//===-- sanitizer_win.cc --------------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and ThreadSanitizer
// run-time libraries and implements windows-specific functions from
// sanitizer_libc.h.
//===----------------------------------------------------------------------===//
#include "sanitizer_platform.h"
#if SANITIZER_WINDOWS
#define WIN32_LEAN_AND_MEAN
#define NOGDI
#include <windows.h>
#include <dbghelp.h>
#include <io.h>
#include <psapi.h>
#include <stdlib.h>
#include "sanitizer_common.h"
#include "sanitizer_libc.h"
#include "sanitizer_mutex.h"
#include "sanitizer_placement_new.h"
#include "sanitizer_procmaps.h"
#include "sanitizer_stacktrace.h"
#include "sanitizer_symbolizer.h"
namespace __sanitizer {
#include "sanitizer_syscall_generic.inc"
// --------------------- sanitizer_common.h
uptr GetPageSize() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return si.dwPageSize;
}
uptr GetMmapGranularity() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return si.dwAllocationGranularity;
}
uptr GetMaxVirtualAddress() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return (uptr)si.lpMaximumApplicationAddress;
}
bool FileExists(const char *filename) {
return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
}
uptr internal_getpid() {
return GetProcessId(GetCurrentProcess());
}
// In contrast to POSIX, on Windows GetCurrentThreadId()
// returns a system-unique identifier.
uptr GetTid() {
return GetCurrentThreadId();
}
uptr GetThreadSelf() {
return GetTid();
}
#if !SANITIZER_GO
void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
uptr *stack_bottom) {
CHECK(stack_top);
CHECK(stack_bottom);
MEMORY_BASIC_INFORMATION mbi;
CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
// FIXME: is it possible for the stack to not be a single allocation?
// Are these values what ASan expects to get (reserved, not committed;
// including stack guard page) ?
*stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
*stack_bottom = (uptr)mbi.AllocationBase;
}
#endif // #if !SANITIZER_GO
void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
if (rv == 0)
ReportMmapFailureAndDie(size, mem_type, "allocate",
GetLastError(), raw_report);
return rv;
}
void UnmapOrDie(void *addr, uptr size) {
if (!size || !addr)
return;
MEMORY_BASIC_INFORMATION mbi;
CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
// MEM_RELEASE can only be used to unmap whole regions previously mapped with
// VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
// fails try MEM_DECOMMIT.
if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
Report("ERROR: %s failed to "
"deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
SanitizerToolName, size, size, addr, GetLastError());
CHECK("unable to unmap" && 0);
}
}
}
// We want to map a chunk of address space aligned to 'alignment'.
void *MmapAlignedOrDie(uptr size, uptr alignment, const char *mem_type) {
CHECK(IsPowerOfTwo(size));
CHECK(IsPowerOfTwo(alignment));
// Windows will align our allocations to at least 64K.
alignment = Max(alignment, GetMmapGranularity());
uptr mapped_addr =
(uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
if (!mapped_addr)
ReportMmapFailureAndDie(size, mem_type, "allocate aligned", GetLastError());
// If we got it right on the first try, return. Otherwise, unmap it and go to
// the slow path.
if (IsAligned(mapped_addr, alignment))
return (void*)mapped_addr;
if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
// If we didn't get an aligned address, overallocate, find an aligned address,
// unmap, and try to allocate at that aligned address.
int retries = 0;
const int kMaxRetries = 10;
for (; retries < kMaxRetries &&
(mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
retries++) {
// Overallocate size + alignment bytes.
mapped_addr =
(uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
if (!mapped_addr)
ReportMmapFailureAndDie(size, mem_type, "allocate aligned",
GetLastError());
// Find the aligned address.
uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
// Free the overallocation.
if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
// Attempt to allocate exactly the number of bytes we need at the aligned
// address. This may fail for a number of reasons, in which case we continue
// the loop.
mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
}
// Fail if we can't make this work quickly.
if (retries == kMaxRetries && mapped_addr == 0)
ReportMmapFailureAndDie(size, mem_type, "allocate aligned", GetLastError());
return (void *)mapped_addr;
}
void *MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
// FIXME: is this really "NoReserve"? On Win32 this does not matter much,
// but on Win64 it does.
