Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
/*
 * Copyright (c) 1984 through 2008, William LeFebvre
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * 
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 * 
 *     * Neither the name of William LeFebvre nor the names of other
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * m_macosx.c
 *
 * AUTHOR:	Andrew S. Townley
 *		based on m_bsd44.c and m_next32.c
 *		by Christos Zoulas and Tim Pugh
 * CREATED:	Tue Aug 11 01:51:35 CDT 1998
 * SYNOPSIS:  MacOS X Server (Rhapsody Developer Release 2)
 * DESCRIPTION:
 *	MacOS X Server (Rhapsody Developer Release 2)
 *
 * CFLAGS: -DHAVE_STRERROR
 * TERMCAP: none
 * MATH: none
 */

/*
 * normal stuff
 */

#include "config.h"

#include <stdio.h>
#include <stdarg.h>
#include <errno.h>
#include "os.h"
#include "top.h"
#include "machine.h"
#include "utils.h"

/*
 * MacOS kernel stuff
 */

#include <kvm.h>
#include <fcntl.h>
#include <sys/dkstat.h>
#include <sys/sysctl.h>
#include <mach/message.h>
#include <mach/vm_statistics.h>
#include <mach/mach.h>
#include <mach/host_info.h>

#define VMUNIX		"/mach_kernel"
#define MEM		"/dev/mem"
#define SWAP		NULL

#define NUM_AVERAGES	3
#define LOG1024		10

#define PP(pp, field)	((pp)->kp_proc . field)
#define EP(pp, field)	((pp)->kp_eproc . field)
#define VP(pp, field)	((pp)->kp_eproc.e_vm . field)
#define MPP(mp, field)	(PP((mp)->kproc, field))
#define MEP(mp, field)	(EP((mp)->kproc, field))
#define MVP(mp, field)	(VP((mp)->kproc, field))
#define TP(mp, field)	((mp)->task_info . field)
#define RP(mp, field)	((mp)->thread_summary . field)

/* define what weighted cpu is */
#define weighted_cpu(pct, s) (s == 0 ? 0.0 : \
                         ((pct) / (1.0 - exp(s * logcpu)))) 

/* what we consider to be process size: */
#ifdef notdef
#define PROCSIZE(pp) (VP((pp), vm_tsize) + VP((pp), vm_dsize) + VP((pp), vm_ssize))
#endif
#define PROCSIZE(pp) (EP(pp, e_xsize))
#define TASKSIZE(t) (TP(t, virtual_size) + TP(t, resident_size))

/* what we consider to be resident set size: */
#ifdef notdef
#define RSSIZE(pp) (MVP((pp), vm_rssize))
#endif
#define RSSIZE(pp) (MEP((pp), e_xrssize))

#define pctdouble(p) ((double)(p) / FSCALE)

/*
 * globals
 */

static kvm_t		*kd = NULL;
static int		nproc;
static int		onproc = -1;
static int		pref_len;
static int		maxmem;
static char		fmt[MAX_COLS];
static double		logcpu = 1.0;

/* process array stuff */

static struct kinfo_proc	*kproc_list = NULL;
static struct macos_proc	*proc_list = NULL;
static struct macos_proc	**proc_ref = NULL;
static int			process_states[7];
static struct handle		handle;

/*
 * The mach information hopefully will not be necessary
 * when the kvm_* interfaces are supported completely.
 *
 * Since we're only concerned with task and thread info
 * for 'interesting' processes, we're going to only allocate
 * as many task and thread structures as needed.
 */

static struct task_basic_info	*task_list = NULL;

/* memory statistics */

static int 		pageshift 	= 0;
static int		pagesize	= 0;
#define pagetok(size)	((size) << pageshift)

static int		swappgsin	= -1;
static int		swappgsout	= -1;
static vm_statistics_data_t	vm_stats;
static long		memory_stats[7];

/* CPU state percentages */

host_cpu_load_info_data_t cpuload;

static long	cp_time[CPU_STATE_MAX];
static long	cp_old[CPU_STATE_MAX];
static long	cp_diff[CPU_STATE_MAX];
static int		cpu_states[CPU_STATE_MAX];

