/* IEEE-754 double-precision functions for Xtensa
Copyright (C) 2006-2017 Free Software Foundation, Inc.
Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#ifdef __XTENSA_EB__
#define xh a2
#define xl a3
#define yh a4
#define yl a5
#else
#define xh a3
#define xl a2
#define yh a5
#define yl a4
#endif
/* Warning! The branch displacements for some Xtensa branch instructions
are quite small, and this code has been carefully laid out to keep
branch targets in range. If you change anything, be sure to check that
the assembler is not relaxing anything to branch over a jump. */
#ifdef L_negdf2
.align 4
.global __negdf2
.type __negdf2, @function
__negdf2:
leaf_entry sp, 16
movi a4, 0x80000000
xor xh, xh, a4
leaf_return
#endif /* L_negdf2 */
#ifdef L_addsubdf3
.literal_position
/* Addition */
__adddf3_aux:
/* Handle NaNs and Infinities. (This code is placed before the
start of the function just to keep it in range of the limited
branch displacements.) */
.Ladd_xnan_or_inf:
/* If y is neither Infinity nor NaN, return x. */
bnall yh, a6, .Ladd_return_nan_or_inf
/* If x is a NaN, return it. Otherwise, return y. */
slli a7, xh, 12
or a7, a7, xl
bnez a7, .Ladd_return_nan
.Ladd_ynan_or_inf:
/* Return y. */
mov xh, yh
mov xl, yl
.Ladd_return_nan_or_inf:
slli a7, xh, 12
or a7, a7, xl
bnez a7, .Ladd_return_nan
leaf_return
.Ladd_return_nan:
movi a4, 0x80000 /* make it a quiet NaN */
or xh, xh, a4
leaf_return
.Ladd_opposite_signs:
/* Operand signs differ. Do a subtraction. */
slli a7, a6, 11
xor yh, yh, a7
j .Lsub_same_sign
.align 4
.global __adddf3
.type __adddf3, @function
__adddf3:
leaf_entry sp, 16
movi a6, 0x7ff00000
/* Check if the two operands have the same sign. */
xor a7, xh, yh
bltz a7, .Ladd_opposite_signs
.Ladd_same_sign:
/* Check if either exponent == 0x7ff (i.e., NaN or Infinity). */
ball xh, a6, .Ladd_xnan_or_inf
ball yh, a6, .Ladd_ynan_or_inf
/* Compare the exponents. The smaller operand will be shifted
right by the exponent difference and added to the larger
one. */
extui a7, xh, 20, 12
extui a8, yh, 20, 12
bltu a7, a8, .Ladd_shiftx
.Ladd_shifty:
/* Check if the smaller (or equal) exponent is zero. */
bnone yh, a6, .Ladd_yexpzero
/* Replace yh sign/exponent with 0x001. */
or yh, yh, a6
slli yh, yh, 11
srli yh, yh, 11
.Ladd_yexpdiff:
/* Compute the exponent difference. Optimize for difference < 32. */
sub a10, a7, a8
bgeui a10, 32, .Ladd_bigshifty
/* Shift yh/yl right by the exponent difference. Any bits that are
shifted out of yl are saved in a9 for rounding the result. */
ssr a10
movi a9, 0
src a9, yl, a9
src yl, yh, yl
srl yh, yh
.Ladd_addy:
/* Do the 64-bit addition. */
add xl, xl, yl
add xh, xh, yh
bgeu xl, yl, 1f
addi xh, xh, 1
1:
/* Check if the add overflowed into the exponent. */
extui a10, xh, 20, 12
beq a10, a7, .Ladd_round
mov a8, a7
j .Ladd_carry
.Ladd_yexpzero:
/* y is a subnormal value. Replace its sign/exponent with zero,
i.e., no implicit "1.0", and increment the apparent exponent
because subnormals behave as if they had the minimum (nonzero)
exponent. Test for the case when both exponents are zero. */
slli yh, yh, 12
srli yh, yh, 12
bnone xh, a6, .Ladd_bothexpzero
addi a8, a8, 1
j .Ladd_yexpdiff
.Ladd_bothexpzero:
/* Both exponents are zero. Handle this as a special case. There
is no need to shift or round, and the normal code for handling
a carry into the exponent field will not work because it
assumes there is an implicit "1.0" that needs to be added. */
add xl, xl, yl
add xh, xh, yh
bgeu xl, yl, 1f
addi xh, xh, 1
1: leaf_return
.Ladd_bigshifty:
/* Exponent difference > 64 -- just return the bigger value. */
bgeui a10, 64, 1b
/* Shift yh/yl right by the exponent difference. Any bits that are
shifted out are saved in a9 for rounding the result. */
ssr a10
sll a11, yl /* lost bits shifted out of yl */
src a9, yh, yl
srl yl, yh
movi yh, 0
beqz a11, .Ladd_addy
or a9, a9, a10 /* any positive, nonzero value will work */
j .Ladd_addy
.Ladd_xexpzero:
/* Same as "yexpzero" except skip handling the case when both
exponents are zero. */
slli xh, xh, 12
srli xh, xh, 12
addi a7, a7, 1
j .Ladd_xexpdiff
.Ladd_shiftx:
/* Same thing as the "shifty" code, but with x and y swapped. Also,
because the exponent difference is always nonzero in this version,
the shift sequence can use SLL and skip loading a constant zero. */
bnone xh, a6, .Ladd_xexpzero
or xh, xh, a6
slli xh, xh, 11
srli xh, xh, 11
.Ladd_xexpdiff:
sub a10, a8, a7
bgeui a10, 32, .Ladd_bigshiftx
ssr a10
sll a9, xl
src xl, xh, xl
srl xh, xh
.Ladd_addx:
add xl, xl, yl
add xh, xh, yh
bgeu xl, yl, 1f
addi xh, xh, 1
1:
/* Check if the add overflowed into the exponent. */
extui a10, xh, 20, 12
bne a10, a8, .Ladd_carry
.Ladd_round:
/* Round up if the leftover fraction is >= 1/2. */
bgez a9, 1f
addi xl, xl, 1
beqz xl, .Ladd_roundcarry
/* Check if the leftover fraction is exactly 1/2. */
slli a9, a9, 1
beqz a9, .Ladd_exactlyhalf
1: leaf_return
.Ladd_bigshiftx:
/* Mostly the same thing as "bigshifty".... */
bgeui a10, 64, .Ladd_returny
ssr a10
sll a11, xl
src a9, xh, xl
srl xl, xh
movi xh, 0
beqz a11, .Ladd_addx
or a9, a9, a10
j .Ladd_addx
.Ladd_returny:
mov xh, yh
mov xl, yl
leaf_return
.Ladd_carry:
/* The addition has overflowed into the exponent field, so the
value needs to be renormalized. The mantissa of the result
can be recovered by subtracting the original exponent and
adding 0x100000 (which is the explicit "1.0" for the
mantissa of the non-shifted operand -- the "1.0" for the
shifted operand was already added). The mantissa can then
be shifted right by one bit. The explicit "1.0" of the
shifted mantissa then needs to be replaced by the exponent,
incremented by one to account for the normalizing shift.
