Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
/* IEEE-754 double-precision functions for Xtensa
   Copyright (C) 2006-2017 Free Software Foundation, Inc.
   Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   Under Section 7 of GPL version 3, you are granted additional
   permissions described in the GCC Runtime Library Exception, version
   3.1, as published by the Free Software Foundation.

   You should have received a copy of the GNU General Public License and
   a copy of the GCC Runtime Library Exception along with this program;
   see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
   <http://www.gnu.org/licenses/>.  */

#ifdef __XTENSA_EB__
#define xh a2
#define xl a3
#define yh a4
#define yl a5
#else
#define xh a3
#define xl a2
#define yh a5
#define yl a4
#endif

/*  Warning!  The branch displacements for some Xtensa branch instructions
    are quite small, and this code has been carefully laid out to keep
    branch targets in range.  If you change anything, be sure to check that
    the assembler is not relaxing anything to branch over a jump.  */

#ifdef L_negdf2

	.align	4
	.global	__negdf2
	.type	__negdf2, @function
__negdf2:
	leaf_entry sp, 16
	movi	a4, 0x80000000
	xor	xh, xh, a4
	leaf_return

#endif /* L_negdf2 */

#ifdef L_addsubdf3

	.literal_position
	/* Addition */
__adddf3_aux:
	
	/* Handle NaNs and Infinities.  (This code is placed before the
	   start of the function just to keep it in range of the limited
	   branch displacements.)  */

.Ladd_xnan_or_inf:
	/* If y is neither Infinity nor NaN, return x.  */
	bnall	yh, a6, .Ladd_return_nan_or_inf
	/* If x is a NaN, return it.  Otherwise, return y.  */
	slli	a7, xh, 12
	or	a7, a7, xl
	bnez	a7, .Ladd_return_nan

.Ladd_ynan_or_inf:
	/* Return y.  */
	mov	xh, yh
	mov	xl, yl

.Ladd_return_nan_or_inf:
	slli	a7, xh, 12
	or	a7, a7, xl
	bnez	a7, .Ladd_return_nan
	leaf_return

.Ladd_return_nan:
	movi	a4, 0x80000	/* make it a quiet NaN */
	or	xh, xh, a4
	leaf_return

.Ladd_opposite_signs:
	/* Operand signs differ.  Do a subtraction.  */
	slli	a7, a6, 11
	xor	yh, yh, a7
	j	.Lsub_same_sign

	.align	4
	.global	__adddf3
	.type	__adddf3, @function
__adddf3:
	leaf_entry sp, 16
	movi	a6, 0x7ff00000

	/* Check if the two operands have the same sign.  */
	xor	a7, xh, yh
	bltz	a7, .Ladd_opposite_signs

.Ladd_same_sign:	
	/* Check if either exponent == 0x7ff (i.e., NaN or Infinity).  */
	ball	xh, a6, .Ladd_xnan_or_inf
	ball	yh, a6, .Ladd_ynan_or_inf

	/* Compare the exponents.  The smaller operand will be shifted
	   right by the exponent difference and added to the larger
	   one.  */
	extui	a7, xh, 20, 12
	extui	a8, yh, 20, 12
	bltu	a7, a8, .Ladd_shiftx

.Ladd_shifty:
	/* Check if the smaller (or equal) exponent is zero.  */
	bnone	yh, a6, .Ladd_yexpzero

	/* Replace yh sign/exponent with 0x001.  */
	or	yh, yh, a6
	slli	yh, yh, 11
	srli	yh, yh, 11

.Ladd_yexpdiff:
	/* Compute the exponent difference.  Optimize for difference < 32.  */
	sub	a10, a7, a8
	bgeui	a10, 32, .Ladd_bigshifty
	
	/* Shift yh/yl right by the exponent difference.  Any bits that are
	   shifted out of yl are saved in a9 for rounding the result.  */
	ssr	a10
	movi	a9, 0
	src	a9, yl, a9
	src	yl, yh, yl
	srl	yh, yh

.Ladd_addy:
	/* Do the 64-bit addition.  */
	add	xl, xl, yl
	add	xh, xh, yh
	bgeu	xl, yl, 1f
	addi	xh, xh, 1
1:
	/* Check if the add overflowed into the exponent.  */
	extui	a10, xh, 20, 12
	beq	a10, a7, .Ladd_round
	mov	a8, a7
	j	.Ladd_carry

.Ladd_yexpzero:
	/* y is a subnormal value.  Replace its sign/exponent with zero,
	   i.e., no implicit "1.0", and increment the apparent exponent
	   because subnormals behave as if they had the minimum (nonzero)
	   exponent.  Test for the case when both exponents are zero.  */
	slli	yh, yh, 12
	srli	yh, yh, 12
	bnone	xh, a6, .Ladd_bothexpzero
	addi	a8, a8, 1
	j	.Ladd_yexpdiff

.Ladd_bothexpzero:
	/* Both exponents are zero.  Handle this as a special case.  There
	   is no need to shift or round, and the normal code for handling
	   a carry into the exponent field will not work because it
	   assumes there is an implicit "1.0" that needs to be added.  */
	add	xl, xl, yl
	add	xh, xh, yh
	bgeu	xl, yl, 1f
	addi	xh, xh, 1
1:	leaf_return

.Ladd_bigshifty:
	/* Exponent difference > 64 -- just return the bigger value.  */
	bgeui	a10, 64, 1b

	/* Shift yh/yl right by the exponent difference.  Any bits that are
	   shifted out are saved in a9 for rounding the result.  */
	ssr	a10
	sll	a11, yl		/* lost bits shifted out of yl */
	src	a9, yh, yl
	srl	yl, yh
	movi	yh, 0
	beqz	a11, .Ladd_addy
	or	a9, a9, a10	/* any positive, nonzero value will work */
	j	.Ladd_addy

.Ladd_xexpzero:
	/* Same as "yexpzero" except skip handling the case when both
	   exponents are zero.  */
	slli	xh, xh, 12
	srli	xh, xh, 12
	addi	a7, a7, 1
	j	.Ladd_xexpdiff

.Ladd_shiftx:
	/* Same thing as the "shifty" code, but with x and y swapped.  Also,
	   because the exponent difference is always nonzero in this version,
	   the shift sequence can use SLL and skip loading a constant zero.  */
	bnone	xh, a6, .Ladd_xexpzero

	or	xh, xh, a6
	slli	xh, xh, 11
	srli	xh, xh, 11

.Ladd_xexpdiff:
	sub	a10, a8, a7
	bgeui	a10, 32, .Ladd_bigshiftx
	
	ssr	a10
	sll	a9, xl
	src	xl, xh, xl
	srl	xh, xh

.Ladd_addx:
	add	xl, xl, yl
	add	xh, xh, yh
	bgeu	xl, yl, 1f
	addi	xh, xh, 1
1:
	/* Check if the add overflowed into the exponent.  */
	extui	a10, xh, 20, 12
	bne	a10, a8, .Ladd_carry

.Ladd_round:
	/* Round up if the leftover fraction is >= 1/2.  */
	bgez	a9, 1f
	addi	xl, xl, 1
	beqz	xl, .Ladd_roundcarry

	/* Check if the leftover fraction is exactly 1/2.  */
	slli	a9, a9, 1
	beqz	a9, .Ladd_exactlyhalf
1:	leaf_return

.Ladd_bigshiftx:
	/* Mostly the same thing as "bigshifty"....  */
	bgeui	a10, 64, .Ladd_returny

	ssr	a10
	sll	a11, xl
	src	a9, xh, xl
	srl	xl, xh
	movi	xh, 0
	beqz	a11, .Ladd_addx
	or	a9, a9, a10
	j	.Ladd_addx

.Ladd_returny:
	mov	xh, yh
	mov	xl, yl
	leaf_return

.Ladd_carry:	
	/* The addition has overflowed into the exponent field, so the
	   value needs to be renormalized.  The mantissa of the result
	   can be recovered by subtracting the original exponent and
	   adding 0x100000 (which is the explicit "1.0" for the
	   mantissa of the non-shifted operand -- the "1.0" for the
	   shifted operand was already added).  The mantissa can then
	   be shifted right by one bit.  The explicit "1.0" of the
	   shifted mantissa then needs to be replaced by the exponent,
	   incremented by one to account for the normalizing shift.
	   It is faster to combine these operations: do the shift first
	   and combine the additions and subtractions.  If x is the
	   original exponent, the result is:
	       shifted mantissa - (x << 19) + (1 << 19) + (x << 20)
	   or:
	       shifted mantissa + ((x + 1) << 19)
	   Note that the exponent is incremented here by leaving the
	   explicit "1.0" of the mantissa in the exponent field.  */

	/* Shift xh/xl right by one bit.  Save the lsb of xl.  */
	mov	a10, xl
	ssai	1
	src	xl, xh, xl
	srl	xh, xh

	/* See explanation above.  The original exponent is in a8.  */
	addi	a8, a8, 1
	slli	a8, a8, 19
	add	xh, xh, a8

	/* Return an Infinity if the exponent overflowed.  */
	ball	xh, a6, .Ladd_infinity
	
	/* Same thing as the "round" code except the msb of the leftover
	   fraction is bit 0 of a10, with the rest of the fraction in a9.  */
	bbci.l	a10, 0, 1f
	addi	xl, xl, 1
	beqz	xl, .Ladd_roundcarry
	beqz	a9, .Ladd_exactlyhalf
1:	leaf_return

.Ladd_infinity:
	/* Clear the mantissa.  */
	movi	xl, 0
	srli	xh, xh, 20
	slli	xh, xh, 20

	/* The sign bit may have been lost in a carry-out.  Put it back.  */
	slli	a8, a8, 1
	or	xh, xh, a8
	leaf_return

.Ladd_exactlyhalf:
	/* Round down to the nearest even value.  */
	srli	xl, xl, 1
	slli	xl, xl, 1
	leaf_return

.Ladd_roundcarry:
	/* xl is always zero when the rounding increment overflows, so
	   there's no need to round it to an even value.  */
	addi	xh, xh, 1
	/* Overflow to the exponent is OK.  */
	leaf_return


