Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
/* Copyright (C) 2007-2017 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

#include <ctype.h>
#include "bid_internal.h"
#include "bid128_2_str.h"
#include "bid128_2_str_macros.h"

#define MAX_FORMAT_DIGITS     16
#define DECIMAL_EXPONENT_BIAS 398
#define MAX_DECIMAL_EXPONENT  767

#if DECIMAL_CALL_BY_REFERENCE

void
bid64_to_string (char *ps, UINT64 * px
		 _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
  UINT64 x;
#else

void
bid64_to_string (char *ps, UINT64 x
		 _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
// the destination string (pointed to by ps) must be pre-allocated
  UINT64 sign_x, coefficient_x, D, ER10;
  int istart, exponent_x, j, digits_x, bin_expon_cx;
  int_float tempx;
  UINT32 MiDi[12], *ptr;
  UINT64 HI_18Dig, LO_18Dig, Tmp;
  char *c_ptr_start, *c_ptr;
  int midi_ind, k_lcv, len;
  unsigned int save_fpsf;

#if DECIMAL_CALL_BY_REFERENCE
  x = *px;
#endif

  save_fpsf = *pfpsf; // place holder only
  // unpack arguments, check for NaN or Infinity
  if (!unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x)) {
    // x is Inf. or NaN or 0

    // Inf or NaN?
    if ((x & 0x7800000000000000ull) == 0x7800000000000000ull) {
      if ((x & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
    ps[0] = (sign_x) ? '-' : '+';
    ps[1] = ((x & MASK_SNAN) == MASK_SNAN)? 'S':'Q';
	ps[2] = 'N';
	ps[3] = 'a';
	ps[4] = 'N';
	ps[5] = 0;
	return;
      }
      // x is Inf
      ps[0] = (sign_x) ? '-' : '+';
      ps[1] = 'I';
      ps[2] = 'n';
      ps[3] = 'f';
      ps[4] = 0;
      return;
    }
    // 0
    istart = 0;
    if (sign_x) {
      ps[istart++] = '-';
    }

    ps[istart++] = '0';
    ps[istart++] = 'E';

    exponent_x -= 398;
    if (exponent_x < 0) {
      ps[istart++] = '-';
      exponent_x = -exponent_x;
    } else
      ps[istart++] = '+';

    if (exponent_x) {
      // get decimal digits in coefficient_x
      tempx.d = (float) exponent_x;
      bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f;
      digits_x = estimate_decimal_digits[bin_expon_cx];
      if ((UINT64)exponent_x >= power10_table_128[digits_x].w[0])
	digits_x++;

      j = istart + digits_x - 1;
      istart = j + 1;

      // 2^32/10
      ER10 = 0x1999999a;

      while (exponent_x > 9) {
	D = (UINT64) exponent_x *ER10;
	D >>= 32;
	exponent_x = exponent_x - (D << 1) - (D << 3);

	ps[j--] = '0' + (char) exponent_x;
	exponent_x = D;
      }
      ps[j] = '0' + (char) exponent_x;
    } else {
      ps[istart++] = '0';
    }

    ps[istart] = 0;

    return;
  }
  // convert expon, coeff to ASCII
  exponent_x -= DECIMAL_EXPONENT_BIAS;

  ER10 = 0x1999999a;