It is faster to combine these operations: do the shift first
and combine the additions and subtractions. If x is the
original exponent, the result is:
shifted mantissa - (x << 19) + (1 << 19) + (x << 20)
or:
shifted mantissa + ((x + 1) << 19)
Note that the exponent is incremented here by leaving the
explicit "1.0" of the mantissa in the exponent field. */
/* Shift xh/xl right by one bit. Save the lsb of xl. */
mov a10, xl
ssai 1
src xl, xh, xl
srl xh, xh
/* See explanation above. The original exponent is in a8. */
addi a8, a8, 1
slli a8, a8, 19
add xh, xh, a8
/* Return an Infinity if the exponent overflowed. */
ball xh, a6, .Ladd_infinity
/* Same thing as the "round" code except the msb of the leftover
fraction is bit 0 of a10, with the rest of the fraction in a9. */
bbci.l a10, 0, 1f
addi xl, xl, 1
beqz xl, .Ladd_roundcarry
beqz a9, .Ladd_exactlyhalf
1: leaf_return
.Ladd_infinity:
/* Clear the mantissa. */
movi xl, 0
srli xh, xh, 20
slli xh, xh, 20
/* The sign bit may have been lost in a carry-out. Put it back. */
slli a8, a8, 1
or xh, xh, a8
leaf_return
.Ladd_exactlyhalf:
/* Round down to the nearest even value. */
srli xl, xl, 1
slli xl, xl, 1
leaf_return
.Ladd_roundcarry:
/* xl is always zero when the rounding increment overflows, so
there's no need to round it to an even value. */
addi xh, xh, 1
/* Overflow to the exponent is OK. */
leaf_return
/* Subtraction */
__subdf3_aux:
/* Handle NaNs and Infinities. (This code is placed before the
start of the function just to keep it in range of the limited
branch displacements.) */
.Lsub_xnan_or_inf:
/* If y is neither Infinity nor NaN, return x. */
bnall yh, a6, .Lsub_return_nan_or_inf
.Lsub_return_nan:
/* Both x and y are either NaN or Inf, so the result is NaN. */
movi a4, 0x80000 /* make it a quiet NaN */
or xh, xh, a4
leaf_return
.Lsub_ynan_or_inf:
/* Negate y and return it. */
slli a7, a6, 11
xor xh, yh, a7
mov xl, yl
.Lsub_return_nan_or_inf:
slli a7, xh, 12
or a7, a7, xl
bnez a7, .Lsub_return_nan
leaf_return
.Lsub_opposite_signs:
/* Operand signs differ. Do an addition. */
slli a7, a6, 11
xor yh, yh, a7
j .Ladd_same_sign
.align 4
.global __subdf3
.type __subdf3, @function
__subdf3:
leaf_entry sp, 16
movi a6, 0x7ff00000
/* Check if the two operands have the same sign. */
xor a7, xh, yh
bltz a7, .Lsub_opposite_signs
.Lsub_same_sign:
/* Check if either exponent == 0x7ff (i.e., NaN or Infinity). */
ball xh, a6, .Lsub_xnan_or_inf
ball yh, a6, .Lsub_ynan_or_inf
/* Compare the operands. In contrast to addition, the entire
value matters here. */
extui a7, xh, 20, 11
extui a8, yh, 20, 11
bltu xh, yh, .Lsub_xsmaller
beq xh, yh, .Lsub_compare_low
.Lsub_ysmaller:
/* Check if the smaller (or equal) exponent is zero. */
bnone yh, a6, .Lsub_yexpzero
/* Replace yh sign/exponent with 0x001. */
or yh, yh, a6
slli yh, yh, 11
srli yh, yh, 11
.Lsub_yexpdiff:
/* Compute the exponent difference. Optimize for difference < 32. */
sub a10, a7, a8
bgeui a10, 32, .Lsub_bigshifty
/* Shift yh/yl right by the exponent difference. Any bits that are
shifted out of yl are saved in a9 for rounding the result. */
ssr a10
movi a9, 0
src a9, yl, a9
src yl, yh, yl
srl yh, yh
.Lsub_suby:
/* Do the 64-bit subtraction. */
sub xh, xh, yh
bgeu xl, yl, 1f
addi xh, xh, -1
1: sub xl, xl, yl
/* Subtract the leftover bits in a9 from zero and propagate any
borrow from xh/xl. */
neg a9, a9
beqz a9, 1f
addi a5, xh, -1
moveqz xh, a5, xl
addi xl, xl, -1
1:
/* Check if the subtract underflowed into the exponent. */
extui a10, xh, 20, 11
beq a10, a7, .Lsub_round
j .Lsub_borrow
.Lsub_compare_low:
/* The high words are equal. Compare the low words. */
bltu xl, yl, .Lsub_xsmaller
bltu yl, xl, .Lsub_ysmaller
/* The operands are equal. Return 0.0. */
movi xh, 0
movi xl, 0
1: leaf_return
.Lsub_yexpzero:
/* y is a subnormal value. Replace its sign/exponent with zero,
i.e., no implicit "1.0". Unless x is also a subnormal, increment
y's apparent exponent because subnormals behave as if they had
the minimum (nonzero) exponent. */
slli yh, yh, 12
srli yh, yh, 12
bnone xh, a6, .Lsub_yexpdiff
addi a8, a8, 1
j .Lsub_yexpdiff
.Lsub_bigshifty:
/* Exponent difference > 64 -- just return the bigger value. */
bgeui a10, 64, 1b
/* Shift yh/yl right by the exponent difference. Any bits that are
shifted out are saved in a9 for rounding the result. */
ssr a10
sll a11, yl /* lost bits shifted out of yl */
src a9, yh, yl
srl yl, yh
movi yh, 0
beqz a11, .Lsub_suby
or a9, a9, a10 /* any positive, nonzero value will work */
j .Lsub_suby
.Lsub_xsmaller:
/* Same thing as the "ysmaller" code, but with x and y swapped and
with y negated. */
bnone xh, a6, .Lsub_xexpzero
or xh, xh, a6
slli xh, xh, 11
srli xh, xh, 11
.Lsub_xexpdiff:
sub a10, a8, a7
bgeui a10, 32, .Lsub_bigshiftx
ssr a10
movi a9, 0
src a9, xl, a9
src xl, xh, xl
srl xh, xh
/* Negate y. */
slli a11, a6, 11
xor yh, yh, a11
.Lsub_subx:
sub xl, yl, xl
sub xh, yh, xh
bgeu yl, xl, 1f
addi xh, xh, -1
1:
/* Subtract the leftover bits in a9 from zero and propagate any
borrow from xh/xl. */
neg a9, a9
beqz a9, 1f
addi a5, xh, -1
moveqz xh, a5, xl
addi xl, xl, -1
1:
/* Check if the subtract underflowed into the exponent. */
extui a10, xh, 20, 11
bne a10, a8, .Lsub_borrow
.Lsub_round:
/* Round up if the leftover fraction is >= 1/2. */
bgez a9, 1f
addi xl, xl, 1
beqz xl, .Lsub_roundcarry
/* Check if the leftover fraction is exactly 1/2. */
slli a9, a9, 1
beqz a9, .Lsub_exactlyhalf
1: leaf_return
.Lsub_xexpzero:
/* Same as "yexpzero". */
slli xh, xh, 12
srli xh, xh, 12
bnone yh, a6, .Lsub_xexpdiff
addi a7, a7, 1
j .Lsub_xexpdiff
.Lsub_bigshiftx:
/* Mostly the same thing as "bigshifty", but with the sign bit of the
shifted value set so that the subsequent subtraction flips the
sign of y. */
bgeui a10, 64, .Lsub_returny
ssr a10
sll a11, xl
src a9, xh, xl
srl xl, xh
slli xh, a6, 11 /* set sign bit of xh */
beqz a11, .Lsub_subx
or a9, a9, a10
j .Lsub_subx
.Lsub_returny:
/* Negate and return y. */
slli a7, a6, 11
xor xh, yh, a7
mov xl, yl
leaf_return
.Lsub_borrow:
/* The subtraction has underflowed into the exponent field, so the
value needs to be renormalized. Shift the mantissa left as
needed to remove any leading zeros and adjust the exponent
accordingly. If the exponent is not large enough to remove
all the leading zeros, the result will be a subnormal value. */
slli a8, xh, 12
beqz a8, .Lsub_xhzero
do_nsau a6, a8, a7, a11
srli a8, a8, 12
bge a6, a10, .Lsub_subnormal
addi a6, a6, 1
.Lsub_shift_lt32:
/* Shift the mantissa (a8/xl/a9) left by a6. */
ssl a6
src a8, a8, xl
src xl, xl, a9
sll a9, a9
/* Combine the shifted mantissa with the sign and exponent,
decrementing the exponent by a6. (The exponent has already
been decremented by one due to the borrow from the subtraction,
but adding the mantissa will increment the exponent by one.) */
srli xh, xh, 20
sub xh, xh, a6
slli xh, xh, 20
add xh, xh, a8
j .Lsub_round
.Lsub_exactlyhalf:
/* Round down to the nearest even value. */
srli xl, xl, 1
slli xl, xl, 1
leaf_return
.Lsub_roundcarry:
/* xl is always zero when the rounding increment overflows, so
there's no need to round it to an even value. */
addi xh, xh, 1
/* Overflow to the exponent is OK. */
leaf_return
.Lsub_xhzero:
/* When normalizing the result, all the mantissa bits in the high
word are zero. Shift by "20 + (leading zero count of xl) + 1". */
do_nsau a6, xl, a7, a11
addi a6, a6, 21
blt a10, a6, .Lsub_subnormal
.Lsub_normalize_shift:
bltui a6, 32, .Lsub_shift_lt32
ssl a6
src a8, xl, a9
sll xl, a9
movi a9, 0
srli xh, xh, 20
sub xh, xh, a6
slli xh, xh, 20
add xh, xh, a8
j .Lsub_round
.Lsub_subnormal:
/* The exponent is too small to shift away all the leading zeros.
Set a6 to the current exponent (which has already been
decremented by the borrow) so that the exponent of the result
will be zero. Do not add 1 to a6 in this case, because: (1)
adding the mantissa will not increment the exponent, so there is
no need to subtract anything extra from the exponent to
compensate, and (2) the effective exponent of a subnormal is 1
not 0 so the shift amount must be 1 smaller than normal. */
mov a6, a10
j .Lsub_normalize_shift
#endif /* L_addsubdf3 */
#ifdef L_muldf3
/* Multiplication */
#if !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MUL32 && !XCHAL_HAVE_MAC16
#define XCHAL_NO_MUL 1
#endif
.literal_position
__muldf3_aux:
/* Handle unusual cases (zeros, subnormals, NaNs and Infinities).