	/* Subtraction */
__subdf3_aux:
	
	/* Handle NaNs and Infinities.  (This code is placed before the
	   start of the function just to keep it in range of the limited
	   branch displacements.)  */

.Lsub_xnan_or_inf:
	/* If y is neither Infinity nor NaN, return x.  */
	bnall	yh, a6, .Lsub_return_nan_or_inf

.Lsub_return_nan:
	/* Both x and y are either NaN or Inf, so the result is NaN.  */
	movi	a4, 0x80000	/* make it a quiet NaN */
	or	xh, xh, a4
	leaf_return

.Lsub_ynan_or_inf:
	/* Negate y and return it.  */
	slli	a7, a6, 11
	xor	xh, yh, a7
	mov	xl, yl

.Lsub_return_nan_or_inf:
	slli	a7, xh, 12
	or	a7, a7, xl
	bnez	a7, .Lsub_return_nan
	leaf_return

.Lsub_opposite_signs:
	/* Operand signs differ.  Do an addition.  */
	slli	a7, a6, 11
	xor	yh, yh, a7
	j	.Ladd_same_sign

	.align	4
	.global	__subdf3
	.type	__subdf3, @function
__subdf3:
	leaf_entry sp, 16
	movi	a6, 0x7ff00000

	/* Check if the two operands have the same sign.  */
	xor	a7, xh, yh
	bltz	a7, .Lsub_opposite_signs

.Lsub_same_sign:	
	/* Check if either exponent == 0x7ff (i.e., NaN or Infinity).  */
	ball	xh, a6, .Lsub_xnan_or_inf
	ball	yh, a6, .Lsub_ynan_or_inf

	/* Compare the operands.  In contrast to addition, the entire
	   value matters here.  */
	extui	a7, xh, 20, 11
	extui	a8, yh, 20, 11
	bltu	xh, yh, .Lsub_xsmaller
	beq	xh, yh, .Lsub_compare_low

.Lsub_ysmaller:
	/* Check if the smaller (or equal) exponent is zero.  */
	bnone	yh, a6, .Lsub_yexpzero

	/* Replace yh sign/exponent with 0x001.  */
	or	yh, yh, a6
	slli	yh, yh, 11
	srli	yh, yh, 11

.Lsub_yexpdiff:
	/* Compute the exponent difference.  Optimize for difference < 32.  */
	sub	a10, a7, a8
	bgeui	a10, 32, .Lsub_bigshifty
	
	/* Shift yh/yl right by the exponent difference.  Any bits that are
	   shifted out of yl are saved in a9 for rounding the result.  */
	ssr	a10
	movi	a9, 0
	src	a9, yl, a9
	src	yl, yh, yl
	srl	yh, yh

.Lsub_suby:
	/* Do the 64-bit subtraction.  */
	sub	xh, xh, yh
	bgeu	xl, yl, 1f
	addi	xh, xh, -1
1:	sub	xl, xl, yl

	/* Subtract the leftover bits in a9 from zero and propagate any
	   borrow from xh/xl.  */
	neg	a9, a9
	beqz	a9, 1f
	addi	a5, xh, -1
	moveqz	xh, a5, xl
	addi	xl, xl, -1
1:
	/* Check if the subtract underflowed into the exponent.  */
	extui	a10, xh, 20, 11
	beq	a10, a7, .Lsub_round
	j	.Lsub_borrow

.Lsub_compare_low:
	/* The high words are equal.  Compare the low words.  */
	bltu	xl, yl, .Lsub_xsmaller
	bltu	yl, xl, .Lsub_ysmaller
	/* The operands are equal.  Return 0.0.  */
	movi	xh, 0
	movi	xl, 0
1:	leaf_return

.Lsub_yexpzero:
	/* y is a subnormal value.  Replace its sign/exponent with zero,
	   i.e., no implicit "1.0".  Unless x is also a subnormal, increment
	   y's apparent exponent because subnormals behave as if they had
	   the minimum (nonzero) exponent.  */
	slli	yh, yh, 12
	srli	yh, yh, 12
	bnone	xh, a6, .Lsub_yexpdiff
	addi	a8, a8, 1
	j	.Lsub_yexpdiff

.Lsub_bigshifty:
	/* Exponent difference > 64 -- just return the bigger value.  */
	bgeui	a10, 64, 1b

	/* Shift yh/yl right by the exponent difference.  Any bits that are
	   shifted out are saved in a9 for rounding the result.  */
	ssr	a10
	sll	a11, yl		/* lost bits shifted out of yl */
	src	a9, yh, yl
	srl	yl, yh
	movi	yh, 0
	beqz	a11, .Lsub_suby
	or	a9, a9, a10	/* any positive, nonzero value will work */
	j	.Lsub_suby

.Lsub_xsmaller:
	/* Same thing as the "ysmaller" code, but with x and y swapped and
	   with y negated.  */
	bnone	xh, a6, .Lsub_xexpzero

	or	xh, xh, a6
	slli	xh, xh, 11
	srli	xh, xh, 11

.Lsub_xexpdiff:
	sub	a10, a8, a7
	bgeui	a10, 32, .Lsub_bigshiftx
	
	ssr	a10
	movi	a9, 0
	src	a9, xl, a9
	src	xl, xh, xl
	srl	xh, xh

	/* Negate y.  */
	slli	a11, a6, 11
	xor	yh, yh, a11

.Lsub_subx:
	sub	xl, yl, xl
	sub	xh, yh, xh
	bgeu	yl, xl, 1f
	addi	xh, xh, -1
1:
	/* Subtract the leftover bits in a9 from zero and propagate any
	   borrow from xh/xl.  */
	neg	a9, a9
	beqz	a9, 1f
	addi	a5, xh, -1
	moveqz	xh, a5, xl
	addi	xl, xl, -1
1:
	/* Check if the subtract underflowed into the exponent.  */
	extui	a10, xh, 20, 11
	bne	a10, a8, .Lsub_borrow

.Lsub_round:
	/* Round up if the leftover fraction is >= 1/2.  */
	bgez	a9, 1f
	addi	xl, xl, 1
	beqz	xl, .Lsub_roundcarry

	/* Check if the leftover fraction is exactly 1/2.  */
	slli	a9, a9, 1
	beqz	a9, .Lsub_exactlyhalf
1:	leaf_return

.Lsub_xexpzero:
	/* Same as "yexpzero".  */
	slli	xh, xh, 12
	srli	xh, xh, 12
	bnone	yh, a6, .Lsub_xexpdiff
	addi	a7, a7, 1
	j	.Lsub_xexpdiff

.Lsub_bigshiftx:
	/* Mostly the same thing as "bigshifty", but with the sign bit of the
	   shifted value set so that the subsequent subtraction flips the
	   sign of y.  */
	bgeui	a10, 64, .Lsub_returny

	ssr	a10
	sll	a11, xl
	src	a9, xh, xl
	srl	xl, xh
	slli	xh, a6, 11	/* set sign bit of xh */
	beqz	a11, .Lsub_subx
	or	a9, a9, a10
	j	.Lsub_subx

.Lsub_returny:
	/* Negate and return y.  */
	slli	a7, a6, 11
	xor	xh, yh, a7
	mov	xl, yl
	leaf_return

.Lsub_borrow:	
	/* The subtraction has underflowed into the exponent field, so the
	   value needs to be renormalized.  Shift the mantissa left as
	   needed to remove any leading zeros and adjust the exponent
	   accordingly.  If the exponent is not large enough to remove
	   all the leading zeros, the result will be a subnormal value.  */

	slli	a8, xh, 12
	beqz	a8, .Lsub_xhzero
	do_nsau	a6, a8, a7, a11
	srli	a8, a8, 12
	bge	a6, a10, .Lsub_subnormal
	addi	a6, a6, 1

.Lsub_shift_lt32:
	/* Shift the mantissa (a8/xl/a9) left by a6.  */
	ssl	a6
	src	a8, a8, xl
	src	xl, xl, a9
	sll	a9, a9

	/* Combine the shifted mantissa with the sign and exponent,
	   decrementing the exponent by a6.  (The exponent has already
	   been decremented by one due to the borrow from the subtraction,
	   but adding the mantissa will increment the exponent by one.)  */
	srli	xh, xh, 20
	sub	xh, xh, a6
	slli	xh, xh, 20
	add	xh, xh, a8
	j	.Lsub_round

.Lsub_exactlyhalf:
	/* Round down to the nearest even value.  */
	srli	xl, xl, 1
	slli	xl, xl, 1
	leaf_return

.Lsub_roundcarry:
	/* xl is always zero when the rounding increment overflows, so
	   there's no need to round it to an even value.  */
	addi	xh, xh, 1
	/* Overflow to the exponent is OK.  */
	leaf_return

.Lsub_xhzero:
	/* When normalizing the result, all the mantissa bits in the high
	   word are zero.  Shift by "20 + (leading zero count of xl) + 1".  */
	do_nsau	a6, xl, a7, a11
	addi	a6, a6, 21
	blt	a10, a6, .Lsub_subnormal

.Lsub_normalize_shift:
	bltui	a6, 32, .Lsub_shift_lt32

	ssl	a6
	src	a8, xl, a9
	sll	xl, a9
	movi	a9, 0

	srli	xh, xh, 20
	sub	xh, xh, a6
	slli	xh, xh, 20
	add	xh, xh, a8
	j	.Lsub_round

.Lsub_subnormal:
	/* The exponent is too small to shift away all the leading zeros.
	   Set a6 to the current exponent (which has already been
	   decremented by the borrow) so that the exponent of the result
	   will be zero.  Do not add 1 to a6 in this case, because: (1)
	   adding the mantissa will not increment the exponent, so there is
	   no need to subtract anything extra from the exponent to
	   compensate, and (2) the effective exponent of a subnormal is 1
	   not 0 so the shift amount must be 1 smaller than normal. */
	mov	a6, a10
	j	.Lsub_normalize_shift