(void)name; // unsupported
#if !SANITIZER_GO && SANITIZER_WINDOWS64
// On asan/Windows64, use MEM_COMMIT would result in error
// 1455:ERROR_COMMITMENT_LIMIT.
// Asan uses exception handler to commit page on demand.
void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
#else
void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
PAGE_READWRITE);
#endif
if (p == 0)
Report("ERROR: %s failed to "
"allocate %p (%zd) bytes at %p (error code: %d)\n",
SanitizerToolName, size, size, fixed_addr, GetLastError());
return p;
}
// Memory space mapped by 'MmapFixedOrDie' must have been reserved by
// 'MmapFixedNoAccess'.
void *MmapFixedOrDie(uptr fixed_addr, uptr size) {
void *p = VirtualAlloc((LPVOID)fixed_addr, size,
MEM_COMMIT, PAGE_READWRITE);
if (p == 0) {
char mem_type[30];
internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
fixed_addr);
ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
}
return p;
}
void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
// FIXME: make this really NoReserve?
return MmapOrDie(size, mem_type);
}
void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
(void)name; // unsupported
void *res = VirtualAlloc((LPVOID)fixed_addr, size,
MEM_RESERVE, PAGE_NOACCESS);
if (res == 0)
Report("WARNING: %s failed to "
"mprotect %p (%zd) bytes at %p (error code: %d)\n",
SanitizerToolName, size, size, fixed_addr, GetLastError());
return res;
}
void *MmapNoAccess(uptr size) {
void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
if (res == 0)
Report("WARNING: %s failed to "
"mprotect %p (%zd) bytes (error code: %d)\n",
SanitizerToolName, size, size, GetLastError());
return res;
}
bool MprotectNoAccess(uptr addr, uptr size) {
DWORD old_protection;
return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
}
void ReleaseMemoryToOS(uptr addr, uptr size) {
// This is almost useless on 32-bits.
// FIXME: add madvise-analog when we move to 64-bits.
}
void NoHugePagesInRegion(uptr addr, uptr size) {
// FIXME: probably similar to ReleaseMemoryToOS.
}
void DontDumpShadowMemory(uptr addr, uptr length) {
// This is almost useless on 32-bits.
// FIXME: add madvise-analog when we move to 64-bits.
}
uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding) {
uptr address = 0;
while (true) {
MEMORY_BASIC_INFORMATION info;
if (!::VirtualQuery((void*)address, &info, sizeof(info)))
return 0;
if (info.State == MEM_FREE) {
uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
alignment);
if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
return shadow_address;
}
// Move to the next region.
address = (uptr)info.BaseAddress + info.RegionSize;
}
return 0;
}
bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
MEMORY_BASIC_INFORMATION mbi;
CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
return mbi.Protect == PAGE_NOACCESS &&
(uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
}
void *MapFileToMemory(const char *file_name, uptr *buff_size) {
UNIMPLEMENTED();
}
void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
UNIMPLEMENTED();
}
static const int kMaxEnvNameLength = 128;
static const DWORD kMaxEnvValueLength = 32767;
namespace {
struct EnvVariable {
char name[kMaxEnvNameLength];
char value[kMaxEnvValueLength];
};
} // namespace
static const int kEnvVariables = 5;
static EnvVariable env_vars[kEnvVariables];
static int num_env_vars;
const char *GetEnv(const char *name) {
// Note: this implementation caches the values of the environment variables
// and limits their quantity.