(This code is placed before the start of the function just to
keep it in range of the limited branch displacements.) */
.Lmul_xexpzero:
/* Clear the sign bit of x. */
slli xh, xh, 1
srli xh, xh, 1
/* If x is zero, return zero. */
or a10, xh, xl
beqz a10, .Lmul_return_zero
/* Normalize x. Adjust the exponent in a8. */
beqz xh, .Lmul_xh_zero
do_nsau a10, xh, a11, a12
addi a10, a10, -11
ssl a10
src xh, xh, xl
sll xl, xl
movi a8, 1
sub a8, a8, a10
j .Lmul_xnormalized
.Lmul_xh_zero:
do_nsau a10, xl, a11, a12
addi a10, a10, -11
movi a8, -31
sub a8, a8, a10
ssl a10
bltz a10, .Lmul_xl_srl
sll xh, xl
movi xl, 0
j .Lmul_xnormalized
.Lmul_xl_srl:
srl xh, xl
sll xl, xl
j .Lmul_xnormalized
.Lmul_yexpzero:
/* Clear the sign bit of y. */
slli yh, yh, 1
srli yh, yh, 1
/* If y is zero, return zero. */
or a10, yh, yl
beqz a10, .Lmul_return_zero
/* Normalize y. Adjust the exponent in a9. */
beqz yh, .Lmul_yh_zero
do_nsau a10, yh, a11, a12
addi a10, a10, -11
ssl a10
src yh, yh, yl
sll yl, yl
movi a9, 1
sub a9, a9, a10
j .Lmul_ynormalized
.Lmul_yh_zero:
do_nsau a10, yl, a11, a12
addi a10, a10, -11
movi a9, -31
sub a9, a9, a10
ssl a10
bltz a10, .Lmul_yl_srl
sll yh, yl
movi yl, 0
j .Lmul_ynormalized
.Lmul_yl_srl:
srl yh, yl
sll yl, yl
j .Lmul_ynormalized
.Lmul_return_zero:
/* Return zero with the appropriate sign bit. */
srli xh, a7, 31
slli xh, xh, 31
movi xl, 0
j .Lmul_done
.Lmul_xnan_or_inf:
/* If y is zero, return NaN. */
bnez yl, 1f
slli a8, yh, 1
beqz a8, .Lmul_return_nan
1:
/* If y is NaN, return y. */
bnall yh, a6, .Lmul_returnx
slli a8, yh, 12
or a8, a8, yl
beqz a8, .Lmul_returnx
.Lmul_returny:
mov xh, yh
mov xl, yl
.Lmul_returnx:
slli a8, xh, 12
or a8, a8, xl
bnez a8, .Lmul_return_nan
/* Set the sign bit and return. */
extui a7, a7, 31, 1
slli xh, xh, 1
ssai 1
src xh, a7, xh
j .Lmul_done
.Lmul_ynan_or_inf:
/* If x is zero, return NaN. */
bnez xl, .Lmul_returny
slli a8, xh, 1
bnez a8, .Lmul_returny
mov xh, yh
.Lmul_return_nan:
movi a4, 0x80000 /* make it a quiet NaN */
or xh, xh, a4
j .Lmul_done
.align 4
.global __muldf3
.type __muldf3, @function
__muldf3:
#if __XTENSA_CALL0_ABI__
leaf_entry sp, 32
addi sp, sp, -32
s32i a12, sp, 16
s32i a13, sp, 20
s32i a14, sp, 24
s32i a15, sp, 28
#elif XCHAL_NO_MUL
/* This is not really a leaf function; allocate enough stack space
to allow CALL12s to a helper function. */
leaf_entry sp, 64
#else
leaf_entry sp, 32
#endif
movi a6, 0x7ff00000
/* Get the sign of the result. */
xor a7, xh, yh
/* Check for NaN and infinity. */
ball xh, a6, .Lmul_xnan_or_inf
ball yh, a6, .Lmul_ynan_or_inf
/* Extract the exponents. */
extui a8, xh, 20, 11
extui a9, yh, 20, 11
beqz a8, .Lmul_xexpzero
.Lmul_xnormalized:
beqz a9, .Lmul_yexpzero
.Lmul_ynormalized:
/* Add the exponents. */
add a8, a8, a9
/* Replace sign/exponent fields with explicit "1.0". */
movi a10, 0x1fffff
or xh, xh, a6
and xh, xh, a10
or yh, yh, a6
and yh, yh, a10
/* Multiply 64x64 to 128 bits. The result ends up in xh/xl/a6.
The least-significant word of the result is thrown away except
that if it is nonzero, the lsb of a6 is set to 1. */
#if XCHAL_HAVE_MUL32_HIGH
/* Compute a6 with any carry-outs in a10. */
movi a10, 0
mull a6, xl, yh
mull a11, xh, yl
add a6, a6, a11
bgeu a6, a11, 1f
addi a10, a10, 1
1:
muluh a11, xl, yl
add a6, a6, a11
bgeu a6, a11, 1f
addi a10, a10, 1
1:
/* If the low word of the result is nonzero, set the lsb of a6. */
mull a11, xl, yl
beqz a11, 1f
movi a9, 1
or a6, a6, a9
1:
/* Compute xl with any carry-outs in a9. */
movi a9, 0
mull a11, xh, yh
add a10, a10, a11
bgeu a10, a11, 1f
addi a9, a9, 1
1:
muluh a11, xh, yl
add a10, a10, a11
bgeu a10, a11, 1f
addi a9, a9, 1
1:
muluh xl, xl, yh
add xl, xl, a10
bgeu xl, a10, 1f
addi a9, a9, 1
1:
/* Compute xh. */
muluh xh, xh, yh
add xh, xh, a9
#else /* ! XCHAL_HAVE_MUL32_HIGH */
/* Break the inputs into 16-bit chunks and compute 16 32-bit partial
products. These partial products are:
0 xll * yll
1 xll * ylh
2 xlh * yll
3 xll * yhl
4 xlh * ylh
5 xhl * yll
6 xll * yhh
7 xlh * yhl
8 xhl * ylh
9 xhh * yll
10 xlh * yhh
11 xhl * yhl
12 xhh * ylh
13 xhl * yhh
14 xhh * yhl
15 xhh * yhh
where the input chunks are (hh, hl, lh, ll). If using the Mul16
or Mul32 multiplier options, these input chunks must be stored in
separate registers. For Mac16, the UMUL.AA.* opcodes can specify
that the inputs come from either half of the registers, so there
is no need to shift them out ahead of time. If there is no
multiply hardware, the 16-bit chunks can be extracted when setting
up the arguments to the separate multiply function. */
/* Save a7 since it is needed to hold a temporary value. */
s32i a7, sp, 4
#if __XTENSA_CALL0_ABI__ && XCHAL_NO_MUL
/* Calling a separate multiply function will clobber a0 and requires
use of a8 as a temporary, so save those values now. (The function
uses a custom ABI so nothing else needs to be saved.) */
s32i a0, sp, 0
s32i a8, sp, 8
#endif
#if XCHAL_HAVE_MUL16 || XCHAL_HAVE_MUL32
#define xlh a12
#define ylh a13
#define xhh a14
#define yhh a15
/* Get the high halves of the inputs into registers. */
srli xlh, xl, 16
srli ylh, yl, 16
srli xhh, xh, 16
srli yhh, yh, 16
#define xll xl
#define yll yl
#define xhl xh
#define yhl yh
#if XCHAL_HAVE_MUL32 && !XCHAL_HAVE_MUL16
/* Clear the high halves of the inputs. This does not matter
for MUL16 because the high bits are ignored. */
extui xl, xl, 0, 16
extui xh, xh, 0, 16
extui yl, yl, 0, 16
extui yh, yh, 0, 16
#endif
#endif /* MUL16 || MUL32 */
#if XCHAL_HAVE_MUL16
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
mul16u dst, xreg ## xhalf, yreg ## yhalf
#elif XCHAL_HAVE_MUL32
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
mull dst, xreg ## xhalf, yreg ## yhalf
#elif XCHAL_HAVE_MAC16
/* The preprocessor insists on inserting a space when concatenating after
a period in the definition of do_mul below. These macros are a workaround
using underscores instead of periods when doing the concatenation. */
#define umul_aa_ll umul.aa.ll
#define umul_aa_lh umul.aa.lh
#define umul_aa_hl umul.aa.hl
#define umul_aa_hh umul.aa.hh
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
umul_aa_ ## xhalf ## yhalf xreg, yreg; \
rsr dst, ACCLO
#else /* no multiply hardware */
#define set_arg_l(dst, src) \
extui dst, src, 0, 16
#define set_arg_h(dst, src) \
srli dst, src, 16
#if __XTENSA_CALL0_ABI__
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
set_arg_ ## xhalf (a13, xreg); \
set_arg_ ## yhalf (a14, yreg); \
call0 .Lmul_mulsi3; \
mov dst, a12
#else
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
set_arg_ ## xhalf (a14, xreg); \
set_arg_ ## yhalf (a15, yreg); \
call12 .Lmul_mulsi3; \
mov dst, a14
#endif /* __XTENSA_CALL0_ABI__ */
#endif /* no multiply hardware */
/* Add pp1 and pp2 into a10 with carry-out in a9. */
do_mul(a10, xl, l, yl, h) /* pp 1 */
do_mul(a11, xl, h, yl, l) /* pp 2 */
movi a9, 0
add a10, a10, a11
bgeu a10, a11, 1f
addi a9, a9, 1
1:
/* Initialize a6 with a9/a10 shifted into position. Note that
this value can be safely incremented without any carry-outs. */
ssai 16
src a6, a9, a10
/* Compute the low word into a10. */
do_mul(a11, xl, l, yl, l) /* pp 0 */
sll a10, a10
add a10, a10, a11
bgeu a10, a11, 1f
addi a6, a6, 1
1:
/* Compute the contributions of pp0-5 to a6, with carry-outs in a9.
