Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
/*	$NetBSD: common.cpp,v 1.1.1.1 2016/01/13 18:41:48 christos Exp $	*/

// -*- C++ -*-
/* Copyright (C) 1989, 1990, 1991, 1992, 2003 Free Software Foundation, Inc.
     Written by James Clark (jjc@jclark.com)

This file is part of groff.

groff is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

groff is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License along
with groff; see the file COPYING.  If not, write to the Free Software
Foundation, 51 Franklin St - Fifth Floor, Boston, MA 02110-1301, USA. */

#include "pic.h"
#include "common.h"

// output a dashed circle as a series of arcs

void common_output::dashed_circle(const position &cent, double rad,
				  const line_type &lt)
{
  assert(lt.type == line_type::dashed);
  line_type slt = lt;
  slt.type = line_type::solid;
  double dash_angle = lt.dash_width/rad;
  int ndashes;
  double gap_angle;
  if (dash_angle >= M_PI/4.0) {
    if (dash_angle < M_PI/2.0) {
      gap_angle = M_PI/2.0 - dash_angle;
      ndashes = 4;
    }
    else if (dash_angle < M_PI) {
      gap_angle = M_PI - dash_angle;
      ndashes = 2;
    }
    else {
      circle(cent, rad, slt, -1.0);
      return;
    }
  }
  else {
    ndashes = 4*int(ceil(M_PI/(4.0*dash_angle)));
    gap_angle = (M_PI*2.0)/ndashes - dash_angle;
  }
  for (int i = 0; i < ndashes; i++) {
    double start_angle = i*(dash_angle+gap_angle) - dash_angle/2.0;
    solid_arc(cent, rad, start_angle, start_angle + dash_angle, lt);
  }
}

// output a dotted circle as a series of dots

void common_output::dotted_circle(const position &cent, double rad,
				  const line_type &lt)
{
  assert(lt.type == line_type::dotted);
  double gap_angle = lt.dash_width/rad;
  int ndots;
  if (gap_angle >= M_PI/2.0) {
    // always have at least 2 dots
    gap_angle = M_PI;
    ndots = 2;
  }
  else {
    ndots = 4*int(M_PI/(2.0*gap_angle));
    gap_angle = (M_PI*2.0)/ndots;
  }
  double ang = 0.0;
  for (int i = 0; i < ndots; i++, ang += gap_angle)
    dot(cent + position(cos(ang), sin(ang))*rad, lt);
}

// recursive function for dash drawing, used by dashed_ellipse

void common_output::ellipse_arc(const position &cent,
				const position &z0, const position &z1,
				const distance &dim, const line_type &lt)
{
  assert(lt.type == line_type::solid);
  assert(dim.x != 0 && dim.y != 0);
  double eps = 0.0001;
  position zml = (z0 + z1) / 2;
  // apply affine transformation (from ellipse to circle) to compute angle
  // of new position, then invert transformation to get exact position
  double psi = atan2(zml.y / dim.y, zml.x / dim.x);
  position zm = position(dim.x * cos(psi), dim.y * sin(psi));
  // to approximate the ellipse arc with one or more circle arcs, we
  // first compute the radius of curvature in zm
  double a_2 = dim.x * dim.x;
  double a_4 = a_2 * a_2;
  double b_2 = dim.y * dim.y;
  double b_4 = b_2 * b_2;
  double e_2 = a_2 - b_2;
  double temp = a_4 * zm.y * zm.y + b_4 * zm.x * zm.x;
  double rho = sqrt(temp / a_4 / b_4 * temp / a_4 / b_4 * temp);
  // compute center of curvature circle
  position M = position(e_2 * zm.x / a_2 * zm.x / a_2 * zm.x,
			-e_2 * zm.y / b_2 * zm.y / b_2 * zm.y);
  // compute distance between circle and ellipse arc at start and end
  double phi0 = atan2(z0.y - M.y, z0.x - M.x);
  double phi1 = atan2(z1.y - M.y, z1.x - M.x);
  position M0 = position(rho * cos(phi0), rho * sin(phi0)) + M;
  position M1 = position(rho * cos(phi1), rho * sin(phi1)) + M;
  double dist0 = hypot(z0 - M0) / sqrt(z0 * z0);
  double dist1 = hypot(z1 - M1) / sqrt(z1 * z1);
  if (dist0 < eps && dist1 < eps)
    solid_arc(M + cent, rho, phi0, phi1, lt);
  else {
    ellipse_arc(cent, z0, zm, dim, lt);
    ellipse_arc(cent, zm, z1, dim, lt);
  }
}

