Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
//===-- sanitizer_win.cc --------------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and ThreadSanitizer
// run-time libraries and implements windows-specific functions from
// sanitizer_libc.h.
//===----------------------------------------------------------------------===//

#include "sanitizer_platform.h"
#if SANITIZER_WINDOWS

#define WIN32_LEAN_AND_MEAN
#define NOGDI
#include <windows.h>
#include <dbghelp.h>
#include <io.h>
#include <psapi.h>
#include <stdlib.h>

#include "sanitizer_common.h"
#include "sanitizer_libc.h"
#include "sanitizer_mutex.h"
#include "sanitizer_placement_new.h"
#include "sanitizer_procmaps.h"
#include "sanitizer_stacktrace.h"
#include "sanitizer_symbolizer.h"

namespace __sanitizer {

#include "sanitizer_syscall_generic.inc"

// --------------------- sanitizer_common.h
uptr GetPageSize() {
  SYSTEM_INFO si;
  GetSystemInfo(&si);
  return si.dwPageSize;
}

uptr GetMmapGranularity() {
  SYSTEM_INFO si;
  GetSystemInfo(&si);
  return si.dwAllocationGranularity;
}

uptr GetMaxVirtualAddress() {
  SYSTEM_INFO si;
  GetSystemInfo(&si);
  return (uptr)si.lpMaximumApplicationAddress;
}

bool FileExists(const char *filename) {
  return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
}

uptr internal_getpid() {
  return GetProcessId(GetCurrentProcess());
}

// In contrast to POSIX, on Windows GetCurrentThreadId()
// returns a system-unique identifier.
uptr GetTid() {
  return GetCurrentThreadId();
}

uptr GetThreadSelf() {
  return GetTid();
}

#if !SANITIZER_GO
void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
                                uptr *stack_bottom) {
  CHECK(stack_top);
  CHECK(stack_bottom);
  MEMORY_BASIC_INFORMATION mbi;
  CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
  // FIXME: is it possible for the stack to not be a single allocation?
  // Are these values what ASan expects to get (reserved, not committed;
  // including stack guard page) ?
  *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
  *stack_bottom = (uptr)mbi.AllocationBase;
}
#endif  // #if !SANITIZER_GO

void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
  void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
  if (rv == 0)
    ReportMmapFailureAndDie(size, mem_type, "allocate",
                            GetLastError(), raw_report);
  return rv;
}

void UnmapOrDie(void *addr, uptr size) {
  if (!size || !addr)
    return;

  MEMORY_BASIC_INFORMATION mbi;
  CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));

  // MEM_RELEASE can only be used to unmap whole regions previously mapped with
  // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
  // fails try MEM_DECOMMIT.
  if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
    if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
      Report("ERROR: %s failed to "
             "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
             SanitizerToolName, size, size, addr, GetLastError());
      CHECK("unable to unmap" && 0);
    }
  }
}

// We want to map a chunk of address space aligned to 'alignment'.
void *MmapAlignedOrDie(uptr size, uptr alignment, const char *mem_type) {
  CHECK(IsPowerOfTwo(size));
  CHECK(IsPowerOfTwo(alignment));

  // Windows will align our allocations to at least 64K.
  alignment = Max(alignment, GetMmapGranularity());

  uptr mapped_addr =
      (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
  if (!mapped_addr)
    ReportMmapFailureAndDie(size, mem_type, "allocate aligned", GetLastError());

  // If we got it right on the first try, return. Otherwise, unmap it and go to
  // the slow path.
  if (IsAligned(mapped_addr, alignment))
    return (void*)mapped_addr;
  if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
    ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());

  // If we didn't get an aligned address, overallocate, find an aligned address,
  // unmap, and try to allocate at that aligned address.
  int retries = 0;
  const int kMaxRetries = 10;
  for (; retries < kMaxRetries &&
         (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
       retries++) {
    // Overallocate size + alignment bytes.
    mapped_addr =
        (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
    if (!mapped_addr)
      ReportMmapFailureAndDie(size, mem_type, "allocate aligned",
                              GetLastError());

    // Find the aligned address.
    uptr aligned_addr = RoundUpTo(mapped_addr, alignment);

    // Free the overallocation.
    if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
      ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());

    // Attempt to allocate exactly the number of bytes we need at the aligned
    // address. This may fail for a number of reasons, in which case we continue
    // the loop.
    mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
                                     MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
  }