#endif /* L_addsubdf3 */

#ifdef L_muldf3

	/* Multiplication */
#if !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MUL32 && !XCHAL_HAVE_MAC16
#define XCHAL_NO_MUL 1
#endif

	.literal_position
__muldf3_aux:

	/* Handle unusual cases (zeros, subnormals, NaNs and Infinities).
	   (This code is placed before the start of the function just to
	   keep it in range of the limited branch displacements.)  */

.Lmul_xexpzero:
	/* Clear the sign bit of x.  */
	slli	xh, xh, 1
	srli	xh, xh, 1

	/* If x is zero, return zero.  */
	or	a10, xh, xl
	beqz	a10, .Lmul_return_zero

	/* Normalize x.  Adjust the exponent in a8.  */
	beqz	xh, .Lmul_xh_zero
	do_nsau	a10, xh, a11, a12
	addi	a10, a10, -11
	ssl	a10
	src	xh, xh, xl
	sll	xl, xl
	movi	a8, 1
	sub	a8, a8, a10
	j	.Lmul_xnormalized	
.Lmul_xh_zero:
	do_nsau	a10, xl, a11, a12
	addi	a10, a10, -11
	movi	a8, -31
	sub	a8, a8, a10
	ssl	a10
	bltz	a10, .Lmul_xl_srl
	sll	xh, xl
	movi	xl, 0
	j	.Lmul_xnormalized
.Lmul_xl_srl:
	srl	xh, xl
	sll	xl, xl
	j	.Lmul_xnormalized
	
.Lmul_yexpzero:
	/* Clear the sign bit of y.  */
	slli	yh, yh, 1
	srli	yh, yh, 1

	/* If y is zero, return zero.  */
	or	a10, yh, yl
	beqz	a10, .Lmul_return_zero

	/* Normalize y.  Adjust the exponent in a9.  */
	beqz	yh, .Lmul_yh_zero
	do_nsau	a10, yh, a11, a12
	addi	a10, a10, -11
	ssl	a10
	src	yh, yh, yl
	sll	yl, yl
	movi	a9, 1
	sub	a9, a9, a10
	j	.Lmul_ynormalized	
.Lmul_yh_zero:
	do_nsau	a10, yl, a11, a12
	addi	a10, a10, -11
	movi	a9, -31
	sub	a9, a9, a10
	ssl	a10
	bltz	a10, .Lmul_yl_srl
	sll	yh, yl
	movi	yl, 0
	j	.Lmul_ynormalized
.Lmul_yl_srl:
	srl	yh, yl
	sll	yl, yl
	j	.Lmul_ynormalized	

.Lmul_return_zero:
	/* Return zero with the appropriate sign bit.  */
	srli	xh, a7, 31
	slli	xh, xh, 31
	movi	xl, 0
	j	.Lmul_done

.Lmul_xnan_or_inf:
	/* If y is zero, return NaN.  */
	bnez	yl, 1f
	slli	a8, yh, 1
	beqz	a8, .Lmul_return_nan
1:
	/* If y is NaN, return y.  */
	bnall	yh, a6, .Lmul_returnx
	slli	a8, yh, 12
	or	a8, a8, yl
	beqz	a8, .Lmul_returnx

.Lmul_returny:
	mov	xh, yh
	mov	xl, yl

.Lmul_returnx:
	slli	a8, xh, 12
	or	a8, a8, xl
	bnez	a8, .Lmul_return_nan
	/* Set the sign bit and return.  */
	extui	a7, a7, 31, 1
	slli	xh, xh, 1
	ssai	1
	src	xh, a7, xh
	j	.Lmul_done

.Lmul_ynan_or_inf:
	/* If x is zero, return NaN.  */
	bnez	xl, .Lmul_returny
	slli	a8, xh, 1
	bnez	a8, .Lmul_returny
	mov	xh, yh

.Lmul_return_nan:
	movi	a4, 0x80000	/* make it a quiet NaN */
	or	xh, xh, a4
	j	.Lmul_done

	.align	4
	.global	__muldf3
	.type	__muldf3, @function
__muldf3:
#if __XTENSA_CALL0_ABI__
	leaf_entry sp, 32
	addi	sp, sp, -32
	s32i	a12, sp, 16
	s32i	a13, sp, 20
	s32i	a14, sp, 24
	s32i	a15, sp, 28
#elif XCHAL_NO_MUL
	/* This is not really a leaf function; allocate enough stack space
	   to allow CALL12s to a helper function.  */
	leaf_entry sp, 64
#else
	leaf_entry sp, 32
#endif
	movi	a6, 0x7ff00000

	/* Get the sign of the result.  */
	xor	a7, xh, yh

	/* Check for NaN and infinity.  */
	ball	xh, a6, .Lmul_xnan_or_inf
	ball	yh, a6, .Lmul_ynan_or_inf

	/* Extract the exponents.  */
	extui	a8, xh, 20, 11
	extui	a9, yh, 20, 11

	beqz	a8, .Lmul_xexpzero
.Lmul_xnormalized:	
	beqz	a9, .Lmul_yexpzero
.Lmul_ynormalized:	

	/* Add the exponents.  */
	add	a8, a8, a9

	/* Replace sign/exponent fields with explicit "1.0".  */
	movi	a10, 0x1fffff
	or	xh, xh, a6
	and	xh, xh, a10
	or	yh, yh, a6
	and	yh, yh, a10

	/* Multiply 64x64 to 128 bits.  The result ends up in xh/xl/a6.
	   The least-significant word of the result is thrown away except
	   that if it is nonzero, the lsb of a6 is set to 1.  */
#if XCHAL_HAVE_MUL32_HIGH

	/* Compute a6 with any carry-outs in a10.  */
	movi	a10, 0
	mull	a6, xl, yh
	mull	a11, xh, yl
	add	a6, a6, a11
	bgeu	a6, a11, 1f
	addi	a10, a10, 1
1:
	muluh	a11, xl, yl
	add	a6, a6, a11
	bgeu	a6, a11, 1f
	addi	a10, a10, 1
1:	
	/* If the low word of the result is nonzero, set the lsb of a6.  */
	mull	a11, xl, yl
	beqz	a11, 1f
	movi	a9, 1
	or	a6, a6, a9
1:
	/* Compute xl with any carry-outs in a9.  */
	movi	a9, 0
	mull	a11, xh, yh
	add	a10, a10, a11
	bgeu	a10, a11, 1f
	addi	a9, a9, 1
1:	
	muluh	a11, xh, yl
	add	a10, a10, a11
	bgeu	a10, a11, 1f
	addi	a9, a9, 1
1:	
	muluh	xl, xl, yh
	add	xl, xl, a10
	bgeu	xl, a10, 1f
	addi	a9, a9, 1
1:
	/* Compute xh.  */
	muluh	xh, xh, yh
	add	xh, xh, a9

#else /* ! XCHAL_HAVE_MUL32_HIGH */

	/* Break the inputs into 16-bit chunks and compute 16 32-bit partial
	   products.  These partial products are:

		0 xll * yll

		1 xll * ylh
		2 xlh * yll

		3 xll * yhl
		4 xlh * ylh
		5 xhl * yll

		6 xll * yhh
		7 xlh * yhl
		8 xhl * ylh
		9 xhh * yll

		10 xlh * yhh
		11 xhl * yhl
		12 xhh * ylh

		13 xhl * yhh
		14 xhh * yhl

		15 xhh * yhh

	   where the input chunks are (hh, hl, lh, ll).  If using the Mul16
	   or Mul32 multiplier options, these input chunks must be stored in
	   separate registers.  For Mac16, the UMUL.AA.* opcodes can specify
	   that the inputs come from either half of the registers, so there
	   is no need to shift them out ahead of time.  If there is no
	   multiply hardware, the 16-bit chunks can be extracted when setting
	   up the arguments to the separate multiply function.  */

	/* Save a7 since it is needed to hold a temporary value.  */
	s32i	a7, sp, 4
#if __XTENSA_CALL0_ABI__ && XCHAL_NO_MUL
	/* Calling a separate multiply function will clobber a0 and requires
	   use of a8 as a temporary, so save those values now.  (The function
	   uses a custom ABI so nothing else needs to be saved.)  */
	s32i	a0, sp, 0
	s32i	a8, sp, 8
#endif

#if XCHAL_HAVE_MUL16 || XCHAL_HAVE_MUL32

#define xlh a12
#define ylh a13
#define xhh a14
#define yhh a15

	/* Get the high halves of the inputs into registers.  */
	srli	xlh, xl, 16
	srli	ylh, yl, 16
	srli	xhh, xh, 16
	srli	yhh, yh, 16

#define xll xl
#define yll yl
#define xhl xh
#define yhl yh

#if XCHAL_HAVE_MUL32 && !XCHAL_HAVE_MUL16
	/* Clear the high halves of the inputs.  This does not matter
	   for MUL16 because the high bits are ignored.  */
	extui	xl, xl, 0, 16
	extui	xh, xh, 0, 16
	extui	yl, yl, 0, 16
	extui	yh, yh, 0, 16
#endif
#endif /* MUL16 || MUL32 */


#if XCHAL_HAVE_MUL16

#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
	mul16u	dst, xreg ## xhalf, yreg ## yhalf

#elif XCHAL_HAVE_MUL32

#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
	mull	dst, xreg ## xhalf, yreg ## yhalf

#elif XCHAL_HAVE_MAC16

/* The preprocessor insists on inserting a space when concatenating after
   a period in the definition of do_mul below.  These macros are a workaround
   using underscores instead of periods when doing the concatenation.  */
#define umul_aa_ll umul.aa.ll
#define umul_aa_lh umul.aa.lh
#define umul_aa_hl umul.aa.hl
#define umul_aa_hh umul.aa.hh

#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
	umul_aa_ ## xhalf ## yhalf	xreg, yreg; \
	rsr	dst, ACCLO

#else /* no multiply hardware */
	
#define set_arg_l(dst, src) \
	extui	dst, src, 0, 16
#define set_arg_h(dst, src) \
	srli	dst, src, 16