for (int i = 0; i < num_env_vars; i++) {
if (0 == internal_strcmp(name, env_vars[i].name))
return env_vars[i].value;
}
CHECK_LT(num_env_vars, kEnvVariables);
DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
kMaxEnvValueLength);
if (rv > 0 && rv < kMaxEnvValueLength) {
CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
num_env_vars++;
return env_vars[num_env_vars - 1].value;
}
return 0;
}
const char *GetPwd() {
UNIMPLEMENTED();
}
u32 GetUid() {
UNIMPLEMENTED();
}
namespace {
struct ModuleInfo {
const char *filepath;
uptr base_address;
uptr end_address;
};
#if !SANITIZER_GO
int CompareModulesBase(const void *pl, const void *pr) {
const ModuleInfo *l = (ModuleInfo *)pl, *r = (ModuleInfo *)pr;
if (l->base_address < r->base_address)
return -1;
return l->base_address > r->base_address;
}
#endif
} // namespace
#if !SANITIZER_GO
void DumpProcessMap() {
Report("Dumping process modules:\n");
ListOfModules modules;
modules.init();
uptr num_modules = modules.size();
InternalScopedBuffer<ModuleInfo> module_infos(num_modules);
for (size_t i = 0; i < num_modules; ++i) {
module_infos[i].filepath = modules[i].full_name();
module_infos[i].base_address = modules[i].ranges().front()->beg;
module_infos[i].end_address = modules[i].ranges().back()->end;
}
qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
CompareModulesBase);
for (size_t i = 0; i < num_modules; ++i) {
const ModuleInfo &mi = module_infos[i];
if (mi.end_address != 0) {
Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
mi.filepath[0] ? mi.filepath : "[no name]");
} else if (mi.filepath[0]) {
Printf("\t??\?-??? %s\n", mi.filepath);
} else {
Printf("\t???\n");
}
}
}
#endif
void DisableCoreDumperIfNecessary() {
// Do nothing.
}
void ReExec() {
UNIMPLEMENTED();
}
void PrepareForSandboxing(__sanitizer_sandbox_arguments *args) {
#if !SANITIZER_GO
CovPrepareForSandboxing(args);
#endif
}
bool StackSizeIsUnlimited() {
UNIMPLEMENTED();
}
void SetStackSizeLimitInBytes(uptr limit) {
UNIMPLEMENTED();
}
bool AddressSpaceIsUnlimited() {
UNIMPLEMENTED();
}
void SetAddressSpaceUnlimited() {
UNIMPLEMENTED();
}
bool IsPathSeparator(const char c) {
return c == '\\' || c == '/';
}
bool IsAbsolutePath(const char *path) {
UNIMPLEMENTED();
}
void SleepForSeconds(int seconds) {
Sleep(seconds * 1000);
}
void SleepForMillis(int millis) {
Sleep(millis);
}
u64 NanoTime() {
return 0;
}
void Abort() {
if (::IsDebuggerPresent())
__debugbreak();
internal__exit(3);
}
#if !SANITIZER_GO
// Read the file to extract the ImageBase field from the PE header. If ASLR is
// disabled and this virtual address is available, the loader will typically
// load the image at this address. Therefore, we call it the preferred base. Any
// addresses in the DWARF typically assume that the object has been loaded at
// this address.
static uptr GetPreferredBase(const char *modname) {
fd_t fd = OpenFile(modname, RdOnly, nullptr);
if (fd == kInvalidFd)
return 0;
FileCloser closer(fd);
// Read just the DOS header.
IMAGE_DOS_HEADER dos_header;
uptr bytes_read;
if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
bytes_read != sizeof(dos_header))
return 0;
// The file should start with the right signature.
if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
return 0;
// The layout at e_lfanew is:
// "PE\0\0"
// IMAGE_FILE_HEADER
// IMAGE_OPTIONAL_HEADER
// Seek to e_lfanew and read all that data.
char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)];
if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
INVALID_SET_FILE_POINTER)
return 0;
if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) ||
bytes_read != sizeof(buf))
return 0;
// Check for "PE\0\0" before the PE header.
char *pe_sig = &buf[0];
if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
return 0;
// Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
IMAGE_OPTIONAL_HEADER *pe_header =
(IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
// Check for more magic in the PE header.
if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
return 0;
// Finally, return the ImageBase.
return (uptr)pe_header->ImageBase;
}
void ListOfModules::init() {
clear();
HANDLE cur_process = GetCurrentProcess();
// Query the list of modules. Start by assuming there are no more than 256
// modules and retry if that's not sufficient.
HMODULE *hmodules = 0;
uptr modules_buffer_size = sizeof(HMODULE) * 256;
DWORD bytes_required;
while (!hmodules) {
hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
&bytes_required));
if (bytes_required > modules_buffer_size) {
// Either there turned out to be more than 256 hmodules, or new hmodules
// could have loaded since the last try. Retry.
