_umask;
#endif
        
	snprintf(filename, sizeof(filename), "ntpkey_%s_%s.%u", file,
	    owner, fstamp); 
#ifdef HAVE_UMASK
        orig_umask = umask( S_IWGRP | S_IRWXO );
        str = fopen(filename, "w");
        (void) umask(orig_umask);
#else
        str = fopen(filename, "w");
#endif
	if (str == NULL) {
		perror("Write");
		exit (-1);
	}
        if (strcmp(ulink, "md5") == 0) {
          strcpy(linkname,"ntp.keys");
        } else {
          snprintf(linkname, sizeof(linkname), "ntpkey_%s_%s", ulink,
                   hostname);
        }
	(void)remove(linkname);		/* The symlink() line below matters */
	temp = symlink(filename, linkname);
	if (temp < 0)
		perror(file);
	fprintf(stderr, "Generating new %s file and link\n", ulink);
	fprintf(stderr, "%s->%s\n", linkname, filename);
	fprintf(str, "# %s\n# %s\n", filename, ctime(&epoch));
	return (str);
}