  istart = 0;
  if (sign_x) {
    ps[0] = '-';
    istart = 1;
  }
  // if zero or non-canonical, set coefficient to '0'
  if ((coefficient_x > 9999999999999999ull) ||	// non-canonical
      ((coefficient_x == 0))	// significand is zero
    ) {
    ps[istart++] = '0';
  } else {
    /* ****************************************************
       This takes a bid coefficient in C1.w[1],C1.w[0] 
       and put the converted character sequence at location 
       starting at &(str[k]). The function returns the number
       of MiDi returned. Note that the character sequence 
       does not have leading zeros EXCEPT when the input is of
       zero value. It will then output 1 character '0'
       The algorithm essentailly tries first to get a sequence of
       Millenial Digits "MiDi" and then uses table lookup to get the
       character strings of these MiDis.
       **************************************************** */
    /* Algorithm first decompose possibly 34 digits in hi and lo
       18 digits. (The high can have at most 16 digits). It then
       uses macro that handle 18 digit portions.
       The first step is to get hi and lo such that
       2^(64) C1.w[1] + C1.w[0] = hi * 10^18  + lo,   0 <= lo < 10^18.
       We use a table lookup method to obtain the hi and lo 18 digits.
       [C1.w[1],C1.w[0]] = c_8 2^(107) + c_7 2^(101) + ... + c_0 2^(59) + d
       where 0 <= d < 2^59 and each c_j has 6 bits. Because d fits in
       18 digits,  we set hi = 0, and lo = d to begin with.
       We then retrieve from a table, for j = 0, 1, ..., 8
       that gives us A and B where c_j 2^(59+6j) = A * 10^18 + B.
       hi += A ; lo += B; After each accumulation into lo, we normalize 
       immediately. So at the end, we have the decomposition as we need. */

    Tmp = coefficient_x >> 59;
    LO_18Dig = (coefficient_x << 5) >> 5;
    HI_18Dig = 0;
    k_lcv = 0;

    while (Tmp) {
      midi_ind = (int) (Tmp & 0x000000000000003FLL);
      midi_ind <<= 1;
      Tmp >>= 6;
      HI_18Dig += mod10_18_tbl[k_lcv][midi_ind++];
      LO_18Dig += mod10_18_tbl[k_lcv++][midi_ind];
      __L0_Normalize_10to18 (HI_18Dig, LO_18Dig);
    }

    ptr = MiDi;
    __L1_Split_MiDi_6_Lead (LO_18Dig, ptr);
    len = ptr - MiDi;
    c_ptr_start = &(ps[istart]);
    c_ptr = c_ptr_start;

    /* now convert the MiDi into character strings */
    __L0_MiDi2Str_Lead (MiDi[0], c_ptr);
    for (k_lcv = 1; k_lcv < len; k_lcv++) {
      __L0_MiDi2Str (MiDi[k_lcv], c_ptr);
    }
    istart = istart + (c_ptr - c_ptr_start);
  }

  ps[istart++] = 'E';

  if (exponent_x < 0) {
    ps[istart++] = '-';
    exponent_x = -exponent_x;
  } else
    ps[istart++] = '+';

  if (exponent_x) {
    // get decimal digits in coefficient_x
    tempx.d = (float) exponent_x;
    bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f;
    digits_x = estimate_decimal_digits[bin_expon_cx];
    if ((UINT64)exponent_x >= power10_table_128[digits_x].w[0])
      digits_x++;

    j = istart + digits_x - 1;
    istart = j + 1;

    // 2^32/10
    ER10 = 0x1999999a;

    while (exponent_x > 9) {
      D = (UINT64) exponent_x *ER10;
      D >>= 32;
      exponent_x = exponent_x - (D << 1) - (D << 3);

      ps[j--] = '0' + (char) exponent_x;
      exponent_x = D;
    }
    ps[j] = '0' + (char) exponent_x;
  } else {
    ps[istart++] = '0';
  }

  ps[istart] = 0;

  return;

}


#if DECIMAL_CALL_BY_REFERENCE
void
bid64_from_string (UINT64 * pres, char *ps
		   _RND_MODE_PARAM _EXC_FLAGS_PARAM 
                   _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#else
UINT64
bid64_from_string (char *ps
		   _RND_MODE_PARAM _EXC_FLAGS_PARAM 
                   _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
  UINT64 sign_x, coefficient_x = 0, rounded = 0, res;
  int expon_x = 0, sgn_expon, ndigits, add_expon = 0, midpoint =
    0, rounded_up = 0;
  int dec_expon_scale = 0, right_radix_leading_zeros = 0, rdx_pt_enc =
    0;
  unsigned fpsc;
  char c;
  unsigned int save_fpsf;

#if DECIMAL_CALL_BY_REFERENCE
#if !DECIMAL_GLOBAL_ROUNDING
  _IDEC_round rnd_mode = *prnd_mode;
#endif
#endif

  save_fpsf = *pfpsf; // place holder only
  // eliminate leading whitespace
  while (((*ps == ' ') || (*ps == '\t')) && (*ps))
    ps++;