/*
 * types
 */

typedef long 		pctcpu;

//struct statics
//{
//	char	**procstate_names;
//	char	**cpustate_names;
//	char	**memory_names;
//	char	**order_names;
//};
//
//struct system_info
//{
//	int	last_pid;
//	double	load_avg[NUM_AVERAGES];
//	int	p_total;	/* total # of processes */
//	int	p_active;	/* number processes considered active */
//	int	*procstates;
//	int	*cpustates;
//	int	*memory;
//};
//
//struct process_select
//{
//	int	idle;		/* show idle processes */
//	int	system;		/* show system processes */
//	int	uid;		/* show only this uid (unless -1) */
//	char	*command;	/* only this command (unless NULL) */
//};

/*
 * We need to declare a hybrid structure which will store all
 * of the stuff we care about for each process.
 */

struct macos_proc
{
	struct kinfo_proc		*kproc;
	task_t				the_task;
	struct task_basic_info		task_info;
	unsigned int			thread_count;
	struct thread_basic_info	thread_summary;
};

struct handle
{
	struct macos_proc		**next_proc;
	int				remaining;
};

static char header[] =
  "  PID X        PRI THRD  SIZE   RES STATE   TIME    MEM    CPU COMMAND";
/* 0123456   -- field to fill in starts at header+6 */
#define UNAME_START 6
     
#define Proc_format \
        "%5d %-8.8s %3d %4d %5s %5s %-5s %6s %5.2f%% %5.2f%% %.16s"


int proc_compare(const void *, const void *);


/*
 * puke()
 *
 * This function is used to report errors to stderr.
 */

static void puke(const char* fmt, ...)
{
	va_list	args;
	va_start(args, fmt);
	vfprintf(stderr, fmt, args);
	va_end(args);

	fputc('\n', stderr);
	fflush(stderr);
}

/*
 * kread()
 *
 * This function is a wrapper for the kvm_read() function
 * with the addition of a message parameter per kvm_open().
 *
 * All other behavior is per kvm_read except the error reporting.
 */

static ssize_t kread(u_long addr, void *buf, 
	size_t nbytes, const char *errstr)
{
	ssize_t	s = 0;

	s = kvm_read(kd, addr, buf, nbytes);
	if(s == -1)
		{
		puke("error:  kvm_read() failed for '%s' (%s)\n",
			errstr, strerror(errno));
		}

	return s;
}

/*
 * prototypes for functions which top needs
 */

char *printable();

/*
 * definitions for offsets
 */

#define X_NPROC		0
#define X_HZ		1
#define X_MAXMEM	2

#define NLIST_LAST	3

static struct nlist	nlst[] =
{
	{ "_maxproc" },		/* 0 *** maximum processes */
	{ "_hz" },		/* 1 */
	{ "_mem_size" },	/* 2 */
	{ 0 }
};

static char *procstates[] =
{
	"",
	" starting, ",
	" running, ",
	" sleeping, ",
	" stopped, ",
	" zombie, ",
	" swapped ",
	NULL
};

static char *cpustates[] =
{
	"user",
	"system",
	"idle",
	"nice",
	NULL
};

static char *state_abbrev[] =
{
	"",
	"start",
	"run\0\0\0",
	"sleep",
	"stop",
	"zomb"
};

static char *mach_state[] =
{
	"",
	"R",
	"T",
	"S",
	"U",
	"H"
};

static char *thread_state[] =
{
	"",
	"run\0\0\0",
	"stop",
	"wait",
	"uwait",
	"halted",
};

static char *flags_state[] =
{
	"",
	"W",
	"I"
};

static char *memnames[] =
{
	"K Tot, ",
	"K Free, ",
	"K Act, ",
	"K Inact, ",
	"K Wired, ",
	"K in, ",
	"K out ",
	NULL
};