// output a dashed ellipse as a series of arcs

void common_output::dashed_ellipse(const position &cent, const distance &dim,
				   const line_type &lt)
{
  assert(lt.type == line_type::dashed);
  double dim_x = dim.x / 2;
  double dim_y = dim.y / 2;
  line_type slt = lt;
  slt.type = line_type::solid;
  double dw = lt.dash_width;
  // we use an approximation to compute the ellipse length (found in:
  // Bronstein, Semendjajew, Taschenbuch der Mathematik)
  double lambda = (dim.x - dim.y) / (dim.x + dim.y);
  double le = M_PI / 2 * (dim.x + dim.y)
	      * ((64 - 3 * lambda * lambda * lambda * lambda )
		 / (64 - 16 * lambda * lambda));
  // for symmetry we make nmax a multiple of 8
  int nmax = 8 * int(le / dw / 8 + 0.5);
  if (nmax < 8) {
    nmax = 8;
    dw = le / 8;
  }
  int ndash = nmax / 2;
  double gapwidth = (le - dw * ndash) / ndash;
  double l = 0;
  position z = position(dim_x, 0);
  position zdot = z;
  int j = 0;
  int jmax = int(10 / lt.dash_width);
  for (int i = 0; i <= nmax; i++) {
    position zold = z;
    position zpre = zdot;
    double ld = (int(i / 2) + 0.5) * dw + int((i + 1) / 2) * gapwidth;
    double lold = 0;
    double dl = 1;
    // find next position for fixed arc length
    while (l < ld) {
      j++;
      lold = l;
      zold = z;
      double phi = j * 2 * M_PI / jmax;
      z = position(dim_x * cos(phi), dim_y * sin(phi));
      dl = hypot(z - zold);
      l += dl;
    }
    // interpolate linearly between the last two points,
    // using the length difference as the scaling factor
    double delta = (ld - lold) / dl;
    zdot = zold + (z - zold) * delta;
    // compute angle of new position on the affine circle
    // and use it to get the exact value on the ellipse
    double psi = atan2(zdot.y / dim_y, zdot.x / dim_x);
    zdot = position(dim_x * cos(psi), dim_y * sin(psi));
    if ((i % 2 == 0) && (i > 1))
      ellipse_arc(cent, zpre, zdot, dim / 2, slt);
  }
}

// output a dotted ellipse as a series of dots

void common_output::dotted_ellipse(const position &cent, const distance &dim,
				   const line_type &lt)
{
  assert(lt.type == line_type::dotted);
  double dim_x = dim.x / 2;
  double dim_y = dim.y / 2;
  line_type slt = lt;
  slt.type = line_type::solid;
  // we use an approximation to compute the ellipse length (found in:
  // Bronstein, Semendjajew, Taschenbuch der Mathematik)
  double lambda = (dim.x - dim.y) / (dim.x + dim.y);
  double le = M_PI / 2 * (dim.x + dim.y)
	      * ((64 - 3 * lambda * lambda * lambda * lambda )
		 / (64 - 16 * lambda * lambda));
  // for symmetry we make nmax a multiple of 4
  int ndots = 4 * int(le / lt.dash_width / 4 + 0.5);
  if (ndots < 4)
    ndots = 4;
  double l = 0;
  position z = position(dim_x, 0);
  int j = 0;
  int jmax = int(10 / lt.dash_width);
  for (int i = 1; i <= ndots; i++) {
    position zold = z;
    double lold = l;
    double ld = i * le / ndots;
    double dl = 1;
    // find next position for fixed arc length
    while (l < ld) {
      j++;
      lold = l;
      zold = z;
      double phi = j * 2 * M_PI / jmax;
      z = position(dim_x * cos(phi), dim_y * sin(phi));
      dl = hypot(z - zold);
      l += dl;
    }
    // interpolate linearly between the last two points,
    // using the length difference as the scaling factor
    double delta = (ld - lold) / dl;
    position zdot = zold + (z - zold) * delta;
    // compute angle of new position on the affine circle
    // and use it to get the exact value on the ellipse
    double psi = atan2(zdot.y / dim_y, zdot.x / dim_x);
    zdot = position(dim_x * cos(psi), dim_y * sin(psi));
    dot(cent + zdot, slt);
  }
}