UnmapOrDie(hmodules, modules_buffer_size);
hmodules = 0;
modules_buffer_size = bytes_required;
}
}
// |num_modules| is the number of modules actually present,
size_t num_modules = bytes_required / sizeof(HMODULE);
for (size_t i = 0; i < num_modules; ++i) {
HMODULE handle = hmodules[i];
MODULEINFO mi;
if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
continue;
// Get the UTF-16 path and convert to UTF-8.
wchar_t modname_utf16[kMaxPathLength];
int modname_utf16_len =
GetModuleFileNameW(handle, modname_utf16, kMaxPathLength);
if (modname_utf16_len == 0)
modname_utf16[0] = '\0';
char module_name[kMaxPathLength];
int module_name_len =
::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1,
&module_name[0], kMaxPathLength, NULL, NULL);
module_name[module_name_len] = '\0';
uptr base_address = (uptr)mi.lpBaseOfDll;
uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
// Adjust the base address of the module so that we get a VA instead of an
// RVA when computing the module offset. This helps llvm-symbolizer find the
// right DWARF CU. In the common case that the image is loaded at it's
// preferred address, we will now print normal virtual addresses.
uptr preferred_base = GetPreferredBase(&module_name[0]);
uptr adjusted_base = base_address - preferred_base;
LoadedModule cur_module;
cur_module.set(module_name, adjusted_base);
// We add the whole module as one single address range.
cur_module.addAddressRange(base_address, end_address, /*executable*/ true);
modules_.push_back(cur_module);
}
UnmapOrDie(hmodules, modules_buffer_size);
};
// We can't use atexit() directly at __asan_init time as the CRT is not fully
// initialized at this point. Place the functions into a vector and use
// atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
int Atexit(void (*function)(void)) {
atexit_functions.push_back(function);
return 0;
}
static int RunAtexit() {
int ret = 0;
for (uptr i = 0; i < atexit_functions.size(); ++i) {
ret |= atexit(atexit_functions[i]);
}
return ret;
}
#pragma section(".CRT$XID", long, read) // NOLINT
__declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
#endif
// ------------------ sanitizer_libc.h
fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
// FIXME: Use the wide variants to handle Unicode filenames.
fd_t res;
if (mode == RdOnly) {
res = CreateFileA(filename, GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
} else if (mode == WrOnly) {
res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL, nullptr);
} else {
UNIMPLEMENTED();
}
CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
if (res == kInvalidFd && last_error)
*last_error = GetLastError();
return res;
}
void CloseFile(fd_t fd) {
CloseHandle(fd);
}
bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
error_t *error_p) {
CHECK(fd != kInvalidFd);
// bytes_read can't be passed directly to ReadFile:
// uptr is unsigned long long on 64-bit Windows.
unsigned long num_read_long;
bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
if (!success && error_p)
*error_p = GetLastError();
if (bytes_read)
*bytes_read = num_read_long;
return success;
}
bool SupportsColoredOutput(fd_t fd) {
// FIXME: support colored output.
return false;
}
bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
error_t *error_p) {
CHECK(fd != kInvalidFd);
// Handle null optional parameters.
error_t dummy_error;
error_p = error_p ? error_p : &dummy_error;
uptr dummy_bytes_written;
bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
// Initialize output parameters in case we fail.
*error_p = 0;
*bytes_written = 0;
// Map the conventional Unix fds 1 and 2 to Windows handles. They might be
// closed, in which case this will fail.
if (fd == kStdoutFd || fd == kStderrFd) {
fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
if (fd == 0) {
*error_p = ERROR_INVALID_HANDLE;
return false;
}
}
DWORD bytes_written_32;
if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
*error_p = GetLastError();
return false;
} else {
*bytes_written = bytes_written_32;
return true;
}
}
bool RenameFile(const char *oldpath, const char *newpath, error_t *error_p) {
UNIMPLEMENTED();
}
uptr internal_sched_yield() {
Sleep(0);
return 0;
}
void internal__exit(int exitcode) {
ExitProcess(exitcode);
}
uptr internal_ftruncate(fd_t fd, uptr size) {
UNIMPLEMENTED();
}
uptr GetRSS() {
return 0;
}
void *internal_start_thread(void (*func)(void *arg), void *arg) { return 0; }
void internal_join_thread(void *th) { }
// ---------------------- BlockingMutex ---------------- {{{1
const uptr LOCK_UNINITIALIZED = 0;
const uptr LOCK_READY = (uptr)-1;
BlockingMutex::BlockingMutex(LinkerInitialized li) {
// FIXME: see comments in BlockingMutex::Lock() for the details.