/*
 * format_header()
 *
 * This function is used to add the username into the
 * header information.
 */

char *format_header(register char *uname_field)
{
	register char *ptr;

	ptr = header + UNAME_START;
	while(*uname_field != '\0')
		*ptr++ = *uname_field++;

	return(header);
}

/*
 * format_next_process()
 *
 * This function actuall is responsible for the formatting of
 * each row which is displayed.
 */

char *format_next_process(caddr_t handle, char *(*getuserid)())
{
	register struct macos_proc	*pp;
	register long			cputime;
	register double			pct;
	register int			vsize;
	register int			rsize;
	struct handle			*hp;

	/*
	 * we need to keep track of the next proc structure.
	 */

	hp = (struct handle*)handle;
	pp = *(hp->next_proc++);
	hp->remaining--;

	/*
	 * get the process structure and take care of the cputime
	 */

	if((MPP(pp, p_flag) & P_INMEM) == 0)
		{
		/* we want to print swapped processes as <pname> */
		char	*comm = MPP(pp, p_comm);
#define COMSIZ	sizeof(MPP(pp, p_comm))
		char	buf[COMSIZ];
		strncpy(buf, comm, COMSIZ);
		comm[0] = '<';
		strncpy(&comm[1], buf, COMSIZ - 2);
		comm[COMSIZ - 2] = '\0';
		strncat(comm, ">", COMSIZ - 1);
		comm[COMSIZ - 1] = '\0';
		}

	/*
	 * count the cpu time, but ignore the interrupts
	 *
	 * At the present time (DR2 8/1998), MacOS X doesn't
	 * correctly report this information through the
	 * kinfo_proc structure.  We need to get it from the
	 * task threads.
	 *
	 * cputime = PP(pp, p_rtime).tv_sec;
	 */
	
	cputime = RP(pp, user_time).seconds + RP(pp, system_time).seconds;

	/*
	 * calculate the base cpu percentages
	 *
	 * Again, at the present time, MacOS X doesn't report
	 * this information through the kinfo_proc.  We need
	 * to talk to the threads.
	 */

//	pct = pctdouble(PP(pp, p_pctcpu));
	pct = (double)(RP(pp, cpu_usage))/TH_USAGE_SCALE;

	/*
	 * format the entry
	 */

	/*
	 * In the final version, I would expect this to work correctly,
	 * but it seems that not all of the fields in the proc
	 * structure are being used.
	 *
	 * For now, we'll attempt to get some of the things we need
	 * from the mach task info.
	 */

	sprintf(fmt,
		Proc_format,
		MPP(pp, p_pid),
		(*getuserid)(MEP(pp, e_pcred.p_ruid)),
//		TP(pp, base_priority),
		0,
		pp->thread_count,
		format_k(TASKSIZE(pp) / 1024),
		format_k(pagetok(RSSIZE(pp))),
		state_abbrev[(u_char)MPP(pp, p_stat)],
		format_time(cputime),
		100.0 * TP(pp, resident_size) / maxmem,
//		100.0 * weighted_cpu(pct, (RP(pp, user_time).seconds + RP(pp, system_time).seconds)),
		100.0 * pct,
		printable(MPP(pp, p_comm)));

	return(fmt);
}

/*
 * get_process_info()
 *
 * This function returns information about the processes
 * on the system.
 */

caddr_t get_process_info(struct system_info *si,
		struct process_select *sel, int x)

{
	register int 				i;
	register int 				total_procs;
	register int 				active_procs;
	register struct macos_proc 		**prefp;
	register struct macos_proc 		*pp;
	register struct kinfo_proc		*pp2;
	register struct kinfo_proc		**prefp2;
	register struct thread_basic_info 	*thread;

	/*
	 * these are copied out of sel for speed
	 */

	int show_idle;
	int show_system;
	int show_uid;
	int show_command;

	kproc_list = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);

	if(nproc > onproc)
		{
		proc_list = (struct macos_proc*)realloc(proc_list, sizeof(struct macos_proc) * nproc);
		proc_ref = (struct macos_proc **)realloc(proc_ref, sizeof(struct macos_proc *) * (onproc = nproc));
		}

	if(proc_ref == NULL || proc_list == NULL || kproc_list == NULL)
		{
		puke("error:  out of memory (%s)", strerror(errno));
		return(NULL);
		}