#if __XTENSA_CALL0_ABI__
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
	set_arg_ ## xhalf (a13, xreg); \
	set_arg_ ## yhalf (a14, yreg); \
	call0	.Lmul_mulsi3; \
	mov	dst, a12
#else
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
	set_arg_ ## xhalf (a14, xreg); \
	set_arg_ ## yhalf (a15, yreg); \
	call12	.Lmul_mulsi3; \
	mov	dst, a14
#endif /* __XTENSA_CALL0_ABI__ */

#endif /* no multiply hardware */

	/* Add pp1 and pp2 into a10 with carry-out in a9.  */
	do_mul(a10, xl, l, yl, h)	/* pp 1 */
	do_mul(a11, xl, h, yl, l)	/* pp 2 */
	movi	a9, 0
	add	a10, a10, a11
	bgeu	a10, a11, 1f
	addi	a9, a9, 1
1:
	/* Initialize a6 with a9/a10 shifted into position.  Note that
	   this value can be safely incremented without any carry-outs.  */
	ssai	16
	src	a6, a9, a10

	/* Compute the low word into a10.  */
	do_mul(a11, xl, l, yl, l)	/* pp 0 */
	sll	a10, a10
	add	a10, a10, a11
	bgeu	a10, a11, 1f
	addi	a6, a6, 1
1:
	/* Compute the contributions of pp0-5 to a6, with carry-outs in a9.
	   This is good enough to determine the low half of a6, so that any
	   nonzero bits from the low word of the result can be collapsed
	   into a6, freeing up a register.  */
	movi	a9, 0
	do_mul(a11, xl, l, yh, l)	/* pp 3 */
	add	a6, a6, a11
	bgeu	a6, a11, 1f
	addi	a9, a9, 1
1:
	do_mul(a11, xl, h, yl, h)	/* pp 4 */
	add	a6, a6, a11
	bgeu	a6, a11, 1f
	addi	a9, a9, 1
1:
	do_mul(a11, xh, l, yl, l)	/* pp 5 */
	add	a6, a6, a11
	bgeu	a6, a11, 1f
	addi	a9, a9, 1
1:
	/* Collapse any nonzero bits from the low word into a6.  */
	beqz	a10, 1f
	movi	a11, 1
	or	a6, a6, a11
1:
	/* Add pp6-9 into a11 with carry-outs in a10.  */
	do_mul(a7, xl, l, yh, h)	/* pp 6 */
	do_mul(a11, xh, h, yl, l)	/* pp 9 */
	movi	a10, 0
	add	a11, a11, a7
	bgeu	a11, a7, 1f
	addi	a10, a10, 1
1:	
	do_mul(a7, xl, h, yh, l)	/* pp 7 */
	add	a11, a11, a7
	bgeu	a11, a7, 1f
	addi	a10, a10, 1
1:	
	do_mul(a7, xh, l, yl, h)	/* pp 8 */
	add	a11, a11, a7
	bgeu	a11, a7, 1f
	addi	a10, a10, 1
1:	
	/* Shift a10/a11 into position, and add low half of a11 to a6.  */
	src	a10, a10, a11
	add	a10, a10, a9
	sll	a11, a11
	add	a6, a6, a11
	bgeu	a6, a11, 1f
	addi	a10, a10, 1
1:
	/* Add pp10-12 into xl with carry-outs in a9.  */
	movi	a9, 0
	do_mul(xl, xl, h, yh, h)	/* pp 10 */
	add	xl, xl, a10
	bgeu	xl, a10, 1f
	addi	a9, a9, 1
1:
	do_mul(a10, xh, l, yh, l)	/* pp 11 */
	add	xl, xl, a10
	bgeu	xl, a10, 1f
	addi	a9, a9, 1
1:
	do_mul(a10, xh, h, yl, h)	/* pp 12 */
	add	xl, xl, a10
	bgeu	xl, a10, 1f
	addi	a9, a9, 1
1:
	/* Add pp13-14 into a11 with carry-outs in a10.  */
	do_mul(a11, xh, l, yh, h)	/* pp 13 */
	do_mul(a7, xh, h, yh, l)	/* pp 14 */
	movi	a10, 0
	add	a11, a11, a7
	bgeu	a11, a7, 1f
	addi	a10, a10, 1
1:
	/* Shift a10/a11 into position, and add low half of a11 to a6.  */
	src	a10, a10, a11
	add	a10, a10, a9
	sll	a11, a11
	add	xl, xl, a11
	bgeu	xl, a11, 1f
	addi	a10, a10, 1
1:
	/* Compute xh.  */
	do_mul(xh, xh, h, yh, h)	/* pp 15 */
	add	xh, xh, a10

	/* Restore values saved on the stack during the multiplication.  */
	l32i	a7, sp, 4
#if __XTENSA_CALL0_ABI__ && XCHAL_NO_MUL
	l32i	a0, sp, 0
	l32i	a8, sp, 8
#endif
#endif /* ! XCHAL_HAVE_MUL32_HIGH */

	/* Shift left by 12 bits, unless there was a carry-out from the
	   multiply, in which case, shift by 11 bits and increment the
	   exponent.  Note: It is convenient to use the constant 0x3ff
	   instead of 0x400 when removing the extra exponent bias (so that
	   it is easy to construct 0x7fe for the overflow check).  Reverse
	   the logic here to decrement the exponent sum by one unless there
	   was a carry-out.  */
	movi	a4, 11
	srli	a5, xh, 21 - 12
	bnez	a5, 1f
	addi	a4, a4, 1
	addi	a8, a8, -1
1:	ssl	a4
	src	xh, xh, xl
	src	xl, xl, a6
	sll	a6, a6

	/* Subtract the extra bias from the exponent sum (plus one to account
	   for the explicit "1.0" of the mantissa that will be added to the
	   exponent in the final result).  */
	movi	a4, 0x3ff
	sub	a8, a8, a4
	
	/* Check for over/underflow.  The value in a8 is one less than the
	   final exponent, so values in the range 0..7fd are OK here.  */
	slli	a4, a4, 1	/* 0x7fe */
	bgeu	a8, a4, .Lmul_overflow
	
.Lmul_round:
	/* Round.  */
	bgez	a6, .Lmul_rounded
	addi	xl, xl, 1
	beqz	xl, .Lmul_roundcarry
	slli	a6, a6, 1
	beqz	a6, .Lmul_exactlyhalf

.Lmul_rounded:
	/* Add the exponent to the mantissa.  */
	slli	a8, a8, 20
	add	xh, xh, a8

.Lmul_addsign:
	/* Add the sign bit.  */
	srli	a7, a7, 31
	slli	a7, a7, 31
	or	xh, xh, a7

.Lmul_done:
#if __XTENSA_CALL0_ABI__
	l32i	a12, sp, 16
	l32i	a13, sp, 20
	l32i	a14, sp, 24
	l32i	a15, sp, 28
	addi	sp, sp, 32
#endif
	leaf_return

.Lmul_exactlyhalf:
	/* Round down to the nearest even value.  */
	srli	xl, xl, 1
	slli	xl, xl, 1
	j	.Lmul_rounded

.Lmul_roundcarry:
	/* xl is always zero when the rounding increment overflows, so
	   there's no need to round it to an even value.  */
	addi	xh, xh, 1
	/* Overflow is OK -- it will be added to the exponent.  */
	j	.Lmul_rounded

.Lmul_overflow:
	bltz	a8, .Lmul_underflow
	/* Return +/- Infinity.  */
	addi	a8, a4, 1	/* 0x7ff */
	slli	xh, a8, 20
	movi	xl, 0
	j	.Lmul_addsign

.Lmul_underflow:
	/* Create a subnormal value, where the exponent field contains zero,
	   but the effective exponent is 1.  The value of a8 is one less than
	   the actual exponent, so just negate it to get the shift amount.  */
	neg	a8, a8
	mov	a9, a6
	ssr	a8
	bgeui	a8, 32, .Lmul_bigshift
	
	/* Shift xh/xl right.  Any bits that are shifted out of xl are saved
	   in a6 (combined with the shifted-out bits currently in a6) for
	   rounding the result.  */
	sll	a6, xl
	src	xl, xh, xl
	srl	xh, xh
	j	1f

.Lmul_bigshift:
	bgeui	a8, 64, .Lmul_flush_to_zero
	sll	a10, xl		/* lost bits shifted out of xl */
	src	a6, xh, xl
	srl	xl, xh
	movi	xh, 0
	or	a9, a9, a10

	/* Set the exponent to zero.  */
1:	movi	a8, 0

	/* Pack any nonzero bits shifted out into a6.  */
	beqz	a9, .Lmul_round
	movi	a9, 1
	or	a6, a6, a9
	j	.Lmul_round
	
.Lmul_flush_to_zero:
	/* Return zero with the appropriate sign bit.  */
	srli	xh, a7, 31
	slli	xh, xh, 31
	movi	xl, 0
	j	.Lmul_done

#if XCHAL_NO_MUL
	
	/* For Xtensa processors with no multiply hardware, this simplified
	   version of _mulsi3 is used for multiplying 16-bit chunks of
	   the floating-point mantissas.  When using CALL0, this function
	   uses a custom ABI: the inputs are passed in a13 and a14, the
	   result is returned in a12, and a8 and a15 are clobbered.  */
	.align	4
.Lmul_mulsi3:
	leaf_entry sp, 16
	.macro mul_mulsi3_body dst, src1, src2, tmp1, tmp2
	movi	\dst, 0
1:	add	\tmp1, \src2, \dst
	extui	\tmp2, \src1, 0, 1
	movnez	\dst, \tmp1, \tmp2

	do_addx2 \tmp1, \src2, \dst, \tmp1
	extui	\tmp2, \src1, 1, 1
	movnez	\dst, \tmp1, \tmp2

	do_addx4 \tmp1, \src2, \dst, \tmp1
	extui	\tmp2, \src1, 2, 1
	movnez	\dst, \tmp1, \tmp2

	do_addx8 \tmp1, \src2, \dst, \tmp1
	extui	\tmp2, \src1, 3, 1
	movnez	\dst, \tmp1, \tmp2

	srli	\src1, \src1, 4
	slli	\src2, \src2, 4
	bnez	\src1, 1b
	.endm
#if __XTENSA_CALL0_ABI__
	mul_mulsi3_body a12, a13, a14, a15, a8
#else
	/* The result will be written into a2, so save that argument in a4.  */
	mov	a4, a2
	mul_mulsi3_body a2, a4, a3, a5, a6
#endif
	leaf_return
#endif /* XCHAL_NO_MUL */
#endif /* L_muldf3 */