// return non-zero iff we can compute a center

int compute_arc_center(const position &start, const position &cent,
		       const position &end, position *result)
{
  // This finds the point along the vector from start to cent that
  // is equidistant between start and end.
  distance c = cent - start;
  distance e = end - start;
  double n = c*e;
  if (n == 0.0)
    return 0;
  *result = start + c*((e*e)/(2.0*n));
  return 1;
}

// output a dashed arc as a series of arcs

void common_output::dashed_arc(const position &start, const position &cent,
			       const position &end, const line_type &lt)
{
  assert(lt.type == line_type::dashed);
  position c;
  if (!compute_arc_center(start, cent, end, &c)) {
    line(start, &end, 1, lt);
    return;
  }
  distance start_offset = start - c;
  distance end_offset = end - c;
  double start_angle = atan2(start_offset.y, start_offset.x);
  double end_angle = atan2(end_offset.y, end_offset.x);
  double rad = hypot(c - start);
  double dash_angle = lt.dash_width/rad;
  double total_angle = end_angle - start_angle;
  while (total_angle < 0)
    total_angle += M_PI + M_PI;
  if (total_angle <= dash_angle*2.0) {
    solid_arc(cent, rad, start_angle, end_angle, lt);
    return;
  }
  int ndashes = int((total_angle - dash_angle)/(dash_angle*2.0) + .5);
  double dash_and_gap_angle = (total_angle - dash_angle)/ndashes;
  for (int i = 0; i <= ndashes; i++)
    solid_arc(cent, rad, start_angle + i*dash_and_gap_angle,
	      start_angle + i*dash_and_gap_angle + dash_angle, lt);
}

// output a dotted arc as a series of dots

void common_output::dotted_arc(const position &start, const position &cent,
			       const position &end, const line_type &lt)
{
  assert(lt.type == line_type::dotted);
  position c;
  if (!compute_arc_center(start, cent, end, &c)) {
    line(start, &end, 1, lt);
    return;
  }
  distance start_offset = start - c;
  distance end_offset = end - c;
  double start_angle = atan2(start_offset.y, start_offset.x);
  double total_angle = atan2(end_offset.y, end_offset.x) - start_angle;
  while (total_angle < 0)
    total_angle += M_PI + M_PI;
  double rad = hypot(c - start);
  int ndots = int(total_angle/(lt.dash_width/rad) + .5);
  if (ndots == 0)
    dot(start, lt);
  else {
    for (int i = 0; i <= ndots; i++) {
      double a = start_angle + (total_angle*i)/ndots;
      dot(cent + position(cos(a), sin(a))*rad, lt);
    }
  }
}

void common_output::solid_arc(const position &cent, double rad,
			      double start_angle, double end_angle,
			      const line_type &lt)
{
  line_type slt = lt;
  slt.type = line_type::solid;
  arc(cent + position(cos(start_angle), sin(start_angle))*rad,
      cent,
      cent + position(cos(end_angle), sin(end_angle))*rad,
      slt);
}


void common_output::rounded_box(const position &cent, const distance &dim,
				double rad, const line_type &lt, double fill)
{
  if (fill >= 0.0)
    filled_rounded_box(cent, dim, rad, fill);
  switch (lt.type) {
  case line_type::invisible:
    break;
  case line_type::dashed:
    dashed_rounded_box(cent, dim, rad, lt);
    break;
  case line_type::dotted:
    dotted_rounded_box(cent, dim, rad, lt);
    break;
  case line_type::solid:
    solid_rounded_box(cent, dim, rad, lt);
    break;
  default:
    assert(0);
  }
}


void common_output::dashed_rounded_box(const position &cent,
				       const distance &dim, double rad,
				       const line_type &lt)
{
  line_type slt = lt;
  slt.type = line_type::solid;

  double hor_length = dim.x + (M_PI/2.0 - 2.0)*rad;
  int n_hor_dashes = int(hor_length/(lt.dash_width*2.0) + .5);
  double hor_gap_width = (n_hor_dashes != 0
			  ? hor_length/n_hor_dashes - lt.dash_width
			  : 0.0);