  // get first non-whitespace character
  c = *ps;

  // detect special cases (INF or NaN)
  if (!c || (c != '.' && c != '-' && c != '+' && (c < '0' || c > '9'))) {
    // Infinity?
    if ((tolower_macro (ps[0]) == 'i' && tolower_macro (ps[1]) == 'n' && 
        tolower_macro (ps[2]) == 'f') && (!ps[3] || 
        (tolower_macro (ps[3]) == 'i' && 
        tolower_macro (ps[4]) == 'n' && tolower_macro (ps[5]) == 'i' && 
        tolower_macro (ps[6]) == 't' && tolower_macro (ps[7]) == 'y' && 
        !ps[8]))) {
      res = 0x7800000000000000ull;
      BID_RETURN (res);
    }
    // return sNaN
    if (tolower_macro (ps[0]) == 's' && tolower_macro (ps[1]) == 'n' && 
        tolower_macro (ps[2]) == 'a' && tolower_macro (ps[3]) == 'n') { 
        // case insensitive check for snan
      res = 0x7e00000000000000ull;
      BID_RETURN (res);
    } else {
      // return qNaN
      res = 0x7c00000000000000ull;
      BID_RETURN (res);
    }
  }
  // detect +INF or -INF
  if ((tolower_macro (ps[1]) == 'i' && tolower_macro (ps[2]) == 'n' && 
      tolower_macro (ps[3]) == 'f') && (!ps[4] || 
      (tolower_macro (ps[4]) == 'i' && tolower_macro (ps[5]) == 'n' && 
      tolower_macro (ps[6]) == 'i' && tolower_macro (ps[7]) == 't' && 
      tolower_macro (ps[8]) == 'y' && !ps[9]))) {
    if (c == '+')
      res = 0x7800000000000000ull;
    else if (c == '-')
      res = 0xf800000000000000ull;
    else
      res = 0x7c00000000000000ull;
    BID_RETURN (res);
  }
  // if +sNaN, +SNaN, -sNaN, or -SNaN
  if (tolower_macro (ps[1]) == 's' && tolower_macro (ps[2]) == 'n'
      && tolower_macro (ps[3]) == 'a' && tolower_macro (ps[4]) == 'n') {
    if (c == '-')
      res = 0xfe00000000000000ull;
    else
      res = 0x7e00000000000000ull;
    BID_RETURN (res);
  }
  // determine sign
  if (c == '-')
    sign_x = 0x8000000000000000ull;
  else
    sign_x = 0;

  // get next character if leading +/- sign
  if (c == '-' || c == '+') {
    ps++;
    c = *ps;
  }
  // if c isn't a decimal point or a decimal digit, return NaN
  if (c != '.' && (c < '0' || c > '9')) {
    // return NaN
    res = 0x7c00000000000000ull | sign_x;
    BID_RETURN (res);
  }

  rdx_pt_enc = 0;

  // detect zero (and eliminate/ignore leading zeros)
  if (*(ps) == '0' || *(ps) == '.') {

    if (*(ps) == '.') {
      rdx_pt_enc = 1;
      ps++;
    }
    // if all numbers are zeros (with possibly 1 radix point, the number is zero
    // should catch cases such as: 000.0
    while (*ps == '0') {
      ps++;
      // for numbers such as 0.0000000000000000000000000000000000001001, 
      // we want to count the leading zeros
      if (rdx_pt_enc) {
	right_radix_leading_zeros++;
      }
      // if this character is a radix point, make sure we haven't already 
      // encountered one
      if (*(ps) == '.') {
	if (rdx_pt_enc == 0) {
	  rdx_pt_enc = 1;
	  // if this is the first radix point, and the next character is NULL, 
          // we have a zero
	  if (!*(ps + 1)) {
	    res =
	      ((UINT64) (398 - right_radix_leading_zeros) << 53) |
	      sign_x;
	    BID_RETURN (res);
	  }
	  ps = ps + 1;
	} else {
	  // if 2 radix points, return NaN
	  res = 0x7c00000000000000ull | sign_x;
	  BID_RETURN (res);
	}
      } else if (!*(ps)) {
	//pres->w[1] = 0x3040000000000000ull | sign_x;
	res =
	  ((UINT64) (398 - right_radix_leading_zeros) << 53) | sign_x;
	BID_RETURN (res);
      }
    }
  }