CHECK(li == LINKER_INITIALIZED || owner_ == LOCK_UNINITIALIZED);
CHECK(sizeof(CRITICAL_SECTION) <= sizeof(opaque_storage_));
InitializeCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
owner_ = LOCK_READY;
}
BlockingMutex::BlockingMutex() {
CHECK(sizeof(CRITICAL_SECTION) <= sizeof(opaque_storage_));
InitializeCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
owner_ = LOCK_READY;
}
void BlockingMutex::Lock() {
if (owner_ == LOCK_UNINITIALIZED) {
// FIXME: hm, global BlockingMutex objects are not initialized?!?
// This might be a side effect of the clang+cl+link Frankenbuild...
new(this) BlockingMutex((LinkerInitialized)(LINKER_INITIALIZED + 1));
// FIXME: If it turns out the linker doesn't invoke our
// constructors, we should probably manually Lock/Unlock all the global
// locks while we're starting in one thread to avoid double-init races.
}
EnterCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
CHECK_EQ(owner_, LOCK_READY);
owner_ = GetThreadSelf();
}
void BlockingMutex::Unlock() {
CHECK_EQ(owner_, GetThreadSelf());
owner_ = LOCK_READY;
LeaveCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
}
void BlockingMutex::CheckLocked() {
CHECK_EQ(owner_, GetThreadSelf());
}
uptr GetTlsSize() {
return 0;
}
void InitTlsSize() {
}
void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
uptr *tls_addr, uptr *tls_size) {
#if SANITIZER_GO
*stk_addr = 0;
*stk_size = 0;
*tls_addr = 0;
*tls_size = 0;
#else
uptr stack_top, stack_bottom;
GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
*stk_addr = stack_bottom;
*stk_size = stack_top - stack_bottom;
*tls_addr = 0;
*tls_size = 0;
#endif
}
#if !SANITIZER_GO
void BufferedStackTrace::SlowUnwindStack(uptr pc, u32 max_depth) {
CHECK_GE(max_depth, 2);
// FIXME: CaptureStackBackTrace might be too slow for us.
// FIXME: Compare with StackWalk64.
// FIXME: Look at LLVMUnhandledExceptionFilter in Signals.inc
size = CaptureStackBackTrace(1, Min(max_depth, kStackTraceMax),
(void**)trace, 0);
if (size == 0)
return;
// Skip the RTL frames by searching for the PC in the stacktrace.
uptr pc_location = LocatePcInTrace(pc);
PopStackFrames(pc_location);
}
void BufferedStackTrace::SlowUnwindStackWithContext(uptr pc, void *context,
u32 max_depth) {
CONTEXT ctx = *(CONTEXT *)context;
STACKFRAME64 stack_frame;
memset(&stack_frame, 0, sizeof(stack_frame));
InitializeDbgHelpIfNeeded();
size = 0;
#if defined(_WIN64)
int machine_type = IMAGE_FILE_MACHINE_AMD64;
stack_frame.AddrPC.Offset = ctx.Rip;
stack_frame.AddrFrame.Offset = ctx.Rbp;
stack_frame.AddrStack.Offset = ctx.Rsp;
#else
int machine_type = IMAGE_FILE_MACHINE_I386;
stack_frame.AddrPC.Offset = ctx.Eip;
stack_frame.AddrFrame.Offset = ctx.Ebp;
stack_frame.AddrStack.Offset = ctx.Esp;
#endif
stack_frame.AddrPC.Mode = AddrModeFlat;
stack_frame.AddrFrame.Mode = AddrModeFlat;
stack_frame.AddrStack.Mode = AddrModeFlat;
while (StackWalk64(machine_type, GetCurrentProcess(), GetCurrentThread(),
&stack_frame, &ctx, NULL, &SymFunctionTableAccess64,
&SymGetModuleBase64, NULL) &&
size < Min(max_depth, kStackTraceMax)) {
trace_buffer[size++] = (uptr)stack_frame.AddrPC.Offset;
}
}
#endif // #if !SANITIZER_GO
void ReportFile::Write(const char *buffer, uptr length) {
SpinMutexLock l(mu);
ReopenIfNecessary();
if (!WriteToFile(fd, buffer, length)) {
// stderr may be closed, but we may be able to print to the debugger
// instead. This is the case when launching a program from Visual Studio,
// and the following routine should write to its console.