  double vert_length = dim.y + (M_PI/2.0 - 2.0)*rad;
  int n_vert_dashes = int(vert_length/(lt.dash_width*2.0) + .5);
  double vert_gap_width = (n_vert_dashes != 0
			   ? vert_length/n_vert_dashes - lt.dash_width
			   : 0.0);
  // Note that each corner arc has to be split into two for dashing,
  // because one part is dashed using vert_gap_width, and the other
  // using hor_gap_width.
  double offset = lt.dash_width/2.0;
  dash_arc(cent + position(dim.x/2.0 - rad, -dim.y/2.0 + rad), rad,
	   -M_PI/4.0, 0, slt, lt.dash_width, vert_gap_width, &offset);
  dash_line(cent + position(dim.x/2.0, -dim.y/2.0 + rad),
	    cent + position(dim.x/2.0, dim.y/2.0 - rad),
	    slt, lt.dash_width, vert_gap_width, &offset);
  dash_arc(cent + position(dim.x/2.0 - rad, dim.y/2.0 - rad), rad,
	   0, M_PI/4.0, slt, lt.dash_width, vert_gap_width, &offset);

  offset = lt.dash_width/2.0;
  dash_arc(cent + position(dim.x/2.0 - rad, dim.y/2.0 - rad), rad,
	   M_PI/4.0, M_PI/2, slt, lt.dash_width, hor_gap_width, &offset);
  dash_line(cent + position(dim.x/2.0 - rad, dim.y/2.0),
	    cent + position(-dim.x/2.0 + rad, dim.y/2.0),
	    slt, lt.dash_width, hor_gap_width, &offset);
  dash_arc(cent + position(-dim.x/2.0 + rad, dim.y/2.0 - rad), rad,
	   M_PI/2, 3*M_PI/4.0, slt, lt.dash_width, hor_gap_width, &offset);

  offset = lt.dash_width/2.0;
  dash_arc(cent + position(-dim.x/2.0 + rad, dim.y/2.0 - rad), rad,
	   3.0*M_PI/4.0, M_PI, slt, lt.dash_width, vert_gap_width, &offset);
  dash_line(cent + position(-dim.x/2.0, dim.y/2.0 - rad),
	    cent + position(-dim.x/2.0, -dim.y/2.0 + rad),
	    slt, lt.dash_width, vert_gap_width, &offset);
  dash_arc(cent + position(-dim.x/2.0 + rad, -dim.y/2.0 + rad), rad,
	   M_PI, 5.0*M_PI/4.0, slt, lt.dash_width, vert_gap_width, &offset);

  offset = lt.dash_width/2.0;
  dash_arc(cent + position(-dim.x/2.0 + rad, -dim.y/2.0 + rad), rad,
	   5*M_PI/4.0, 3*M_PI/2.0, slt, lt.dash_width, hor_gap_width, &offset);
  dash_line(cent + position(-dim.x/2.0 + rad, -dim.y/2.0),
	    cent + position(dim.x/2.0 - rad, -dim.y/2.0),
	    slt, lt.dash_width, hor_gap_width, &offset);
  dash_arc(cent + position(dim.x/2.0 - rad, -dim.y/2.0 + rad), rad,
	   3*M_PI/2, 7*M_PI/4, slt, lt.dash_width, hor_gap_width, &offset);
}

// Used by dashed_rounded_box.

void common_output::dash_arc(const position &cent, double rad,
			     double start_angle, double end_angle,
			     const line_type &lt,
			     double dash_width, double gap_width,
			     double *offsetp)
{
  double length = (end_angle - start_angle)*rad;
  double pos = 0.0;
  for (;;) {
    if (*offsetp >= dash_width) {
      double rem = dash_width + gap_width - *offsetp;
      if (pos + rem > length) {
	*offsetp += length - pos;
	break;
      }
      else {
	pos += rem;
	*offsetp = 0.0;
      }
    }
    else {
      double rem = dash_width  - *offsetp;
      if (pos + rem > length) {
	solid_arc(cent, rad, start_angle + pos/rad, end_angle, lt);
	*offsetp += length - pos;
	break;
      }
      else {
	solid_arc(cent, rad, start_angle + pos/rad,
		  start_angle + (pos + rem)/rad, lt);
	pos += rem;
	*offsetp = dash_width;
      }
    }
  }
}

// Used by dashed_rounded_box.