#ifdef L_divdf3

	/* Division */

#if XCHAL_HAVE_DFP_DIV

        .text
        .align 4
        .global __divdf3
        .type	__divdf3, @function
__divdf3:
	leaf_entry	sp, 16

	wfrd		f1, xh, xl
	wfrd		f2, yh, yl

	div0.d		f3, f2
	nexp01.d	f4, f2
	const.d		f0, 1
	maddn.d		f0, f4, f3
	const.d		f5, 0
	mov.d		f7, f2
	mkdadj.d	f7, f1
	maddn.d		f3, f0, f3
	maddn.d		f5, f0, f0
	nexp01.d	f1, f1
	div0.d		f2, f2
	maddn.d		f3, f5, f3
	const.d		f5, 1
	const.d		f0, 0
	neg.d		f6, f1
	maddn.d		f5, f4, f3
	maddn.d		f0, f6, f2
	maddn.d		f3, f5, f3
	maddn.d		f6, f4, f0
	const.d		f2, 1
	maddn.d		f2, f4, f3
	maddn.d		f0, f6, f3
	neg.d		f1, f1
	maddn.d		f3, f2, f3
	maddn.d		f1, f4, f0
	addexpm.d	f0, f7
	addexp.d	f3, f7
	divn.d		f0, f1, f3

	rfr		xl, f0
	rfrd		xh, f0

	leaf_return

#else

	.literal_position

__divdf3_aux:

	/* Handle unusual cases (zeros, subnormals, NaNs and Infinities).
	   (This code is placed before the start of the function just to
	   keep it in range of the limited branch displacements.)  */

.Ldiv_yexpzero:
	/* Clear the sign bit of y.  */
	slli	yh, yh, 1
	srli	yh, yh, 1

	/* Check for division by zero.  */
	or	a10, yh, yl
	beqz	a10, .Ldiv_yzero

	/* Normalize y.  Adjust the exponent in a9.  */
	beqz	yh, .Ldiv_yh_zero
	do_nsau	a10, yh, a11, a9
	addi	a10, a10, -11
	ssl	a10
	src	yh, yh, yl
	sll	yl, yl
	movi	a9, 1
	sub	a9, a9, a10
	j	.Ldiv_ynormalized	
.Ldiv_yh_zero:
	do_nsau	a10, yl, a11, a9
	addi	a10, a10, -11
	movi	a9, -31
	sub	a9, a9, a10
	ssl	a10
	bltz	a10, .Ldiv_yl_srl
	sll	yh, yl
	movi	yl, 0
	j	.Ldiv_ynormalized
.Ldiv_yl_srl:
	srl	yh, yl
	sll	yl, yl
	j	.Ldiv_ynormalized	

.Ldiv_yzero:
	/* y is zero.  Return NaN if x is also zero; otherwise, infinity.  */
	slli	xh, xh, 1
	srli	xh, xh, 1
	or	xl, xl, xh
	srli	xh, a7, 31
	slli	xh, xh, 31
	or	xh, xh, a6
	bnez	xl, 1f
	movi	a4, 0x80000	/* make it a quiet NaN */
	or	xh, xh, a4
1:	movi	xl, 0
	leaf_return

.Ldiv_xexpzero:
	/* Clear the sign bit of x.  */
	slli	xh, xh, 1
	srli	xh, xh, 1

	/* If x is zero, return zero.  */
	or	a10, xh, xl
	beqz	a10, .Ldiv_return_zero

	/* Normalize x.  Adjust the exponent in a8.  */
	beqz	xh, .Ldiv_xh_zero
	do_nsau	a10, xh, a11, a8
	addi	a10, a10, -11
	ssl	a10
	src	xh, xh, xl
	sll	xl, xl
	movi	a8, 1
	sub	a8, a8, a10
	j	.Ldiv_xnormalized	
.Ldiv_xh_zero:
	do_nsau	a10, xl, a11, a8
	addi	a10, a10, -11
	movi	a8, -31
	sub	a8, a8, a10
	ssl	a10
	bltz	a10, .Ldiv_xl_srl
	sll	xh, xl
	movi	xl, 0
	j	.Ldiv_xnormalized
.Ldiv_xl_srl:
	srl	xh, xl
	sll	xl, xl
	j	.Ldiv_xnormalized
	
.Ldiv_return_zero:
	/* Return zero with the appropriate sign bit.  */
	srli	xh, a7, 31
	slli	xh, xh, 31
	movi	xl, 0
	leaf_return

.Ldiv_xnan_or_inf:
	/* Set the sign bit of the result.  */
	srli	a7, yh, 31
	slli	a7, a7, 31
	xor	xh, xh, a7
	/* If y is NaN or Inf, return NaN.  */
	ball	yh, a6, .Ldiv_return_nan
	slli	a8, xh, 12
	or	a8, a8, xl
	bnez	a8, .Ldiv_return_nan
	leaf_return

.Ldiv_ynan_or_inf:
	/* If y is Infinity, return zero.  */
	slli	a8, yh, 12
	or	a8, a8, yl
	beqz	a8, .Ldiv_return_zero
	/* y is NaN; return it.  */
	mov	xh, yh
	mov	xl, yl

.Ldiv_return_nan:
	movi	a4, 0x80000	/* make it a quiet NaN */
	or	xh, xh, a4
	leaf_return

.Ldiv_highequal1:
	bltu	xl, yl, 2f
	j	3f

	.align	4
	.global	__divdf3
	.type	__divdf3, @function
__divdf3:
	leaf_entry sp, 16
	movi	a6, 0x7ff00000

	/* Get the sign of the result.  */
	xor	a7, xh, yh

	/* Check for NaN and infinity.  */
	ball	xh, a6, .Ldiv_xnan_or_inf
	ball	yh, a6, .Ldiv_ynan_or_inf

	/* Extract the exponents.  */
	extui	a8, xh, 20, 11
	extui	a9, yh, 20, 11

	beqz	a9, .Ldiv_yexpzero
.Ldiv_ynormalized:	
	beqz	a8, .Ldiv_xexpzero
.Ldiv_xnormalized:	

	/* Subtract the exponents.  */
	sub	a8, a8, a9

	/* Replace sign/exponent fields with explicit "1.0".  */
	movi	a10, 0x1fffff
	or	xh, xh, a6
	and	xh, xh, a10
	or	yh, yh, a6
	and	yh, yh, a10

	/* Set SAR for left shift by one.  */
	ssai	(32 - 1)

	/* The first digit of the mantissa division must be a one.
	   Shift x (and adjust the exponent) as needed to make this true.  */
	bltu	yh, xh, 3f
	beq	yh, xh, .Ldiv_highequal1
2:	src	xh, xh, xl
	sll	xl, xl
	addi	a8, a8, -1
3:
	/* Do the first subtraction and shift.  */
	sub	xh, xh, yh
	bgeu	xl, yl, 1f
	addi	xh, xh, -1
1:	sub	xl, xl, yl
	src	xh, xh, xl
	sll	xl, xl

	/* Put the quotient into a10/a11.  */
	movi	a10, 0
	movi	a11, 1

	/* Divide one bit at a time for 52 bits.  */
	movi	a9, 52
#if XCHAL_HAVE_LOOPS
	loop	a9, .Ldiv_loopend
#endif
.Ldiv_loop:
	/* Shift the quotient << 1.  */
	src	a10, a10, a11
	sll	a11, a11

	/* Is this digit a 0 or 1?  */
	bltu	xh, yh, 3f
	beq	xh, yh, .Ldiv_highequal2

	/* Output a 1 and subtract.  */
2:	addi	a11, a11, 1
	sub	xh, xh, yh
	bgeu	xl, yl, 1f
	addi	xh, xh, -1
1:	sub	xl, xl, yl

	/* Shift the dividend << 1.  */
3:	src	xh, xh, xl
	sll	xl, xl

#if !XCHAL_HAVE_LOOPS
	addi	a9, a9, -1
	bnez	a9, .Ldiv_loop
#endif
.Ldiv_loopend:

	/* Add the exponent bias (less one to account for the explicit "1.0"
	   of the mantissa that will be added to the exponent in the final
	   result).  */
	movi	a9, 0x3fe
	add	a8, a8, a9
	
	/* Check for over/underflow.  The value in a8 is one less than the
	   final exponent, so values in the range 0..7fd are OK here.  */
	addmi	a9, a9, 0x400	/* 0x7fe */
	bgeu	a8, a9, .Ldiv_overflow

.Ldiv_round:
	/* Round.  The remainder (<< 1) is in xh/xl.  */
	bltu	xh, yh, .Ldiv_rounded
	beq	xh, yh, .Ldiv_highequal3
.Ldiv_roundup:
	addi	a11, a11, 1
	beqz	a11, .Ldiv_roundcarry

.Ldiv_rounded:
	mov	xl, a11
	/* Add the exponent to the mantissa.  */
	slli	a8, a8, 20
	add	xh, a10, a8

.Ldiv_addsign:
	/* Add the sign bit.  */
	srli	a7, a7, 31
	slli	a7, a7, 31
	or	xh, xh, a7
	leaf_return

.Ldiv_highequal2:
	bgeu	xl, yl, 2b
	j	3b

.Ldiv_highequal3:
	bltu	xl, yl, .Ldiv_rounded
	bne	xl, yl, .Ldiv_roundup

	/* Remainder is exactly half the divisor.  Round even.  */
	addi	a11, a11, 1
	beqz	a11, .Ldiv_roundcarry
	srli	a11, a11, 1
	slli	a11, a11, 1
	j	.Ldiv_rounded