	/*
	 * now, our task is to build the array of information we
	 * need to function correctly.  This involves setting a pointer
	 * to each real kinfo_proc structure returned by kvm_getprocs()
	 * in addition to getting the mach information for each of
	 * those processes.
	 */

	for(pp2 = kproc_list, i = 0; i < nproc; pp2++, i++)
		{
		kern_return_t	rc;
		u_int		info_count = TASK_BASIC_INFO_COUNT;

		/*
		 * first, we set the pointer to the reference in
		 * the kproc list.
		 */
		
		proc_list[i].kproc = pp2;

		/*
		 * then, we load all of the task info for the process
		 */

		if(PP(pp2, p_stat) != SZOMB)
			{
			rc = task_for_pid(mach_task_self(), 
				PP(pp2, p_pid), 
				&(proc_list[i].the_task));

			if(rc != KERN_SUCCESS)
				{
				puke("error:  get task info for pid %d failed with rc = %d", PP(pp2, p_pid), rc);
				}

			/*
			 * load the task information
			 */

			rc = task_info(proc_list[i].the_task, TASK_BASIC_INFO, 
				(task_info_t)&(proc_list[i].task_info),
				&info_count);

			if(rc != KERN_SUCCESS)
				{
				puke("error:  couldn't get task info (%s); rc = %d", strerror(errno), rc);
				}

			/*
			 * load the thread summary information
			 */

			load_thread_info(&proc_list[i]);
			}
		}

	/* get a pointer to the states summary array */
	si->procstates = process_states;

	/* set up flags which define what we are going to select */
	show_idle = sel->idle;
	show_system = sel->system;
	show_uid = sel->uid != -1;
	show_command = sel->command != NULL;

	/* count up process states and get pointers to interesting procs */
	total_procs = 0;
	active_procs = 0;
	memset((char *)process_states, 0, sizeof(process_states));
	prefp = proc_ref;
	for(pp = proc_list, i = 0; i < nproc; pp++, i++)
		{
		/*
		 *  Place pointers to each valid proc structure in 
		 * proc_ref[].  Process slots that are actually in use 
		 * have a non-zero status field.  Processes with
		 * P_SYSTEM set are system processes---these get 
		 * ignored unless show_sysprocs is set.
		 */
		if(MPP(pp, p_stat) != 0 && 
				(show_system || ((MPP(pp, p_flag) & P_SYSTEM) == 0)))
			{
			total_procs++;
			process_states[(unsigned char) MPP(pp, p_stat)]++;
			if((MPP(pp, p_stat) != SZOMB) &&
					(show_idle || (MPP(pp, p_pctcpu) != 0) || 
			 		(MPP(pp, p_stat) == SRUN)) &&
					(!show_uid || MEP(pp, e_pcred.p_ruid) == (uid_t)sel->uid))
				{
				*prefp++ = pp;
				active_procs++;
				}
			}
		}
	
	/* 
	 * if requested, sort the "interesting" processes
	 */

	qsort((char *)proc_ref, active_procs, sizeof(struct macos_proc *), proc_compare);

	/* remember active and total counts */
	si->p_total = total_procs;
	si->p_active = pref_len = active_procs;

	/* pass back a handle */
	handle.next_proc = proc_ref;
	handle.remaining = active_procs;
	return((caddr_t)&handle);
}

/*
 * get_system_info()
 *
 * This function is responsible for geting the periodic
 * system information snapshot.
 */

void get_system_info(struct system_info *si)
{
	register long	total;
	register int	i;
	unsigned int count = HOST_CPU_LOAD_INFO_COUNT;

	if (host_statistics(mach_host_self(), HOST_CPU_LOAD_INFO,
			    (host_info_t)&cpuload, &count) == KERN_SUCCESS)
	{
	    for (i = 0; i < CPU_STATE_MAX; i++)
	    {
		cp_time[i] = cpuload.cpu_ticks[i];
	    }
	}

#ifdef MAX_VERBOSE

	/*
	 * print out the entries
	 */

	for(i = 0; i < CPU_STATE_MAX; i++)
		printf("cp_time[%d] = %d\n", i, cp_time[i]);
	fflush(stdout);