void common_output::dash_line(const position &start, const position &end,
			      const line_type &lt,
			      double dash_width, double gap_width,
			      double *offsetp)
{
  distance dist = end - start;
  double length = hypot(dist);
  if (length == 0.0)
    return;
  double pos = 0.0;
  for (;;) {
    if (*offsetp >= dash_width) {
      double rem = dash_width + gap_width - *offsetp;
      if (pos + rem > length) {
	*offsetp += length - pos;
	break;
      }
      else {
	pos += rem;
	*offsetp = 0.0;
      }
    }
    else {
      double rem = dash_width  - *offsetp;
      if (pos + rem > length) {
	line(start + dist*(pos/length), &end, 1, lt);
	*offsetp += length - pos;
	break;
      }
      else {
	position p(start + dist*((pos + rem)/length));
	line(start + dist*(pos/length), &p, 1, lt);
	pos += rem;
	*offsetp = dash_width;
      }
    }
  }
}

void common_output::dotted_rounded_box(const position &cent,
				       const distance &dim, double rad,
				       const line_type &lt)
{
  line_type slt = lt;
  slt.type = line_type::solid;

  double hor_length = dim.x + (M_PI/2.0 - 2.0)*rad;
  int n_hor_dots = int(hor_length/lt.dash_width + .5);
  double hor_gap_width = (n_hor_dots != 0
			  ? hor_length/n_hor_dots
			  : lt.dash_width);

  double vert_length = dim.y + (M_PI/2.0 - 2.0)*rad;
  int n_vert_dots = int(vert_length/lt.dash_width + .5);
  double vert_gap_width = (n_vert_dots != 0
			   ? vert_length/n_vert_dots
			   : lt.dash_width);
  double epsilon = lt.dash_width/(rad*100.0);

  double offset = 0.0;
  dot_arc(cent + position(dim.x/2.0 - rad, -dim.y/2.0 + rad), rad,
	   -M_PI/4.0, 0, slt, vert_gap_width, &offset);
  dot_line(cent + position(dim.x/2.0, -dim.y/2.0 + rad),
	    cent + position(dim.x/2.0, dim.y/2.0 - rad),
	    slt, vert_gap_width, &offset);
  dot_arc(cent + position(dim.x/2.0 - rad, dim.y/2.0 - rad), rad,
	   0, M_PI/4.0 - epsilon, slt, vert_gap_width, &offset);

  offset = 0.0;
  dot_arc(cent + position(dim.x/2.0 - rad, dim.y/2.0 - rad), rad,
	   M_PI/4.0, M_PI/2, slt, hor_gap_width, &offset);
  dot_line(cent + position(dim.x/2.0 - rad, dim.y/2.0),
	    cent + position(-dim.x/2.0 + rad, dim.y/2.0),
	    slt, hor_gap_width, &offset);
  dot_arc(cent + position(-dim.x/2.0 + rad, dim.y/2.0 - rad), rad,
	   M_PI/2, 3*M_PI/4.0 - epsilon, slt, hor_gap_width, &offset);

  offset = 0.0;
  dot_arc(cent + position(-dim.x/2.0 + rad, dim.y/2.0 - rad), rad,
	   3.0*M_PI/4.0, M_PI, slt, vert_gap_width, &offset);
  dot_line(cent + position(-dim.x/2.0, dim.y/2.0 - rad),
	    cent + position(-dim.x/2.0, -dim.y/2.0 + rad),
	    slt, vert_gap_width, &offset);
  dot_arc(cent + position(-dim.x/2.0 + rad, -dim.y/2.0 + rad), rad,
	   M_PI, 5.0*M_PI/4.0 - epsilon, slt, vert_gap_width, &offset);

  offset = 0.0;
  dot_arc(cent + position(-dim.x/2.0 + rad, -dim.y/2.0 + rad), rad,
	   5*M_PI/4.0, 3*M_PI/2.0, slt, hor_gap_width, &offset);
  dot_line(cent + position(-dim.x/2.0 + rad, -dim.y/2.0),
	    cent + position(dim.x/2.0 - rad, -dim.y/2.0),
	    slt, hor_gap_width, &offset);
  dot_arc(cent + position(dim.x/2.0 - rad, -dim.y/2.0 + rad), rad,
	   3*M_PI/2, 7*M_PI/4 - epsilon, slt, hor_gap_width, &offset);
}

// Used by dotted_rounded_box.