  c = *ps;

  ndigits = 0;
  while ((c >= '0' && c <= '9') || c == '.') {
    if (c == '.') {
      if (rdx_pt_enc) {
	// return NaN
	res = 0x7c00000000000000ull | sign_x;
	BID_RETURN (res);
      }
      rdx_pt_enc = 1;
      ps++;
      c = *ps;
      continue;
    }
    dec_expon_scale += rdx_pt_enc;

    ndigits++;
    if (ndigits <= 16) {
      coefficient_x = (coefficient_x << 1) + (coefficient_x << 3);
      coefficient_x += (UINT64) (c - '0');
    } else if (ndigits == 17) {
      // coefficient rounding
		switch(rnd_mode){
	case ROUNDING_TO_NEAREST:
      midpoint = (c == '5' && !(coefficient_x & 1)) ? 1 : 0; 
          // if coefficient is even and c is 5, prepare to round up if 
          // subsequent digit is nonzero
      // if str[MAXDIG+1] > 5, we MUST round up
      // if str[MAXDIG+1] == 5 and coefficient is ODD, ROUND UP!
      if (c > '5' || (c == '5' && (coefficient_x & 1))) {
	coefficient_x++;
	rounded_up = 1;
	break;

	case ROUNDING_DOWN:
		if(sign_x) { coefficient_x++; rounded_up=1; }
		break;
	case ROUNDING_UP:
		if(!sign_x) { coefficient_x++; rounded_up=1; }
		break;
	case ROUNDING_TIES_AWAY:
		if(c>='5') { coefficient_x++; rounded_up=1; }
		break;
	  }
	if (coefficient_x == 10000000000000000ull) {
	  coefficient_x = 1000000000000000ull;
	  add_expon = 1;
	}
      }
      if (c > '0')
	rounded = 1;
      add_expon += 1;
    } else { // ndigits > 17
      add_expon++;
      if (midpoint && c > '0') {
	coefficient_x++;
	midpoint = 0;
	rounded_up = 1;
      }
      if (c > '0')
	rounded = 1;
    }
    ps++;
    c = *ps;
  }

  add_expon -= (dec_expon_scale + right_radix_leading_zeros);

  if (!c) {
    res =
      fast_get_BID64_check_OF (sign_x,
			       add_expon + DECIMAL_EXPONENT_BIAS,
			       coefficient_x, 0, &fpsc);
    BID_RETURN (res);
  }

  if (c != 'E' && c != 'e') {
    // return NaN
    res = 0x7c00000000000000ull | sign_x;
    BID_RETURN (res);
  }
  ps++;
  c = *ps;
  sgn_expon = (c == '-') ? 1 : 0;
  if (c == '-' || c == '+') {
    ps++;
    c = *ps;
  }
  if (!c || c < '0' || c > '9') {
    // return NaN
    res = 0x7c00000000000000ull | sign_x;
    BID_RETURN (res);
  }

  while (c >= '0' && c <= '9') {
    expon_x = (expon_x << 1) + (expon_x << 3);
    expon_x += (int) (c - '0');

    ps++;
    c = *ps;
  }

  if (c) {
    // return NaN
    res = 0x7c00000000000000ull | sign_x;
    BID_RETURN (res);
  }

  if (sgn_expon)
    expon_x = -expon_x;

  expon_x += add_expon + DECIMAL_EXPONENT_BIAS;

  if (expon_x < 0) {
    if (rounded_up)
      coefficient_x--;
    rnd_mode = 0;
    res =
      get_BID64_UF (sign_x, expon_x, coefficient_x, rounded, rnd_mode,
		    &fpsc);
    BID_RETURN (res);
  }
  res = get_BID64 (sign_x, expon_x, coefficient_x, rnd_mode, &fpsc);
  BID_RETURN (res);
}