.Ldiv_overflow:
	bltz	a8, .Ldiv_underflow
	/* Return +/- Infinity.  */
	addi	a8, a9, 1	/* 0x7ff */
	slli	xh, a8, 20
	movi	xl, 0
	j	.Ldiv_addsign

.Ldiv_underflow:
	/* Create a subnormal value, where the exponent field contains zero,
	   but the effective exponent is 1.  The value of a8 is one less than
	   the actual exponent, so just negate it to get the shift amount.  */
	neg	a8, a8
	ssr	a8
	bgeui	a8, 32, .Ldiv_bigshift
	
	/* Shift a10/a11 right.  Any bits that are shifted out of a11 are
	   saved in a6 for rounding the result.  */
	sll	a6, a11
	src	a11, a10, a11
	srl	a10, a10
	j	1f

.Ldiv_bigshift:
	bgeui	a8, 64, .Ldiv_flush_to_zero
	sll	a9, a11		/* lost bits shifted out of a11 */
	src	a6, a10, a11
	srl	a11, a10
	movi	a10, 0
	or	xl, xl, a9

	/* Set the exponent to zero.  */
1:	movi	a8, 0

	/* Pack any nonzero remainder (in xh/xl) into a6.  */
	or	xh, xh, xl
	beqz	xh, 1f
	movi	a9, 1
	or	a6, a6, a9
	
	/* Round a10/a11 based on the bits shifted out into a6.  */
1:	bgez	a6, .Ldiv_rounded
	addi	a11, a11, 1
	beqz	a11, .Ldiv_roundcarry
	slli	a6, a6, 1
	bnez	a6, .Ldiv_rounded
	srli	a11, a11, 1
	slli	a11, a11, 1
	j	.Ldiv_rounded

.Ldiv_roundcarry:
	/* a11 is always zero when the rounding increment overflows, so
	   there's no need to round it to an even value.  */
	addi	a10, a10, 1
	/* Overflow to the exponent field is OK.  */
	j	.Ldiv_rounded

.Ldiv_flush_to_zero:
	/* Return zero with the appropriate sign bit.  */
	srli	xh, a7, 31
	slli	xh, xh, 31
	movi	xl, 0
	leaf_return

#endif /* XCHAL_HAVE_DFP_DIV */

#endif /* L_divdf3 */

#ifdef L_cmpdf2

	/* Equal and Not Equal */

	.align	4
	.global	__eqdf2
	.global	__nedf2
	.set	__nedf2, __eqdf2
	.type	__eqdf2, @function
__eqdf2:
	leaf_entry sp, 16
	bne	xl, yl, 2f
	bne	xh, yh, 4f

	/* The values are equal but NaN != NaN.  Check the exponent.  */
	movi	a6, 0x7ff00000
	ball	xh, a6, 3f

	/* Equal.  */
	movi	a2, 0
	leaf_return

	/* Not equal.  */
2:	movi	a2, 1
	leaf_return

	/* Check if the mantissas are nonzero.  */
3:	slli	a7, xh, 12
	or	a7, a7, xl
	j	5f

	/* Check if x and y are zero with different signs.  */
4:	or	a7, xh, yh
	slli	a7, a7, 1
	or	a7, a7, xl	/* xl == yl here */

	/* Equal if a7 == 0, where a7 is either abs(x | y) or the mantissa
	   or x when exponent(x) = 0x7ff and x == y.  */
5:	movi	a2, 0
	movi	a3, 1
	movnez	a2, a3, a7	
	leaf_return


	/* Greater Than */

	.align	4
	.global	__gtdf2
	.type	__gtdf2, @function
__gtdf2:
	leaf_entry sp, 16
	movi	a6, 0x7ff00000
	ball	xh, a6, 2f
1:	bnall	yh, a6, .Lle_cmp

	/* Check if y is a NaN.  */
	slli	a7, yh, 12
	or	a7, a7, yl
	beqz	a7, .Lle_cmp
	movi	a2, 0
	leaf_return

	/* Check if x is a NaN.  */
2:	slli	a7, xh, 12
	or	a7, a7, xl
	beqz	a7, 1b
	movi	a2, 0
	leaf_return


	/* Less Than or Equal */

	.align	4
	.global	__ledf2
	.type	__ledf2, @function
__ledf2:
	leaf_entry sp, 16
	movi	a6, 0x7ff00000
	ball	xh, a6, 2f
1:	bnall	yh, a6, .Lle_cmp

	/* Check if y is a NaN.  */
	slli	a7, yh, 12
	or	a7, a7, yl
	beqz	a7, .Lle_cmp
	movi	a2, 1
	leaf_return

	/* Check if x is a NaN.  */
2:	slli	a7, xh, 12
	or	a7, a7, xl
	beqz	a7, 1b
	movi	a2, 1
	leaf_return

.Lle_cmp:
	/* Check if x and y have different signs.  */
	xor	a7, xh, yh
	bltz	a7, .Lle_diff_signs

	/* Check if x is negative.  */
	bltz	xh, .Lle_xneg

	/* Check if x <= y.  */
	bltu	xh, yh, 4f
	bne	xh, yh, 5f
	bltu	yl, xl, 5f
4:	movi	a2, 0
	leaf_return

.Lle_xneg:
	/* Check if y <= x.  */
	bltu	yh, xh, 4b
	bne	yh, xh, 5f
	bgeu	xl, yl, 4b
5:	movi	a2, 1
	leaf_return

.Lle_diff_signs:
	bltz	xh, 4b

	/* Check if both x and y are zero.  */
	or	a7, xh, yh
	slli	a7, a7, 1
	or	a7, a7, xl
	or	a7, a7, yl
	movi	a2, 1
	movi	a3, 0
	moveqz	a2, a3, a7
	leaf_return


	/* Greater Than or Equal */

	.align	4
	.global	__gedf2
	.type	__gedf2, @function
__gedf2:
	leaf_entry sp, 16
	movi	a6, 0x7ff00000
	ball	xh, a6, 2f
1:	bnall	yh, a6, .Llt_cmp

	/* Check if y is a NaN.  */
	slli	a7, yh, 12
	or	a7, a7, yl
	beqz	a7, .Llt_cmp
	movi	a2, -1
	leaf_return

	/* Check if x is a NaN.  */
2:	slli	a7, xh, 12
	or	a7, a7, xl
	beqz	a7, 1b
	movi	a2, -1
	leaf_return


	/* Less Than */

	.align	4
	.global	__ltdf2
	.type	__ltdf2, @function
__ltdf2:
	leaf_entry sp, 16
	movi	a6, 0x7ff00000
	ball	xh, a6, 2f
1:	bnall	yh, a6, .Llt_cmp

	/* Check if y is a NaN.  */
	slli	a7, yh, 12
	or	a7, a7, yl
	beqz	a7, .Llt_cmp
	movi	a2, 0
	leaf_return

	/* Check if x is a NaN.  */
2:	slli	a7, xh, 12
	or	a7, a7, xl
	beqz	a7, 1b
	movi	a2, 0
	leaf_return

.Llt_cmp:
	/* Check if x and y have different signs.  */
	xor	a7, xh, yh
	bltz	a7, .Llt_diff_signs

	/* Check if x is negative.  */
	bltz	xh, .Llt_xneg

	/* Check if x < y.  */
	bltu	xh, yh, 4f
	bne	xh, yh, 5f
	bgeu	xl, yl, 5f
4:	movi	a2, -1
	leaf_return

.Llt_xneg:
	/* Check if y < x.  */
	bltu	yh, xh, 4b
	bne	yh, xh, 5f
	bltu	yl, xl, 4b
5:	movi	a2, 0
	leaf_return

.Llt_diff_signs:
	bgez	xh, 5b

	/* Check if both x and y are nonzero.  */
	or	a7, xh, yh
	slli	a7, a7, 1
	or	a7, a7, xl
	or	a7, a7, yl
	movi	a2, 0
	movi	a3, -1
	movnez	a2, a3, a7
	leaf_return


	/* Unordered */

	.align	4
	.global	__unorddf2
	.type	__unorddf2, @function
__unorddf2:
	leaf_entry sp, 16
	movi	a6, 0x7ff00000
	ball	xh, a6, 3f
1:	ball	yh, a6, 4f
2:	movi	a2, 0
	leaf_return

3:	slli	a7, xh, 12
	or	a7, a7, xl
	beqz	a7, 1b
	movi	a2, 1
	leaf_return

4:	slli	a7, yh, 12
	or	a7, a7, yl
	beqz	a7, 2b
	movi	a2, 1
	leaf_return

#endif /* L_cmpdf2 */

#ifdef L_fixdfsi

	.align	4
	.global	__fixdfsi
	.type	__fixdfsi, @function
__fixdfsi:
	leaf_entry sp, 16

	/* Check for NaN and Infinity.  */
	movi	a6, 0x7ff00000
	ball	xh, a6, .Lfixdfsi_nan_or_inf

	/* Extract the exponent and check if 0 < (exp - 0x3fe) < 32.  */
	extui	a4, xh, 20, 11
	extui	a5, a6, 19, 10	/* 0x3fe */
	sub	a4, a4, a5
	bgei	a4, 32, .Lfixdfsi_maxint
	blti	a4, 1, .Lfixdfsi_zero

	/* Add explicit "1.0" and shift << 11.  */
	or	a7, xh, a6
	ssai	(32 - 11)
	src	a5, a7, xl

	/* Shift back to the right, based on the exponent.  */
	ssl	a4		/* shift by 32 - a4 */
	srl	a5, a5

	/* Negate the result if sign != 0.  */
	neg	a2, a5
	movgez	a2, a5, a7
	leaf_return

.Lfixdfsi_nan_or_inf:
	/* Handle Infinity and NaN.  */
	slli	a4, xh, 12
	or	a4, a4, xl
	beqz	a4, .Lfixdfsi_maxint

	/* Translate NaN to +maxint.  */
	movi	xh, 0

.Lfixdfsi_maxint:
	slli	a4, a6, 11	/* 0x80000000 */
	addi	a5, a4, -1	/* 0x7fffffff */
	movgez	a4, a5, xh
	mov	a2, a4
	leaf_return