This is good enough to determine the low half of a6, so that any
nonzero bits from the low word of the result can be collapsed
into a6, freeing up a register. */
movi a9, 0
do_mul(a11, xl, l, yh, l) /* pp 3 */
add a6, a6, a11
bgeu a6, a11, 1f
addi a9, a9, 1
1:
do_mul(a11, xl, h, yl, h) /* pp 4 */
add a6, a6, a11
bgeu a6, a11, 1f
addi a9, a9, 1
1:
do_mul(a11, xh, l, yl, l) /* pp 5 */
add a6, a6, a11
bgeu a6, a11, 1f
addi a9, a9, 1
1:
/* Collapse any nonzero bits from the low word into a6. */
beqz a10, 1f
movi a11, 1
or a6, a6, a11
1:
/* Add pp6-9 into a11 with carry-outs in a10. */
do_mul(a7, xl, l, yh, h) /* pp 6 */
do_mul(a11, xh, h, yl, l) /* pp 9 */
movi a10, 0
add a11, a11, a7
bgeu a11, a7, 1f
addi a10, a10, 1
1:
do_mul(a7, xl, h, yh, l) /* pp 7 */
add a11, a11, a7
bgeu a11, a7, 1f
addi a10, a10, 1
1:
do_mul(a7, xh, l, yl, h) /* pp 8 */
add a11, a11, a7
bgeu a11, a7, 1f
addi a10, a10, 1
1:
/* Shift a10/a11 into position, and add low half of a11 to a6. */
src a10, a10, a11
add a10, a10, a9
sll a11, a11
add a6, a6, a11
bgeu a6, a11, 1f
addi a10, a10, 1
1:
/* Add pp10-12 into xl with carry-outs in a9. */
movi a9, 0
do_mul(xl, xl, h, yh, h) /* pp 10 */
add xl, xl, a10
bgeu xl, a10, 1f
addi a9, a9, 1
1:
do_mul(a10, xh, l, yh, l) /* pp 11 */
add xl, xl, a10
bgeu xl, a10, 1f
addi a9, a9, 1
1:
do_mul(a10, xh, h, yl, h) /* pp 12 */
add xl, xl, a10
bgeu xl, a10, 1f
addi a9, a9, 1
1:
/* Add pp13-14 into a11 with carry-outs in a10. */
do_mul(a11, xh, l, yh, h) /* pp 13 */
do_mul(a7, xh, h, yh, l) /* pp 14 */
movi a10, 0
add a11, a11, a7
bgeu a11, a7, 1f
addi a10, a10, 1
1:
/* Shift a10/a11 into position, and add low half of a11 to a6. */
src a10, a10, a11
add a10, a10, a9
sll a11, a11
add xl, xl, a11
bgeu xl, a11, 1f
addi a10, a10, 1
1:
/* Compute xh. */
do_mul(xh, xh, h, yh, h) /* pp 15 */
add xh, xh, a10
/* Restore values saved on the stack during the multiplication. */
l32i a7, sp, 4
#if __XTENSA_CALL0_ABI__ && XCHAL_NO_MUL
l32i a0, sp, 0
l32i a8, sp, 8
#endif
#endif /* ! XCHAL_HAVE_MUL32_HIGH */
/* Shift left by 12 bits, unless there was a carry-out from the
multiply, in which case, shift by 11 bits and increment the
exponent. Note: It is convenient to use the constant 0x3ff
instead of 0x400 when removing the extra exponent bias (so that
it is easy to construct 0x7fe for the overflow check). Reverse
the logic here to decrement the exponent sum by one unless there
was a carry-out. */
movi a4, 11
srli a5, xh, 21 - 12
bnez a5, 1f
addi a4, a4, 1
addi a8, a8, -1
1: ssl a4
src xh, xh, xl
src xl, xl, a6
sll a6, a6
/* Subtract the extra bias from the exponent sum (plus one to account
for the explicit "1.0" of the mantissa that will be added to the
exponent in the final result). */
movi a4, 0x3ff
sub a8, a8, a4
/* Check for over/underflow. The value in a8 is one less than the
final exponent, so values in the range 0..7fd are OK here. */
slli a4, a4, 1 /* 0x7fe */
bgeu a8, a4, .Lmul_overflow
.Lmul_round:
/* Round. */
bgez a6, .Lmul_rounded
addi xl, xl, 1
beqz xl, .Lmul_roundcarry
slli a6, a6, 1
beqz a6, .Lmul_exactlyhalf
.Lmul_rounded:
/* Add the exponent to the mantissa. */
slli a8, a8, 20
add xh, xh, a8
.Lmul_addsign:
/* Add the sign bit. */
srli a7, a7, 31
slli a7, a7, 31
or xh, xh, a7
.Lmul_done:
#if __XTENSA_CALL0_ABI__
l32i a12, sp, 16
l32i a13, sp, 20
l32i a14, sp, 24
l32i a15, sp, 28
addi sp, sp, 32
#endif
leaf_return
.Lmul_exactlyhalf:
/* Round down to the nearest even value. */
srli xl, xl, 1
slli xl, xl, 1
j .Lmul_rounded
.Lmul_roundcarry:
/* xl is always zero when the rounding increment overflows, so
there's no need to round it to an even value. */
addi xh, xh, 1
/* Overflow is OK -- it will be added to the exponent. */
j .Lmul_rounded
.Lmul_overflow:
bltz a8, .Lmul_underflow
/* Return +/- Infinity. */
addi a8, a4, 1 /* 0x7ff */
slli xh, a8, 20
movi xl, 0
j .Lmul_addsign
.Lmul_underflow:
/* Create a subnormal value, where the exponent field contains zero,
but the effective exponent is 1. The value of a8 is one less than
the actual exponent, so just negate it to get the shift amount. */
neg a8, a8
mov a9, a6
ssr a8
bgeui a8, 32, .Lmul_bigshift
/* Shift xh/xl right. Any bits that are shifted out of xl are saved
in a6 (combined with the shifted-out bits currently in a6) for
rounding the result. */
sll a6, xl
src xl, xh, xl
srl xh, xh
j 1f
.Lmul_bigshift:
bgeui a8, 64, .Lmul_flush_to_zero
sll a10, xl /* lost bits shifted out of xl */
src a6, xh, xl
srl xl, xh
movi xh, 0
or a9, a9, a10
/* Set the exponent to zero. */
1: movi a8, 0
/* Pack any nonzero bits shifted out into a6. */
beqz a9, .Lmul_round
movi a9, 1
or a6, a6, a9
j .Lmul_round
.Lmul_flush_to_zero:
/* Return zero with the appropriate sign bit. */
srli xh, a7, 31
slli xh, xh, 31
movi xl, 0
j .Lmul_done
#if XCHAL_NO_MUL
/* For Xtensa processors with no multiply hardware, this simplified
version of _mulsi3 is used for multiplying 16-bit chunks of
the floating-point mantissas. When using CALL0, this function
uses a custom ABI: the inputs are passed in a13 and a14, the
result is returned in a12, and a8 and a15 are clobbered. */
.align 4
.Lmul_mulsi3:
leaf_entry sp, 16
.macro mul_mulsi3_body dst, src1, src2, tmp1, tmp2
movi \dst, 0
1: add \tmp1, \src2, \dst
extui \tmp2, \src1, 0, 1
movnez \dst, \tmp1, \tmp2
do_addx2 \tmp1, \src2, \dst, \tmp1
extui \tmp2, \src1, 1, 1
movnez \dst, \tmp1, \tmp2
do_addx4 \tmp1, \src2, \dst, \tmp1
extui \tmp2, \src1, 2, 1
movnez \dst, \tmp1, \tmp2
do_addx8 \tmp1, \src2, \dst, \tmp1
extui \tmp2, \src1, 3, 1
movnez \dst, \tmp1, \tmp2
srli \src1, \src1, 4
slli \src2, \src2, 4
bnez \src1, 1b
.endm
#if __XTENSA_CALL0_ABI__
mul_mulsi3_body a12, a13, a14, a15, a8
#else
/* The result will be written into a2, so save that argument in a4. */
mov a4, a2
mul_mulsi3_body a2, a4, a3, a5, a6
#endif
leaf_return
#endif /* XCHAL_NO_MUL */
#endif /* L_muldf3 */
#ifdef L_divdf3
/* Division */
#if XCHAL_HAVE_DFP_DIV
.text
.align 4
.global __divdf3
.type __divdf3, @function
__divdf3:
leaf_entry sp, 16
wfrd f1, xh, xl
wfrd f2, yh, yl
div0.d f3, f2
nexp01.d f4, f2
const.d f0, 1
maddn.d f0, f4, f3
const.d f5, 0
mov.d f7, f2
mkdadj.d f7, f1
maddn.d f3, f0, f3
maddn.d f5, f0, f0
nexp01.d f1, f1
div0.d f2, f2
maddn.d f3, f5, f3
const.d f5, 1
const.d f0, 0
neg.d f6, f1
maddn.d f5, f4, f3
maddn.d f0, f6, f2
maddn.d f3, f5, f3
maddn.d f6, f4, f0
const.d f2, 1
maddn.d f2, f4, f3
maddn.d f0, f6, f3
neg.d f1, f1
maddn.d f3, f2, f3
maddn.d f1, f4, f0
addexpm.d f0, f7
addexp.d f3, f7
divn.d f0, f1, f3
rfr xl, f0
rfrd xh, f0
leaf_return
#else
.literal_position
__divdf3_aux:
/* Handle unusual cases (zeros, subnormals, NaNs and Infinities).