#endif /* MAX_VERBOSE */

	/*
	 * get the load averages
	 */

	if(kvm_getloadavg(kd, si->load_avg, NUM_AVERAGES) == -1)
		{
		puke("error:  kvm_getloadavg() failed (%s)", strerror(errno));
		return;
		}

#ifdef MAX_VERBOSE
	printf("%-30s%03.2f, %03.2f, %03.2f\n", 
			"load averages:", 
			si->load_avg[0],
			si->load_avg[1],
			si->load_avg[2]);
#endif /* MAX_VERBOSE */

	total = percentages(CPU_STATE_MAX, cpu_states, cp_time, cp_old, cp_diff);
	/*
	 * get the memory statistics
	 */

	{
		kern_return_t	status;

		count = HOST_VM_INFO_COUNT;
		status = host_statistics(mach_host_self(), HOST_VM_INFO,
					 (host_info_t)&vm_stats, &count);

		if(status != KERN_SUCCESS)
			{
			puke("error:  vm_statistics() failed (%s)", strerror(errno));
			return;
			}

		/*
		 * we already have the total memory, we just need
		 * to get it in the right format.
		 */

		memory_stats[0] = pagetok(maxmem / pagesize);
		memory_stats[1] = pagetok(vm_stats.free_count);
		memory_stats[2] = pagetok(vm_stats.active_count);
		memory_stats[3] = pagetok(vm_stats.inactive_count);
		memory_stats[4] = pagetok(vm_stats.wire_count);

		if(swappgsin < 0)
			{
			memory_stats[5] = 1;
			memory_stats[6] = 1;
			}
		else
			{
			memory_stats[5] = pagetok(((vm_stats.pageins - swappgsin)));
			memory_stats[6] = pagetok(((vm_stats.pageouts - swappgsout)));
			}
		swappgsin = vm_stats.pageins;
		swappgsout = vm_stats.pageouts;
	}
	
	si->cpustates = cpu_states;
	si->memory = memory_stats;
	si->last_pid = -1;

	return;
}

/*
 * machine_init()
 *
 * This function is responsible for filling in the values of the
 * statics structure.
 */

int machine_init(struct statics *stat)
{
	register int rc = 0;
	register int i = 0;
	size_t size;

	size = sizeof(maxmem);
	sysctlbyname("hw.physmem", &maxmem, &size, NULL, 0);

	size = sizeof(nproc);
	sysctlbyname("kern.maxproc", &nproc, &size, NULL, 0);

#ifdef MAX_VERBOSE
	printf("%-30s%10d\n", "total system memory:", maxmem);
#endif /* MAX_VERBOSE */

	/*
	 * calculate the pageshift from the system page size
	 */

	pagesize = getpagesize();
	pageshift = 0;
	while((pagesize >>= 1) > 0)
		pageshift++;

	pageshift -= LOG1024;

	/*
	 * fill in the statics information
	 */

	stat->procstate_names = procstates;
	stat->cpustate_names = cpustates;
	stat->memory_names = memnames;

	if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL)
	  return -1;

	return(0);
}

/* comparison routine for qsort */

/*
 *  proc_compare - comparison function for "qsort"
 *	Compares the resource consumption of two processes using five
 *  	distinct keys.  The keys (in descending order of importance) are:
 *  	percent cpu, cpu ticks, state, resident set size, total virtual
 *  	memory usage.  The process states are ordered as follows (from least
 *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
 *  	array declaration below maps a process state index into a number
 *  	that reflects this ordering.
 */

static unsigned char sorted_state[] =
{
    0,	/* not used		*/
    3,	/* sleep		*/
    1,	/* ABANDONED (WAIT)	*/
    6,	/* run			*/
    5,	/* start		*/
    2,	/* zombie		*/
    4	/* stop			*/
};
 
int proc_compare(const void *pp1, const void *pp2)
{
    register struct macos_proc *p1;
    register struct macos_proc *p2;
    register int result;
    register pctcpu lresult;