.Lfixdfsi_zero:
	movi	a2, 0
	leaf_return

#endif /* L_fixdfsi */

#ifdef L_fixdfdi

	.align	4
	.global	__fixdfdi
	.type	__fixdfdi, @function
__fixdfdi:
	leaf_entry sp, 16

	/* Check for NaN and Infinity.  */
	movi	a6, 0x7ff00000
	ball	xh, a6, .Lfixdfdi_nan_or_inf

	/* Extract the exponent and check if 0 < (exp - 0x3fe) < 64.  */
	extui	a4, xh, 20, 11
	extui	a5, a6, 19, 10	/* 0x3fe */
	sub	a4, a4, a5
	bgei	a4, 64, .Lfixdfdi_maxint
	blti	a4, 1, .Lfixdfdi_zero

	/* Add explicit "1.0" and shift << 11.  */
	or	a7, xh, a6
	ssai	(32 - 11)
	src	xh, a7, xl
	sll	xl, xl

	/* Shift back to the right, based on the exponent.  */
	ssl	a4		/* shift by 64 - a4 */
	bgei	a4, 32, .Lfixdfdi_smallshift
	srl	xl, xh
	movi	xh, 0

.Lfixdfdi_shifted:	
	/* Negate the result if sign != 0.  */
	bgez	a7, 1f
	neg	xl, xl
	neg	xh, xh
	beqz	xl, 1f
	addi	xh, xh, -1
1:	leaf_return

.Lfixdfdi_smallshift:
	src	xl, xh, xl
	srl	xh, xh
	j	.Lfixdfdi_shifted

.Lfixdfdi_nan_or_inf:
	/* Handle Infinity and NaN.  */
	slli	a4, xh, 12
	or	a4, a4, xl
	beqz	a4, .Lfixdfdi_maxint

	/* Translate NaN to +maxint.  */
	movi	xh, 0

.Lfixdfdi_maxint:
	slli	a7, a6, 11	/* 0x80000000 */
	bgez	xh, 1f
	mov	xh, a7
	movi	xl, 0
	leaf_return

1:	addi	xh, a7, -1	/* 0x7fffffff */
	movi	xl, -1
	leaf_return

.Lfixdfdi_zero:
	movi	xh, 0
	movi	xl, 0
	leaf_return

#endif /* L_fixdfdi */

#ifdef L_fixunsdfsi

	.align	4
	.global	__fixunsdfsi
	.type	__fixunsdfsi, @function
__fixunsdfsi:
	leaf_entry sp, 16

	/* Check for NaN and Infinity.  */
	movi	a6, 0x7ff00000
	ball	xh, a6, .Lfixunsdfsi_nan_or_inf

	/* Extract the exponent and check if 0 <= (exp - 0x3ff) < 32.  */
	extui	a4, xh, 20, 11
	extui	a5, a6, 20, 10	/* 0x3ff */
	sub	a4, a4, a5
	bgei	a4, 32, .Lfixunsdfsi_maxint
	bltz	a4, .Lfixunsdfsi_zero

	/* Add explicit "1.0" and shift << 11.  */
	or	a7, xh, a6
	ssai	(32 - 11)
	src	a5, a7, xl

	/* Shift back to the right, based on the exponent.  */
	addi	a4, a4, 1
	beqi	a4, 32, .Lfixunsdfsi_bigexp
	ssl	a4		/* shift by 32 - a4 */
	srl	a5, a5

	/* Negate the result if sign != 0.  */
	neg	a2, a5
	movgez	a2, a5, a7
	leaf_return

.Lfixunsdfsi_nan_or_inf:
	/* Handle Infinity and NaN.  */
	slli	a4, xh, 12
	or	a4, a4, xl
	beqz	a4, .Lfixunsdfsi_maxint

	/* Translate NaN to 0xffffffff.  */
	movi	a2, -1
	leaf_return

.Lfixunsdfsi_maxint:
	slli	a4, a6, 11	/* 0x80000000 */
	movi	a5, -1		/* 0xffffffff */
	movgez	a4, a5, xh
	mov	a2, a4
	leaf_return

.Lfixunsdfsi_zero:
	movi	a2, 0
	leaf_return

.Lfixunsdfsi_bigexp:
	/* Handle unsigned maximum exponent case.  */
	bltz	xh, 1f
	mov	a2, a5		/* no shift needed */
	leaf_return

	/* Return 0x80000000 if negative.  */
1:	slli	a2, a6, 11
	leaf_return

#endif /* L_fixunsdfsi */

#ifdef L_fixunsdfdi

	.align	4
	.global	__fixunsdfdi
	.type	__fixunsdfdi, @function
__fixunsdfdi:
	leaf_entry sp, 16

	/* Check for NaN and Infinity.  */
	movi	a6, 0x7ff00000
	ball	xh, a6, .Lfixunsdfdi_nan_or_inf

	/* Extract the exponent and check if 0 <= (exp - 0x3ff) < 64.  */
	extui	a4, xh, 20, 11
	extui	a5, a6, 20, 10	/* 0x3ff */
	sub	a4, a4, a5
	bgei	a4, 64, .Lfixunsdfdi_maxint
	bltz	a4, .Lfixunsdfdi_zero

	/* Add explicit "1.0" and shift << 11.  */
	or	a7, xh, a6
	ssai	(32 - 11)
	src	xh, a7, xl
	sll	xl, xl

	/* Shift back to the right, based on the exponent.  */
	addi	a4, a4, 1
	beqi	a4, 64, .Lfixunsdfdi_bigexp
	ssl	a4		/* shift by 64 - a4 */
	bgei	a4, 32, .Lfixunsdfdi_smallshift
	srl	xl, xh
	movi	xh, 0

.Lfixunsdfdi_shifted:
	/* Negate the result if sign != 0.  */
	bgez	a7, 1f
	neg	xl, xl
	neg	xh, xh
	beqz	xl, 1f
	addi	xh, xh, -1
1:	leaf_return

.Lfixunsdfdi_smallshift:
	src	xl, xh, xl
	srl	xh, xh
	j	.Lfixunsdfdi_shifted

.Lfixunsdfdi_nan_or_inf:
	/* Handle Infinity and NaN.  */
	slli	a4, xh, 12
	or	a4, a4, xl
	beqz	a4, .Lfixunsdfdi_maxint

	/* Translate NaN to 0xffffffff.... */
1:	movi	xh, -1
	movi	xl, -1
	leaf_return

.Lfixunsdfdi_maxint:
	bgez	xh, 1b
2:	slli	xh, a6, 11	/* 0x80000000 */
	movi	xl, 0
	leaf_return

.Lfixunsdfdi_zero:
	movi	xh, 0
	movi	xl, 0
	leaf_return

.Lfixunsdfdi_bigexp:
	/* Handle unsigned maximum exponent case.  */
	bltz	a7, 2b
	leaf_return		/* no shift needed */

#endif /* L_fixunsdfdi */

#ifdef L_floatsidf

	.align	4
	.global	__floatunsidf
	.type	__floatunsidf, @function
__floatunsidf:
	leaf_entry sp, 16
	beqz	a2, .Lfloatsidf_return_zero

	/* Set the sign to zero and jump to the floatsidf code.  */
	movi	a7, 0
	j	.Lfloatsidf_normalize

	.align	4
	.global	__floatsidf
	.type	__floatsidf, @function
__floatsidf:
	leaf_entry sp, 16

	/* Check for zero.  */
	beqz	a2, .Lfloatsidf_return_zero

	/* Save the sign.  */
	extui	a7, a2, 31, 1

	/* Get the absolute value.  */
#if XCHAL_HAVE_ABS
	abs	a2, a2
#else
	neg	a4, a2
	movltz	a2, a4, a2
#endif

.Lfloatsidf_normalize:
	/* Normalize with the first 1 bit in the msb.  */
	do_nsau	a4, a2, a5, a6
	ssl	a4
	sll	a5, a2

	/* Shift the mantissa into position.  */
	srli	xh, a5, 11
	slli	xl, a5, (32 - 11)

	/* Set the exponent.  */
	movi	a5, 0x41d	/* 0x3fe + 31 */
	sub	a5, a5, a4
	slli	a5, a5, 20
	add	xh, xh, a5

	/* Add the sign and return. */
	slli	a7, a7, 31
	or	xh, xh, a7
	leaf_return

.Lfloatsidf_return_zero:
	movi	a3, 0
	leaf_return

#endif /* L_floatsidf */

#ifdef L_floatdidf

	.align	4
	.global	__floatundidf
	.type	__floatundidf, @function
__floatundidf:
	leaf_entry sp, 16

	/* Check for zero.  */
	or	a4, xh, xl
	beqz	a4, 2f

	/* Set the sign to zero and jump to the floatdidf code.  */
	movi	a7, 0
	j	.Lfloatdidf_normalize

	.align	4
	.global	__floatdidf
	.type	__floatdidf, @function
__floatdidf:
	leaf_entry sp, 16

	/* Check for zero.  */
	or	a4, xh, xl
	beqz	a4, 2f

	/* Save the sign.  */
	extui	a7, xh, 31, 1

	/* Get the absolute value.  */
	bgez	xh, .Lfloatdidf_normalize
	neg	xl, xl
	neg	xh, xh
	beqz	xl, .Lfloatdidf_normalize
	addi	xh, xh, -1

.Lfloatdidf_normalize:
	/* Normalize with the first 1 bit in the msb of xh.  */
	beqz	xh, .Lfloatdidf_bigshift
	do_nsau	a4, xh, a5, a6
	ssl	a4
	src	xh, xh, xl
	sll	xl, xl

.Lfloatdidf_shifted:
	/* Shift the mantissa into position, with rounding bits in a6.  */
	ssai	11
	sll	a6, xl
	src	xl, xh, xl
	srl	xh, xh

	/* Set the exponent.  */
	movi	a5, 0x43d	/* 0x3fe + 63 */
	sub	a5, a5, a4
	slli	a5, a5, 20
	add	xh, xh, a5