(This code is placed before the start of the function just to
keep it in range of the limited branch displacements.) */
.Ldiv_yexpzero:
/* Clear the sign bit of y. */
slli yh, yh, 1
srli yh, yh, 1
/* Check for division by zero. */
or a10, yh, yl
beqz a10, .Ldiv_yzero
/* Normalize y. Adjust the exponent in a9. */
beqz yh, .Ldiv_yh_zero
do_nsau a10, yh, a11, a9
addi a10, a10, -11
ssl a10
src yh, yh, yl
sll yl, yl
movi a9, 1
sub a9, a9, a10
j .Ldiv_ynormalized
.Ldiv_yh_zero:
do_nsau a10, yl, a11, a9
addi a10, a10, -11
movi a9, -31
sub a9, a9, a10
ssl a10
bltz a10, .Ldiv_yl_srl
sll yh, yl
movi yl, 0
j .Ldiv_ynormalized
.Ldiv_yl_srl:
srl yh, yl
sll yl, yl
j .Ldiv_ynormalized
.Ldiv_yzero:
/* y is zero. Return NaN if x is also zero; otherwise, infinity. */
slli xh, xh, 1
srli xh, xh, 1
or xl, xl, xh
srli xh, a7, 31
slli xh, xh, 31
or xh, xh, a6
bnez xl, 1f
movi a4, 0x80000 /* make it a quiet NaN */
or xh, xh, a4
1: movi xl, 0
leaf_return
.Ldiv_xexpzero:
/* Clear the sign bit of x. */
slli xh, xh, 1
srli xh, xh, 1
/* If x is zero, return zero. */
or a10, xh, xl
beqz a10, .Ldiv_return_zero
/* Normalize x. Adjust the exponent in a8. */
beqz xh, .Ldiv_xh_zero
do_nsau a10, xh, a11, a8
addi a10, a10, -11
ssl a10
src xh, xh, xl
sll xl, xl
movi a8, 1
sub a8, a8, a10
j .Ldiv_xnormalized
.Ldiv_xh_zero:
do_nsau a10, xl, a11, a8
addi a10, a10, -11
movi a8, -31
sub a8, a8, a10
ssl a10
bltz a10, .Ldiv_xl_srl
sll xh, xl
movi xl, 0
j .Ldiv_xnormalized
.Ldiv_xl_srl:
srl xh, xl
sll xl, xl
j .Ldiv_xnormalized
.Ldiv_return_zero:
/* Return zero with the appropriate sign bit. */
srli xh, a7, 31
slli xh, xh, 31
movi xl, 0
leaf_return
.Ldiv_xnan_or_inf:
/* Set the sign bit of the result. */
srli a7, yh, 31
slli a7, a7, 31
xor xh, xh, a7
/* If y is NaN or Inf, return NaN. */
ball yh, a6, .Ldiv_return_nan
slli a8, xh, 12
or a8, a8, xl
bnez a8, .Ldiv_return_nan
leaf_return
.Ldiv_ynan_or_inf:
/* If y is Infinity, return zero. */
slli a8, yh, 12
or a8, a8, yl
beqz a8, .Ldiv_return_zero
/* y is NaN; return it. */
mov xh, yh
mov xl, yl
.Ldiv_return_nan:
movi a4, 0x80000 /* make it a quiet NaN */
or xh, xh, a4
leaf_return
.Ldiv_highequal1:
bltu xl, yl, 2f
j 3f
.align 4
.global __divdf3
.type __divdf3, @function
__divdf3:
leaf_entry sp, 16
movi a6, 0x7ff00000
/* Get the sign of the result. */
xor a7, xh, yh
/* Check for NaN and infinity. */
ball xh, a6, .Ldiv_xnan_or_inf
ball yh, a6, .Ldiv_ynan_or_inf
/* Extract the exponents. */
extui a8, xh, 20, 11
extui a9, yh, 20, 11
beqz a9, .Ldiv_yexpzero
.Ldiv_ynormalized:
beqz a8, .Ldiv_xexpzero
.Ldiv_xnormalized:
/* Subtract the exponents. */
sub a8, a8, a9
/* Replace sign/exponent fields with explicit "1.0". */
movi a10, 0x1fffff
or xh, xh, a6
and xh, xh, a10
or yh, yh, a6
and yh, yh, a10
/* Set SAR for left shift by one. */
ssai (32 - 1)
/* The first digit of the mantissa division must be a one.
Shift x (and adjust the exponent) as needed to make this true. */
bltu yh, xh, 3f
beq yh, xh, .Ldiv_highequal1
2: src xh, xh, xl
sll xl, xl
addi a8, a8, -1
3:
/* Do the first subtraction and shift. */
sub xh, xh, yh
bgeu xl, yl, 1f
addi xh, xh, -1
1: sub xl, xl, yl
src xh, xh, xl
sll xl, xl
/* Put the quotient into a10/a11. */
movi a10, 0
movi a11, 1
/* Divide one bit at a time for 52 bits. */
movi a9, 52
#if XCHAL_HAVE_LOOPS
loop a9, .Ldiv_loopend
#endif
.Ldiv_loop:
/* Shift the quotient << 1. */
src a10, a10, a11
sll a11, a11
/* Is this digit a 0 or 1? */
bltu xh, yh, 3f
beq xh, yh, .Ldiv_highequal2
/* Output a 1 and subtract. */
2: addi a11, a11, 1
sub xh, xh, yh
bgeu xl, yl, 1f
addi xh, xh, -1
1: sub xl, xl, yl
/* Shift the dividend << 1. */
3: src xh, xh, xl
sll xl, xl
#if !XCHAL_HAVE_LOOPS
addi a9, a9, -1
bnez a9, .Ldiv_loop
#endif
.Ldiv_loopend:
/* Add the exponent bias (less one to account for the explicit "1.0"
of the mantissa that will be added to the exponent in the final
result). */
movi a9, 0x3fe
add a8, a8, a9
/* Check for over/underflow. The value in a8 is one less than the
final exponent, so values in the range 0..7fd are OK here. */
addmi a9, a9, 0x400 /* 0x7fe */
bgeu a8, a9, .Ldiv_overflow
.Ldiv_round:
/* Round. The remainder (<< 1) is in xh/xl. */
bltu xh, yh, .Ldiv_rounded
beq xh, yh, .Ldiv_highequal3
.Ldiv_roundup:
addi a11, a11, 1
beqz a11, .Ldiv_roundcarry
.Ldiv_rounded:
mov xl, a11
/* Add the exponent to the mantissa. */
slli a8, a8, 20
add xh, a10, a8
.Ldiv_addsign:
/* Add the sign bit. */
srli a7, a7, 31
slli a7, a7, 31
or xh, xh, a7
leaf_return
.Ldiv_highequal2:
bgeu xl, yl, 2b
j 3b
.Ldiv_highequal3:
bltu xl, yl, .Ldiv_rounded
bne xl, yl, .Ldiv_roundup
/* Remainder is exactly half the divisor. Round even. */
addi a11, a11, 1
beqz a11, .Ldiv_roundcarry
srli a11, a11, 1
slli a11, a11, 1
j .Ldiv_rounded
.Ldiv_overflow:
bltz a8, .Ldiv_underflow
/* Return +/- Infinity. */
addi a8, a9, 1 /* 0x7ff */
slli xh, a8, 20
movi xl, 0
j .Ldiv_addsign
.Ldiv_underflow:
/* Create a subnormal value, where the exponent field contains zero,
but the effective exponent is 1. The value of a8 is one less than
the actual exponent, so just negate it to get the shift amount. */
neg a8, a8
ssr a8
bgeui a8, 32, .Ldiv_bigshift
/* Shift a10/a11 right. Any bits that are shifted out of a11 are
saved in a6 for rounding the result. */
sll a6, a11
src a11, a10, a11
srl a10, a10
j 1f
.Ldiv_bigshift:
bgeui a8, 64, .Ldiv_flush_to_zero
sll a9, a11 /* lost bits shifted out of a11 */
src a6, a10, a11
srl a11, a10
movi a10, 0
or xl, xl, a9
/* Set the exponent to zero. */
1: movi a8, 0
/* Pack any nonzero remainder (in xh/xl) into a6. */
or xh, xh, xl