OutputDebugStringA(buffer);
}
}
void SetAlternateSignalStack() {
// FIXME: Decide what to do on Windows.
}
void UnsetAlternateSignalStack() {
// FIXME: Decide what to do on Windows.
}
void InstallDeadlySignalHandlers(SignalHandlerType handler) {
(void)handler;
// FIXME: Decide what to do on Windows.
}
bool IsHandledDeadlySignal(int signum) {
// FIXME: Decide what to do on Windows.
return false;
}
bool IsAccessibleMemoryRange(uptr beg, uptr size) {
SYSTEM_INFO si;
GetNativeSystemInfo(&si);
uptr page_size = si.dwPageSize;
uptr page_mask = ~(page_size - 1);
for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
page <= end;) {
MEMORY_BASIC_INFORMATION info;
if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
return false;
if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
info.Protect == PAGE_EXECUTE)
return false;
if (info.RegionSize == 0)
return false;
page += info.RegionSize;
}
return true;
}
SignalContext SignalContext::Create(void *siginfo, void *context) {
EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
CONTEXT *context_record = (CONTEXT *)context;
uptr pc = (uptr)exception_record->ExceptionAddress;
#ifdef _WIN64
uptr bp = (uptr)context_record->Rbp;
uptr sp = (uptr)context_record->Rsp;
#else
uptr bp = (uptr)context_record->Ebp;
uptr sp = (uptr)context_record->Esp;
#endif
uptr access_addr = exception_record->ExceptionInformation[1];
// The contents of this array are documented at
// https://msdn.microsoft.com/en-us/library/windows/desktop/aa363082(v=vs.85).aspx
// The first element indicates read as 0, write as 1, or execute as 8. The
// second element is the faulting address.
WriteFlag write_flag = SignalContext::UNKNOWN;
switch (exception_record->ExceptionInformation[0]) {
case 0: write_flag = SignalContext::READ; break;
case 1: write_flag = SignalContext::WRITE; break;
case 8: write_flag = SignalContext::UNKNOWN; break;
}
bool is_memory_access = write_flag != SignalContext::UNKNOWN;
return SignalContext(context, access_addr, pc, sp, bp, is_memory_access,
write_flag);
}
uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
// FIXME: Actually implement this function.
CHECK_GT(buf_len, 0);
buf[0] = 0;
return 0;
}
uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
return ReadBinaryName(buf, buf_len);
}
void CheckVMASize() {
// Do nothing.
}
void MaybeReexec() {
// No need to re-exec on Windows.
}
char **GetArgv() {
// FIXME: Actually implement this function.
return 0;
}
pid_t StartSubprocess(const char *program, const char *const argv[],
fd_t stdin_fd, fd_t stdout_fd, fd_t stderr_fd) {
// FIXME: implement on this platform
// Should be implemented based on
// SymbolizerProcess::StarAtSymbolizerSubprocess
// from lib/sanitizer_common/sanitizer_symbolizer_win.cc.
return -1;
}
bool IsProcessRunning(pid_t pid) {
// FIXME: implement on this platform.
return false;
}
int WaitForProcess(pid_t pid) { return -1; }
// FIXME implement on this platform.
void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { }
} // namespace __sanitizer
#if !SANITIZER_GO
// Workaround to implement weak hooks on Windows. COFF doesn't directly support
// weak symbols, but it does support /alternatename, which is similar. If the
// user does not override the hook, we will use this default definition instead
// of null.
extern "C" void __sanitizer_print_memory_profile(int top_percent) {}
#ifdef _WIN64
#pragma comment(linker, "/alternatename:__sanitizer_print_memory_profile=__sanitizer_default_print_memory_profile") // NOLINT
#else
#pragma comment(linker, "/alternatename:___sanitizer_print_memory_profile=___sanitizer_default_print_memory_profile") // NOLINT
#endif
#endif
#endif // _WIN32