void common_output::dot_arc(const position &cent, double rad,
			    double start_angle, double end_angle,
			    const line_type &lt, double gap_width,
			    double *offsetp)
{
  double length = (end_angle - start_angle)*rad;
  double pos = 0.0;
  for (;;) {
    if (*offsetp == 0.0) {
      double ang = start_angle + pos/rad;
      dot(cent + position(cos(ang), sin(ang))*rad, lt);
    }
    double rem = gap_width - *offsetp;
    if (pos + rem > length) {
      *offsetp += length - pos;
      break;
    }
    else {
      pos += rem;
      *offsetp = 0.0;
    }
  }
}

// Used by dotted_rounded_box.

void common_output::dot_line(const position &start, const position &end,
			     const line_type &lt, double gap_width,
			     double *offsetp)
{
  distance dist = end - start;
  double length = hypot(dist);
  if (length == 0.0)
    return;
  double pos = 0.0;
  for (;;) {
    if (*offsetp == 0.0)
      dot(start + dist*(pos/length), lt);
    double rem = gap_width - *offsetp;
    if (pos + rem > length) {
      *offsetp += length - pos;
      break;
    }
    else {
      pos += rem;
      *offsetp = 0.0;
    }
  }
}

void common_output::solid_rounded_box(const position &cent,
				      const distance &dim, double rad,
				      const line_type &lt)
{
  position tem = cent - dim/2.0;
  arc(tem + position(0.0, rad),
      tem + position(rad, rad),
      tem + position(rad, 0.0),
      lt);
  tem = cent + position(-dim.x/2.0, dim.y/2.0);
  arc(tem + position(rad, 0.0),
      tem + position(rad, -rad),
      tem + position(0.0, -rad),
      lt);
  tem = cent + dim/2.0;
  arc(tem + position(0.0, -rad),
      tem + position(-rad, -rad),
      tem + position(-rad, 0.0),
      lt);
  tem = cent + position(dim.x/2.0, -dim.y/2.0);
  arc(tem + position(-rad, 0.0),
      tem + position(-rad, rad),
      tem + position(0.0, rad),
      lt);
  position end;
  end = cent + position(-dim.x/2.0, dim.y/2.0 - rad);
  line(cent - dim/2.0 + position(0.0, rad), &end, 1, lt);
  end = cent + position(dim.x/2.0 - rad, dim.y/2.0);
  line(cent + position(-dim.x/2.0 + rad, dim.y/2.0), &end, 1, lt);
  end = cent + position(dim.x/2.0, -dim.y/2.0 + rad);
  line(cent + position(dim.x/2.0, dim.y/2.0 - rad), &end, 1, lt);
  end = cent + position(-dim.x/2.0 + rad, -dim.y/2.0);
  line(cent + position(dim.x/2.0 - rad, -dim.y/2.0), &end, 1, lt);
}

void common_output::filled_rounded_box(const position &cent,
				       const distance &dim, double rad,
				       double fill)
{
  line_type ilt;
  ilt.type = line_type::invisible;
  circle(cent + position(dim.x/2.0 - rad, dim.y/2.0 - rad), rad, ilt, fill);
  circle(cent + position(-dim.x/2.0 + rad, dim.y/2.0 - rad), rad, ilt, fill);
  circle(cent + position(-dim.x/2.0 + rad, -dim.y/2.0 + rad), rad, ilt, fill);
  circle(cent + position(dim.x/2.0 - rad, -dim.y/2.0 + rad), rad, ilt, fill);
  position vec[4];
  vec[0] = cent + position(dim.x/2.0, dim.y/2.0 - rad);
  vec[1] = cent + position(-dim.x/2.0, dim.y/2.0 - rad);
  vec[2] = cent + position(-dim.x/2.0, -dim.y/2.0 + rad);
  vec[3] = cent + position(dim.x/2.0, -dim.y/2.0 + rad);
  polygon(vec, 4, ilt, fill);
  vec[0] = cent + position(dim.x/2.0 - rad, dim.y/2.0);
  vec[1] = cent + position(-dim.x/2.0 + rad, dim.y/2.0);
  vec[2] = cent + position(-dim.x/2.0 + rad, -dim.y/2.0);
  vec[3] = cent + position(dim.x/2.0 - rad, -dim.y/2.0);
  polygon(vec, 4, ilt, fill);
}