	/* Add the sign.  */
	slli	a7, a7, 31
	or	xh, xh, a7

	/* Round up if the leftover fraction is >= 1/2.  */
	bgez	a6, 2f
	addi	xl, xl, 1
	beqz	xl, .Lfloatdidf_roundcarry

	/* Check if the leftover fraction is exactly 1/2.  */
	slli	a6, a6, 1
	beqz	a6, .Lfloatdidf_exactlyhalf
2:	leaf_return

.Lfloatdidf_bigshift:
	/* xh is zero.  Normalize with first 1 bit of xl in the msb of xh.  */
	do_nsau	a4, xl, a5, a6
	ssl	a4
	sll	xh, xl
	movi	xl, 0
	addi	a4, a4, 32
	j	.Lfloatdidf_shifted

.Lfloatdidf_exactlyhalf:
	/* Round down to the nearest even value.  */
	srli	xl, xl, 1
	slli	xl, xl, 1
	leaf_return

.Lfloatdidf_roundcarry:
	/* xl is always zero when the rounding increment overflows, so
	   there's no need to round it to an even value.  */
	addi	xh, xh, 1
	/* Overflow to the exponent is OK.  */
	leaf_return

#endif /* L_floatdidf */

#ifdef L_truncdfsf2

	.align	4
	.global	__truncdfsf2
	.type	__truncdfsf2, @function
__truncdfsf2:
	leaf_entry sp, 16

	/* Adjust the exponent bias.  */
	movi	a4, (0x3ff - 0x7f) << 20
	sub	a5, xh, a4

	/* Check for underflow.  */
	xor	a6, xh, a5
	bltz	a6, .Ltrunc_underflow
	extui	a6, a5, 20, 11
	beqz	a6, .Ltrunc_underflow

	/* Check for overflow.  */
	movi	a4, 255
	bge	a6, a4, .Ltrunc_overflow

	/* Shift a5/xl << 3 into a5/a4.  */
	ssai	(32 - 3)
	src	a5, a5, xl
	sll	a4, xl

.Ltrunc_addsign:
	/* Add the sign bit.  */
	extui	a6, xh, 31, 1
	slli	a6, a6, 31
	or	a2, a6, a5

	/* Round up if the leftover fraction is >= 1/2.  */
	bgez	a4, 1f
	addi	a2, a2, 1
	/* Overflow to the exponent is OK.  The answer will be correct.  */

	/* Check if the leftover fraction is exactly 1/2.  */
	slli	a4, a4, 1
	beqz	a4, .Ltrunc_exactlyhalf
1:	leaf_return

.Ltrunc_exactlyhalf:
	/* Round down to the nearest even value.  */
	srli	a2, a2, 1
	slli	a2, a2, 1
	leaf_return

.Ltrunc_overflow:
	/* Check if exponent == 0x7ff.  */
	movi	a4, 0x7ff00000
	bnall	xh, a4, 1f

	/* Check if mantissa is nonzero.  */
	slli	a5, xh, 12
	or	a5, a5, xl
	beqz	a5, 1f

	/* Shift a4 to set a bit in the mantissa, making a quiet NaN.  */
	srli	a4, a4, 1

1:	slli	a4, a4, 4	/* 0xff000000 or 0xff800000 */
	/* Add the sign bit.  */
	extui	a6, xh, 31, 1
	ssai	1
	src	a2, a6, a4
	leaf_return

.Ltrunc_underflow:
	/* Find shift count for a subnormal.  Flush to zero if >= 32.  */
	extui	a6, xh, 20, 11
	movi	a5, 0x3ff - 0x7f
	sub	a6, a5, a6
	addi	a6, a6, 1
	bgeui	a6, 32, 1f

	/* Replace the exponent with an explicit "1.0".  */
	slli	a5, a5, 13	/* 0x700000 */
	or	a5, a5, xh
	slli	a5, a5, 11
	srli	a5, a5, 11

	/* Shift the mantissa left by 3 bits (into a5/a4).  */
	ssai	(32 - 3)
	src	a5, a5, xl
	sll	a4, xl

	/* Shift right by a6.  */
	ssr	a6
	sll	a7, a4
	src	a4, a5, a4
	srl	a5, a5
	beqz	a7, .Ltrunc_addsign
	or	a4, a4, a6	/* any positive, nonzero value will work */
	j	.Ltrunc_addsign

	/* Return +/- zero.  */
1:	extui	a2, xh, 31, 1
	slli	a2, a2, 31
	leaf_return

#endif /* L_truncdfsf2 */

#ifdef L_extendsfdf2

	.align	4
	.global	__extendsfdf2
	.type	__extendsfdf2, @function
__extendsfdf2:
	leaf_entry sp, 16

	/* Save the sign bit and then shift it off.  */
	extui	a5, a2, 31, 1
	slli	a5, a5, 31
	slli	a4, a2, 1

	/* Extract and check the exponent.  */
	extui	a6, a2, 23, 8
	beqz	a6, .Lextend_expzero
	addi	a6, a6, 1
	beqi	a6, 256, .Lextend_nan_or_inf

	/* Shift >> 3 into a4/xl.  */
	srli	a4, a4, 4
	slli	xl, a2, (32 - 3)

	/* Adjust the exponent bias.  */
	movi	a6, (0x3ff - 0x7f) << 20
	add	a4, a4, a6

	/* Add the sign bit.  */
	or	xh, a4, a5
	leaf_return

.Lextend_nan_or_inf:
	movi	a4, 0x7ff00000

	/* Check for NaN.  */
	slli	a7, a2, 9
	beqz	a7, 1f

	slli	a6, a6, 11	/* 0x80000 */
	or	a4, a4, a6

	/* Add the sign and return.  */
1:	or	xh, a4, a5
	movi	xl, 0
	leaf_return

.Lextend_expzero:
	beqz	a4, 1b

	/* Normalize it to have 8 zero bits before the first 1 bit.  */
	do_nsau	a7, a4, a2, a3
	addi	a7, a7, -8
	ssl	a7
	sll	a4, a4
	
	/* Shift >> 3 into a4/xl.  */
	slli	xl, a4, (32 - 3)
	srli	a4, a4, 3

	/* Set the exponent.  */
	movi	a6, 0x3fe - 0x7f
	sub	a6, a6, a7
	slli	a6, a6, 20
	add	a4, a4, a6

	/* Add the sign and return.  */
	or	xh, a4, a5
	leaf_return

#endif /* L_extendsfdf2 */


#if XCHAL_HAVE_DFP_SQRT
#ifdef L_sqrt

        .text
        .align 4
        .global __ieee754_sqrt
        .type	__ieee754_sqrt, @function
__ieee754_sqrt:
	leaf_entry	sp, 16

	wfrd		f1, xh, xl

	sqrt0.d		f2, f1
	const.d		f4, 0
	maddn.d		f4, f2, f2
	nexp01.d	f3, f1
	const.d		f0, 3
	addexp.d	f3, f0
	maddn.d		f0, f4, f3
	nexp01.d	f4, f1
	maddn.d		f2, f0, f2
	const.d		f5, 0
	maddn.d		f5, f2, f3
	const.d		f0, 3
	maddn.d		f0, f5, f2
	neg.d		f6, f4
	maddn.d		f2, f0, f2
	const.d		f0, 0
	const.d		f5, 0
	const.d		f7, 0
	maddn.d		f0, f6, f2
	maddn.d		f5, f2, f3
	const.d		f3, 3
	maddn.d		f7, f3, f2
	maddn.d		f4, f0, f0
	maddn.d		f3, f5, f2
	neg.d		f2, f7
	maddn.d		f0, f4, f2
	maddn.d		f7, f3, f7
	mksadj.d	f2, f1
	nexp01.d	f1, f1
	maddn.d		f1, f0, f0
	neg.d		f3, f7
	addexpm.d	f0, f2
	addexp.d	f3, f2
	divn.d		f0, f1, f3

	rfr		xl, f0
	rfrd		xh, f0

	leaf_return

#endif /* L_sqrt */
#endif /* XCHAL_HAVE_DFP_SQRT */

#if XCHAL_HAVE_DFP_RECIP
#ifdef L_recipdf2
	/* Reciprocal */

	.align	4
	.global	__recipdf2
	.type	__recipdf2, @function
__recipdf2:
	leaf_entry	sp, 16

	wfrd		f1, xh, xl

	recip0.d	f0, f1
	const.d		f2, 2
	msub.d		f2, f1, f0
	mul.d		f3, f1, f0
	const.d		f4, 2
	mul.d		f5, f0, f2
	msub.d		f4, f3, f2
	const.d		f2, 1
	mul.d		f0, f5, f4
	msub.d		f2, f1, f0
	maddn.d		f0, f0, f2

	rfr		xl, f0
	rfrd		xh, f0

	leaf_return

#endif /* L_recipdf2 */
#endif /* XCHAL_HAVE_DFP_RECIP */

#if XCHAL_HAVE_DFP_RSQRT
#ifdef L_rsqrtdf2
	/* Reciprocal square root */

	.align	4
	.global	__rsqrtdf2
	.type	__rsqrtdf2, @function
__rsqrtdf2:
	leaf_entry	sp, 16

	wfrd		f1, xh, xl

	rsqrt0.d	f0, f1
	mul.d		f2, f1, f0
	const.d		f3, 3
	mul.d		f4, f3, f0
	const.d		f5, 1
	msub.d		f5, f2, f0
	maddn.d		f0, f4, f5
	const.d		f2, 1
	mul.d		f4, f1, f0
	mul.d		f5, f3, f0
	msub.d		f2, f4, f0
	maddn.d		f0, f5, f2
	const.d		f2, 1
	mul.d		f1, f1, f0
	mul.d		f3, f3, f0
	msub.d		f2, f1, f0
	maddn.d		f0, f3, f2

	rfr		xl, f0
	rfrd		xh, f0

	leaf_return

#endif /* L_rsqrtdf2 */
#endif /* XCHAL_HAVE_DFP_RSQRT */