beqz xh, 1f
movi a9, 1
or a6, a6, a9
/* Round a10/a11 based on the bits shifted out into a6. */
1: bgez a6, .Ldiv_rounded
addi a11, a11, 1
beqz a11, .Ldiv_roundcarry
slli a6, a6, 1
bnez a6, .Ldiv_rounded
srli a11, a11, 1
slli a11, a11, 1
j .Ldiv_rounded
.Ldiv_roundcarry:
/* a11 is always zero when the rounding increment overflows, so
there's no need to round it to an even value. */
addi a10, a10, 1
/* Overflow to the exponent field is OK. */
j .Ldiv_rounded
.Ldiv_flush_to_zero:
/* Return zero with the appropriate sign bit. */
srli xh, a7, 31
slli xh, xh, 31
movi xl, 0
leaf_return
#endif /* XCHAL_HAVE_DFP_DIV */
#endif /* L_divdf3 */
#ifdef L_cmpdf2
/* Equal and Not Equal */
.align 4
.global __eqdf2
.global __nedf2
.set __nedf2, __eqdf2
.type __eqdf2, @function
__eqdf2:
leaf_entry sp, 16
bne xl, yl, 2f
bne xh, yh, 4f
/* The values are equal but NaN != NaN. Check the exponent. */
movi a6, 0x7ff00000
ball xh, a6, 3f
/* Equal. */
movi a2, 0
leaf_return
/* Not equal. */
2: movi a2, 1
leaf_return
/* Check if the mantissas are nonzero. */
3: slli a7, xh, 12
or a7, a7, xl
j 5f
/* Check if x and y are zero with different signs. */
4: or a7, xh, yh
slli a7, a7, 1
or a7, a7, xl /* xl == yl here */
/* Equal if a7 == 0, where a7 is either abs(x | y) or the mantissa
or x when exponent(x) = 0x7ff and x == y. */
5: movi a2, 0
movi a3, 1
movnez a2, a3, a7
leaf_return
/* Greater Than */
.align 4
.global __gtdf2
.type __gtdf2, @function
__gtdf2:
leaf_entry sp, 16
movi a6, 0x7ff00000
ball xh, a6, 2f
1: bnall yh, a6, .Lle_cmp
/* Check if y is a NaN. */
slli a7, yh, 12
or a7, a7, yl
beqz a7, .Lle_cmp
movi a2, 0
leaf_return
/* Check if x is a NaN. */
2: slli a7, xh, 12
or a7, a7, xl
beqz a7, 1b
movi a2, 0
leaf_return
/* Less Than or Equal */
.align 4
.global __ledf2
.type __ledf2, @function
__ledf2:
leaf_entry sp, 16
movi a6, 0x7ff00000
ball xh, a6, 2f
1: bnall yh, a6, .Lle_cmp
/* Check if y is a NaN. */
slli a7, yh, 12
or a7, a7, yl
beqz a7, .Lle_cmp
movi a2, 1
leaf_return
/* Check if x is a NaN. */
2: slli a7, xh, 12
or a7, a7, xl
beqz a7, 1b
movi a2, 1
leaf_return
.Lle_cmp:
/* Check if x and y have different signs. */
xor a7, xh, yh
bltz a7, .Lle_diff_signs
/* Check if x is negative. */
bltz xh, .Lle_xneg
/* Check if x <= y. */
bltu xh, yh, 4f
bne xh, yh, 5f
bltu yl, xl, 5f
4: movi a2, 0
leaf_return
.Lle_xneg:
/* Check if y <= x. */
bltu yh, xh, 4b
bne yh, xh, 5f
bgeu xl, yl, 4b
5: movi a2, 1
leaf_return
.Lle_diff_signs:
bltz xh, 4b
/* Check if both x and y are zero. */
or a7, xh, yh
slli a7, a7, 1
or a7, a7, xl
or a7, a7, yl
movi a2, 1
movi a3, 0
moveqz a2, a3, a7
leaf_return
/* Greater Than or Equal */
.align 4
.global __gedf2
.type __gedf2, @function
__gedf2:
leaf_entry sp, 16
movi a6, 0x7ff00000
ball xh, a6, 2f
1: bnall yh, a6, .Llt_cmp
/* Check if y is a NaN. */
slli a7, yh, 12
or a7, a7, yl
beqz a7, .Llt_cmp
movi a2, -1
leaf_return
/* Check if x is a NaN. */
2: slli a7, xh, 12
or a7, a7, xl
beqz a7, 1b
movi a2, -1
leaf_return
/* Less Than */
.align 4
.global __ltdf2
.type __ltdf2, @function
__ltdf2:
leaf_entry sp, 16
movi a6, 0x7ff00000
ball xh, a6, 2f
1: bnall yh, a6, .Llt_cmp
/* Check if y is a NaN. */
slli a7, yh, 12
or a7, a7, yl
beqz a7, .Llt_cmp
movi a2, 0
leaf_return
/* Check if x is a NaN. */
2: slli a7, xh, 12
or a7, a7, xl
beqz a7, 1b
movi a2, 0
leaf_return
.Llt_cmp:
/* Check if x and y have different signs. */
xor a7, xh, yh
bltz a7, .Llt_diff_signs
/* Check if x is negative. */
bltz xh, .Llt_xneg
/* Check if x < y. */
bltu xh, yh, 4f
bne xh, yh, 5f
bgeu xl, yl, 5f
4: movi a2, -1
leaf_return
.Llt_xneg:
/* Check if y < x. */
bltu yh, xh, 4b
bne yh, xh, 5f
bltu yl, xl, 4b
5: movi a2, 0
leaf_return
.Llt_diff_signs:
bgez xh, 5b
/* Check if both x and y are nonzero. */
or a7, xh, yh
slli a7, a7, 1
or a7, a7, xl
or a7, a7, yl
movi a2, 0
movi a3, -1
movnez a2, a3, a7
leaf_return
/* Unordered */
.align 4
.global __unorddf2
.type __unorddf2, @function
__unorddf2:
leaf_entry sp, 16
movi a6, 0x7ff00000
ball xh, a6, 3f
1: ball yh, a6, 4f
2: movi a2, 0
leaf_return
3: slli a7, xh, 12
or a7, a7, xl
beqz a7, 1b
movi a2, 1
leaf_return
4: slli a7, yh, 12
or a7, a7, yl
beqz a7, 2b
movi a2, 1
leaf_return
#endif /* L_cmpdf2 */
#ifdef L_fixdfsi
.align 4
.global __fixdfsi
.type __fixdfsi, @function
__fixdfsi:
leaf_entry sp, 16
/* Check for NaN and Infinity. */
movi a6, 0x7ff00000
ball xh, a6, .Lfixdfsi_nan_or_inf
/* Extract the exponent and check if 0 < (exp - 0x3fe) < 32. */
extui a4, xh, 20, 11
extui a5, a6, 19, 10 /* 0x3fe */
sub a4, a4, a5
bgei a4, 32, .Lfixdfsi_maxint
blti a4, 1, .Lfixdfsi_zero
/* Add explicit "1.0" and shift << 11. */
or a7, xh, a6
ssai (32 - 11)
src a5, a7, xl
/* Shift back to the right, based on the exponent. */
ssl a4 /* shift by 32 - a4 */
srl a5, a5
/* Negate the result if sign != 0. */
neg a2, a5
movgez a2, a5, a7
leaf_return
.Lfixdfsi_nan_or_inf:
/* Handle Infinity and NaN. */
slli a4, xh, 12
or a4, a4, xl
beqz a4, .Lfixdfsi_maxint
/* Translate NaN to +maxint. */
movi xh, 0
.Lfixdfsi_maxint:
slli a4, a6, 11 /* 0x80000000 */
addi a5, a4, -1 /* 0x7fffffff */
movgez a4, a5, xh
mov a2, a4
leaf_return
.Lfixdfsi_zero:
movi a2, 0
leaf_return
#endif /* L_fixdfsi */
#ifdef L_fixdfdi
.align 4
.global __fixdfdi
.type __fixdfdi, @function
__fixdfdi:
leaf_entry sp, 16
/* Check for NaN and Infinity. */
movi a6, 0x7ff00000
ball xh, a6, .Lfixdfdi_nan_or_inf
/* Extract the exponent and check if 0 < (exp - 0x3fe) < 64. */
extui a4, xh, 20, 11
extui a5, a6, 19, 10 /* 0x3fe */
sub a4, a4, a5
bgei a4, 64, .Lfixdfdi_maxint
blti a4, 1, .Lfixdfdi_zero