    /* remove one level of indirection */
    p1 = *(struct macos_proc **) pp1;
    p2 = *(struct macos_proc **) pp2;

    /* compare percent cpu (pctcpu) */
    if ((lresult = RP(p2, cpu_usage) - RP(p1, cpu_usage)) == 0)
    {
	/* use cpticks to break the tie */
	if ((result = MPP(p2, p_cpticks) - MPP(p1, p_cpticks)) == 0)
	{
	    /* use process state to break the tie */
	    if ((result = sorted_state[(unsigned char) MPP(p2, p_stat)] -
			  sorted_state[(unsigned char) MPP(p1, p_stat)])  == 0)
	    {
		/* use priority to break the tie */
		if ((result = MPP(p2, p_priority) - MPP(p1, p_priority)) == 0)
		{
		    /* use resident set size (rssize) to break the tie */
		    if ((result = RSSIZE(p2) - RSSIZE(p1)) == 0)
		    {
			/* use total memory to break the tie */
			result = PROCSIZE(p2->kproc) - PROCSIZE(p1->kproc);
		    }
		}
	    }
	}
    }
    else
    {
	result = lresult < 0 ? -1 : 1;
    }

    return(result);
}


/*
 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
 *		the process does not exist.
 *		It is EXTREMLY IMPORTANT that this function work correctly.
 *		If top runs setuid root (as in SVR4), then this function
 *		is the only thing that stands in the way of a serious
 *		security problem.  It validates requests for the "kill"
 *		and "renice" commands.
 */

int proc_owner(pid)

int pid;

{
    register int cnt;
    register struct macos_proc **prefp;
    register struct macos_proc *pp;

    prefp = proc_ref;
    cnt = pref_len;
    while (--cnt >= 0)
    {
	pp = *prefp++;	
	if (MPP(pp, p_pid) == (pid_t)pid)
	{
	    return((int)MEP(pp, e_pcred.p_ruid));
	}
    }
    return(-1);
}

/*
 * load_thread_info()
 *
 * This function will attempt to load the thread summary info
 * for a Mach task.  The task is located as part of the macos_proc
 * structure.
 *
 * returns the kern_return_t value of any failed call or KERN_SUCCESS
 * if everything works.
 */

int load_thread_info(struct macos_proc *mp)
{
	register kern_return_t		rc = 0;
	register int			i = 0;
	register int			t_utime = 0;
	register int			t_stime = 0;
	register int			t_cpu = 0;
	register int			t_state = 0;
	register task_t			the_task = mp->the_task;

	thread_array_t			thread_list = NULL;

	/*
	 * We need to load all of the threads for the 
	 * given task so we can get the performance 
	 * data from them.
	 */

	mp->thread_count = 0;
	rc = task_threads(the_task, &thread_list, &(mp->thread_count));

	if(rc != KERN_SUCCESS)
		{
//		puke("error:  unable to load threads for task (%s); rc = %d", strerror(errno), rc);
		return(rc);
		}

	/*
	 * now, for each of the threads, we need to sum the stats
	 * so we can present the whole thing to the caller.
	 */

	for(i = 0; i < mp->thread_count; i++)
		{
		struct thread_basic_info	t_info;
		unsigned int			icount = THREAD_BASIC_INFO_COUNT;
		kern_return_t			rc = 0;

		rc = thread_info(thread_list[i], THREAD_BASIC_INFO, 
				(thread_info_t)&t_info, &icount);

		if(rc != KERN_SUCCESS)
			{
			puke("error:  unable to load thread info for task (%s); rc = %d", strerror(errno), rc);
			return(rc);
			}

		t_utime += t_info.user_time.seconds;
		t_stime += t_info.system_time.seconds;
		t_cpu += t_info.cpu_usage;
		}

	vm_deallocate(mach_task_self(), (vm_address_t)thread_list, sizeof(thread_array_t)*(mp->thread_count));

	/*
	 * Now, we load the values in the structure above.
	 */

	RP(mp, user_time).seconds = t_utime;
	RP(mp, system_time).seconds = t_stime;
	RP(mp, cpu_usage) = t_cpu;

	return(KERN_SUCCESS);
}