/* Add explicit "1.0" and shift << 11. */
or a7, xh, a6
ssai (32 - 11)
src xh, a7, xl
sll xl, xl
/* Shift back to the right, based on the exponent. */
ssl a4 /* shift by 64 - a4 */
bgei a4, 32, .Lfixdfdi_smallshift
srl xl, xh
movi xh, 0
.Lfixdfdi_shifted:
/* Negate the result if sign != 0. */
bgez a7, 1f
neg xl, xl
neg xh, xh
beqz xl, 1f
addi xh, xh, -1
1: leaf_return
.Lfixdfdi_smallshift:
src xl, xh, xl
srl xh, xh
j .Lfixdfdi_shifted
.Lfixdfdi_nan_or_inf:
/* Handle Infinity and NaN. */
slli a4, xh, 12
or a4, a4, xl
beqz a4, .Lfixdfdi_maxint
/* Translate NaN to +maxint. */
movi xh, 0
.Lfixdfdi_maxint:
slli a7, a6, 11 /* 0x80000000 */
bgez xh, 1f
mov xh, a7
movi xl, 0
leaf_return
1: addi xh, a7, -1 /* 0x7fffffff */
movi xl, -1
leaf_return
.Lfixdfdi_zero:
movi xh, 0
movi xl, 0
leaf_return
#endif /* L_fixdfdi */
#ifdef L_fixunsdfsi
.align 4
.global __fixunsdfsi
.type __fixunsdfsi, @function
__fixunsdfsi:
leaf_entry sp, 16
/* Check for NaN and Infinity. */
movi a6, 0x7ff00000
ball xh, a6, .Lfixunsdfsi_nan_or_inf
/* Extract the exponent and check if 0 <= (exp - 0x3ff) < 32. */
extui a4, xh, 20, 11
extui a5, a6, 20, 10 /* 0x3ff */
sub a4, a4, a5
bgei a4, 32, .Lfixunsdfsi_maxint
bltz a4, .Lfixunsdfsi_zero
/* Add explicit "1.0" and shift << 11. */
or a7, xh, a6
ssai (32 - 11)
src a5, a7, xl
/* Shift back to the right, based on the exponent. */
addi a4, a4, 1
beqi a4, 32, .Lfixunsdfsi_bigexp
ssl a4 /* shift by 32 - a4 */
srl a5, a5
/* Negate the result if sign != 0. */
neg a2, a5
movgez a2, a5, a7
leaf_return
.Lfixunsdfsi_nan_or_inf:
/* Handle Infinity and NaN. */
slli a4, xh, 12
or a4, a4, xl
beqz a4, .Lfixunsdfsi_maxint
/* Translate NaN to 0xffffffff. */
movi a2, -1
leaf_return
.Lfixunsdfsi_maxint:
slli a4, a6, 11 /* 0x80000000 */
movi a5, -1 /* 0xffffffff */
movgez a4, a5, xh
mov a2, a4
leaf_return
.Lfixunsdfsi_zero:
movi a2, 0
leaf_return
.Lfixunsdfsi_bigexp:
/* Handle unsigned maximum exponent case. */
bltz xh, 1f
mov a2, a5 /* no shift needed */
leaf_return
/* Return 0x80000000 if negative. */
1: slli a2, a6, 11
leaf_return
#endif /* L_fixunsdfsi */
#ifdef L_fixunsdfdi
.align 4
.global __fixunsdfdi
.type __fixunsdfdi, @function
__fixunsdfdi:
leaf_entry sp, 16
/* Check for NaN and Infinity. */
movi a6, 0x7ff00000
ball xh, a6, .Lfixunsdfdi_nan_or_inf
/* Extract the exponent and check if 0 <= (exp - 0x3ff) < 64. */
extui a4, xh, 20, 11
extui a5, a6, 20, 10 /* 0x3ff */
sub a4, a4, a5
bgei a4, 64, .Lfixunsdfdi_maxint
bltz a4, .Lfixunsdfdi_zero
/* Add explicit "1.0" and shift << 11. */
or a7, xh, a6
ssai (32 - 11)
src xh, a7, xl
sll xl, xl
/* Shift back to the right, based on the exponent. */
addi a4, a4, 1
beqi a4, 64, .Lfixunsdfdi_bigexp
ssl a4 /* shift by 64 - a4 */
bgei a4, 32, .Lfixunsdfdi_smallshift
srl xl, xh
movi xh, 0
.Lfixunsdfdi_shifted:
/* Negate the result if sign != 0. */
bgez a7, 1f
neg xl, xl
neg xh, xh
beqz xl, 1f
addi xh, xh, -1
1: leaf_return
.Lfixunsdfdi_smallshift:
src xl, xh, xl
srl xh, xh
j .Lfixunsdfdi_shifted
.Lfixunsdfdi_nan_or_inf:
/* Handle Infinity and NaN. */
slli a4, xh, 12
or a4, a4, xl
beqz a4, .Lfixunsdfdi_maxint
/* Translate NaN to 0xffffffff.... */
1: movi xh, -1
movi xl, -1
leaf_return
.Lfixunsdfdi_maxint:
bgez xh, 1b
2: slli xh, a6, 11 /* 0x80000000 */
movi xl, 0
leaf_return
.Lfixunsdfdi_zero:
movi xh, 0
movi xl, 0
leaf_return
.Lfixunsdfdi_bigexp:
/* Handle unsigned maximum exponent case. */
bltz a7, 2b
leaf_return /* no shift needed */
#endif /* L_fixunsdfdi */
#ifdef L_floatsidf
.align 4
.global __floatunsidf
.type __floatunsidf, @function
__floatunsidf:
leaf_entry sp, 16
beqz a2, .Lfloatsidf_return_zero
/* Set the sign to zero and jump to the floatsidf code. */
movi a7, 0
j .Lfloatsidf_normalize
.align 4
.global __floatsidf
.type __floatsidf, @function
__floatsidf:
leaf_entry sp, 16
/* Check for zero. */
beqz a2, .Lfloatsidf_return_zero
/* Save the sign. */
extui a7, a2, 31, 1
/* Get the absolute value. */
#if XCHAL_HAVE_ABS
abs a2, a2
#else
neg a4, a2
movltz a2, a4, a2
#endif
.Lfloatsidf_normalize:
/* Normalize with the first 1 bit in the msb. */
do_nsau a4, a2, a5, a6
ssl a4
sll a5, a2
/* Shift the mantissa into position. */
srli xh, a5, 11
slli xl, a5, (32 - 11)
/* Set the exponent. */
movi a5, 0x41d /* 0x3fe + 31 */
sub a5, a5, a4
slli a5, a5, 20
add xh, xh, a5
/* Add the sign and return. */
slli a7, a7, 31
or xh, xh, a7
leaf_return
.Lfloatsidf_return_zero:
movi a3, 0
leaf_return
#endif /* L_floatsidf */
#ifdef L_floatdidf
.align 4
.global __floatundidf
.type __floatundidf, @function
__floatundidf:
leaf_entry sp, 16
/* Check for zero. */
or a4, xh, xl
beqz a4, 2f
/* Set the sign to zero and jump to the floatdidf code. */
movi a7, 0
j .Lfloatdidf_normalize
.align 4
.global __floatdidf
.type __floatdidf, @function
__floatdidf:
leaf_entry sp, 16
/* Check for zero. */
or a4, xh, xl
beqz a4, 2f
/* Save the sign. */
extui a7, xh, 31, 1
/* Get the absolute value. */
bgez xh, .Lfloatdidf_normalize
neg xl, xl
neg xh, xh
beqz xl, .Lfloatdidf_normalize
addi xh, xh, -1
.Lfloatdidf_normalize:
/* Normalize with the first 1 bit in the msb of xh. */
beqz xh, .Lfloatdidf_bigshift
do_nsau a4, xh, a5, a6
ssl a4
src xh, xh, xl
sll xl, xl
.Lfloatdidf_shifted:
/* Shift the mantissa into position, with rounding bits in a6. */
ssai 11
sll a6, xl
src xl, xh, xl
srl xh, xh
/* Set the exponent. */
movi a5, 0x43d /* 0x3fe + 63 */
sub a5, a5, a4
slli a5, a5, 20
add xh, xh, a5
/* Add the sign. */
slli a7, a7, 31
or xh, xh, a7
/* Round up if the leftover fraction is >= 1/2. */
bgez a6, 2f
addi xl, xl, 1
beqz xl, .Lfloatdidf_roundcarry
/* Check if the leftover fraction is exactly 1/2. */
slli a6, a6, 1
beqz a6, .Lfloatdidf_exactlyhalf
2: leaf_return
.Lfloatdidf_bigshift:
/* xh is zero. Normalize with first 1 bit of xl in the msb of xh. */
do_nsau a4, xl, a5, a6
ssl a4
sll xh, xl
movi xl, 0
addi a4, a4, 32
j .Lfloatdidf_shifted
.Lfloatdidf_exactlyhalf:
/* Round down to the nearest even value. */
srli xl, xl, 1
slli xl, xl, 1
leaf_return
.Lfloatdidf_roundcarry:
/* xl is always zero when the rounding increment overflows, so
there's no need to round it to an even value. */
addi xh, xh, 1
/* Overflow to the exponent is OK. */
leaf_return
#endif /* L_floatdidf */
#ifdef L_truncdfsf2
.align 4
.global __truncdfsf2
.type __truncdfsf2, @function
__truncdfsf2:
leaf_entry sp, 16
/* Adjust the exponent bias. */
movi a4, (0x3ff - 0x7f) << 20
sub a5, xh, a4
/* Check for underflow. */
xor a6, xh, a5
bltz a6, .Ltrunc_underflow
extui a6, a5, 20, 11
beqz a6, .Ltrunc_underflow
/* Check for overflow. */
movi a4, 255
bge a6, a4, .Ltrunc_overflow
/* Shift a5/xl << 3 into a5/a4. */
ssai (32 - 3)
src a5, a5, xl
sll a4, xl
.Ltrunc_addsign:
/* Add the sign bit. */
extui a6, xh, 31, 1
slli a6, a6, 31
or a2, a6, a5
/* Round up if the leftover fraction is >= 1/2. */
bgez a4, 1f
addi a2, a2, 1
/* Overflow to the exponent is OK. The answer will be correct. */
/* Check if the leftover fraction is exactly 1/2. */
slli a4, a4, 1
beqz a4, .Ltrunc_exactlyhalf
1: leaf_return
.Ltrunc_exactlyhalf:
/* Round down to the nearest even value. */
srli a2, a2, 1
slli a2, a2, 1
leaf_return
.Ltrunc_overflow:
/* Check if exponent == 0x7ff. */
movi a4, 0x7ff00000
bnall xh, a4, 1f
/* Check if mantissa is nonzero. */
slli a5, xh, 12
or a5, a5, xl
beqz a5, 1f
/* Shift a4 to set a bit in the mantissa, making a quiet NaN. */
srli a4, a4, 1
1: slli a4, a4, 4 /* 0xff000000 or 0xff800000 */
/* Add the sign bit. */
extui a6, xh, 31, 1
ssai 1
src a2, a6, a4
leaf_return
.Ltrunc_underflow:
/* Find shift count for a subnormal. Flush to zero if >= 32. */
extui a6, xh, 20, 11
movi a5, 0x3ff - 0x7f
sub a6, a5, a6
addi a6, a6, 1
bgeui a6, 32, 1f
/* Replace the exponent with an explicit "1.0". */
slli a5, a5, 13 /* 0x700000 */
or a5, a5, xh
slli a5, a5, 11
srli a5, a5, 11
/* Shift the mantissa left by 3 bits (into a5/a4). */
ssai (32 - 3)
src a5, a5, xl
sll a4, xl
/* Shift right by a6. */
ssr a6
sll a7, a4
src a4, a5, a4
srl a5, a5
beqz a7, .Ltrunc_addsign
or a4, a4, a6 /* any positive, nonzero value will work */
j .Ltrunc_addsign
/* Return +/- zero. */
1: extui a2, xh, 31, 1
slli a2, a2, 31
leaf_return
#endif /* L_truncdfsf2 */
#ifdef L_extendsfdf2
.align 4
.global __extendsfdf2
.type __extendsfdf2, @function
__extendsfdf2:
leaf_entry sp, 16
/* Save the sign bit and then shift it off. */
extui a5, a2, 31, 1
slli a5, a5, 31
slli a4, a2, 1
/* Extract and check the exponent. */
extui a6, a2, 23, 8
beqz a6, .Lextend_expzero
addi a6, a6, 1
beqi a6, 256, .Lextend_nan_or_inf
/* Shift >> 3 into a4/xl. */
srli a4, a4, 4
slli xl, a2, (32 - 3)
/* Adjust the exponent bias. */
movi a6, (0x3ff - 0x7f) << 20
add a4, a4, a6
/* Add the sign bit. */
or xh, a4, a5
leaf_return
.Lextend_nan_or_inf:
movi a4, 0x7ff00000
/* Check for NaN. */
slli a7, a2, 9
beqz a7, 1f
slli a6, a6, 11 /* 0x80000 */
or a4, a4, a6
/* Add the sign and return. */
1: or xh, a4, a5
movi xl, 0
leaf_return
.Lextend_expzero:
beqz a4, 1b
/* Normalize it to have 8 zero bits before the first 1 bit. */
do_nsau a7, a4, a2, a3
addi a7, a7, -8
ssl a7
sll a4, a4
/* Shift >> 3 into a4/xl. */
slli xl, a4, (32 - 3)
srli a4, a4, 3
/* Set the exponent. */
movi a6, 0x3fe - 0x7f
sub a6, a6, a7
slli a6, a6, 20
add a4, a4, a6
/* Add the sign and return. */
or xh, a4, a5
leaf_return
#endif /* L_extendsfdf2 */
#if XCHAL_HAVE_DFP_SQRT
#ifdef L_sqrt
.text
.align 4
.global __ieee754_sqrt
.type __ieee754_sqrt, @function
__ieee754_sqrt:
leaf_entry sp, 16
wfrd f1, xh, xl
sqrt0.d f2, f1
const.d f4, 0
maddn.d f4, f2, f2
nexp01.d f3, f1
const.d f0, 3
addexp.d f3, f0
maddn.d f0, f4, f3
nexp01.d f4, f1
maddn.d f2, f0, f2
const.d f5, 0
maddn.d f5, f2, f3
const.d f0, 3
maddn.d f0, f5, f2
neg.d f6, f4
maddn.d f2, f0, f2
const.d f0, 0
const.d f5, 0
const.d f7, 0
maddn.d f0, f6, f2
maddn.d f5, f2, f3
const.d f3, 3
maddn.d f7, f3, f2
maddn.d f4, f0, f0
maddn.d f3, f5, f2
neg.d f2, f7
maddn.d f0, f4, f2
maddn.d f7, f3, f7
mksadj.d f2, f1
nexp01.d f1, f1
maddn.d f1, f0, f0
neg.d f3, f7
addexpm.d f0, f2
addexp.d f3, f2
divn.d f0, f1, f3
rfr xl, f0
rfrd xh, f0
leaf_return
#endif /* L_sqrt */
#endif /* XCHAL_HAVE_DFP_SQRT */
#if XCHAL_HAVE_DFP_RECIP
#ifdef L_recipdf2
/* Reciprocal */
.align 4
.global __recipdf2
.type __recipdf2, @function
__recipdf2:
leaf_entry sp, 16
wfrd f1, xh, xl
recip0.d f0, f1
const.d f2, 2
msub.d f2, f1, f0
mul.d f3, f1, f0
const.d f4, 2
mul.d f5, f0, f2
msub.d f4, f3, f2
const.d f2, 1
mul.d f0, f5, f4
msub.d f2, f1, f0
maddn.d f0, f0, f2
rfr xl, f0
rfrd xh, f0
leaf_return
#endif /* L_recipdf2 */
#endif /* XCHAL_HAVE_DFP_RECIP */
#if XCHAL_HAVE_DFP_RSQRT
#ifdef L_rsqrtdf2
/* Reciprocal square root */
.align 4
.global __rsqrtdf2
.type __rsqrtdf2, @function
__rsqrtdf2:
leaf_entry sp, 16
wfrd f1, xh, xl
rsqrt0.d f0, f1
mul.d f2, f1, f0
const.d f3, 3
mul.d f4, f3, f0
const.d f5, 1
msub.d f5, f2, f0
maddn.d f0, f4, f5
const.d f2, 1
mul.d f4, f1, f0
mul.d f5, f3, f0
msub.d f2, f4, f0
maddn.d f0, f5, f2
const.d f2, 1
mul.d f1, f1, f0
mul.d f3, f3, f0
msub.d f2, f1, f0
maddn.d f0, f3, f2
rfr xl, f0
rfrd xh, f0
leaf_return
#endif /* L_rsqrtdf2 */
#endif /* XCHAL_HAVE_DFP_RSQRT */