  // Fail if we can't make this work quickly.
  if (retries == kMaxRetries && mapped_addr == 0)
    ReportMmapFailureAndDie(size, mem_type, "allocate aligned", GetLastError());

  return (void *)mapped_addr;
}

void *MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
  // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
  // but on Win64 it does.
  (void)name;  // unsupported
#if !SANITIZER_GO && SANITIZER_WINDOWS64
  // On asan/Windows64, use MEM_COMMIT would result in error
  // 1455:ERROR_COMMITMENT_LIMIT.
  // Asan uses exception handler to commit page on demand.
  void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
#else
  void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
                         PAGE_READWRITE);
#endif
  if (p == 0)
    Report("ERROR: %s failed to "
           "allocate %p (%zd) bytes at %p (error code: %d)\n",
           SanitizerToolName, size, size, fixed_addr, GetLastError());
  return p;
}

// Memory space mapped by 'MmapFixedOrDie' must have been reserved by
// 'MmapFixedNoAccess'.
void *MmapFixedOrDie(uptr fixed_addr, uptr size) {
  void *p = VirtualAlloc((LPVOID)fixed_addr, size,
      MEM_COMMIT, PAGE_READWRITE);
  if (p == 0) {
    char mem_type[30];
    internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
                      fixed_addr);
    ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
  }
  return p;
}

void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
  // FIXME: make this really NoReserve?
  return MmapOrDie(size, mem_type);
}

void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
  (void)name; // unsupported
  void *res = VirtualAlloc((LPVOID)fixed_addr, size,
                           MEM_RESERVE, PAGE_NOACCESS);
  if (res == 0)
    Report("WARNING: %s failed to "
           "mprotect %p (%zd) bytes at %p (error code: %d)\n",
           SanitizerToolName, size, size, fixed_addr, GetLastError());
  return res;
}

void *MmapNoAccess(uptr size) {
  void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
  if (res == 0)
    Report("WARNING: %s failed to "
           "mprotect %p (%zd) bytes (error code: %d)\n",
           SanitizerToolName, size, size, GetLastError());
  return res;
}

bool MprotectNoAccess(uptr addr, uptr size) {
  DWORD old_protection;
  return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
}


void ReleaseMemoryToOS(uptr addr, uptr size) {
  // This is almost useless on 32-bits.
  // FIXME: add madvise-analog when we move to 64-bits.
}

void NoHugePagesInRegion(uptr addr, uptr size) {
  // FIXME: probably similar to ReleaseMemoryToOS.
}

void DontDumpShadowMemory(uptr addr, uptr length) {
  // This is almost useless on 32-bits.
  // FIXME: add madvise-analog when we move to 64-bits.
}

uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding) {
  uptr address = 0;
  while (true) {
    MEMORY_BASIC_INFORMATION info;
    if (!::VirtualQuery((void*)address, &info, sizeof(info)))
      return 0;

    if (info.State == MEM_FREE) {
      uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
                                      alignment);
      if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
        return shadow_address;
    }

    // Move to the next region.
    address = (uptr)info.BaseAddress + info.RegionSize;
  }
  return 0;
}

bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
  MEMORY_BASIC_INFORMATION mbi;
  CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
  return mbi.Protect == PAGE_NOACCESS &&
         (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
}

void *MapFileToMemory(const char *file_name, uptr *buff_size) {
  UNIMPLEMENTED();
}

void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
  UNIMPLEMENTED();
}

static const int kMaxEnvNameLength = 128;
static const DWORD kMaxEnvValueLength = 32767;

namespace {

struct EnvVariable {
  char name[kMaxEnvNameLength];
  char value[kMaxEnvValueLength];
};

}  // namespace

static const int kEnvVariables = 5;
static EnvVariable env_vars[kEnvVariables];
static int num_env_vars;

const char *GetEnv(const char *name) {
  // Note: this implementation caches the values of the environment variables
  // and limits their quantity.
  for (int i = 0; i < num_env_vars; i++) {
    if (0 == internal_strcmp(name, env_vars[i].name))
      return env_vars[i].value;
  }
  CHECK_LT(num_env_vars, kEnvVariables);
  DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
                                     kMaxEnvValueLength);
  if (rv > 0 && rv < kMaxEnvValueLength) {
    CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
    internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
    num_env_vars++;
    return env_vars[num_env_vars - 1].value;
  }
  return 0;
}

const char *GetPwd() {
  UNIMPLEMENTED();
}

u32 GetUid() {
  UNIMPLEMENTED();
}

namespace {
struct ModuleInfo {
  const char *filepath;
  uptr base_address;
  uptr end_address;
};

#if !SANITIZER_GO
int CompareModulesBase(const void *pl, const void *pr) {
  const ModuleInfo *l = (ModuleInfo *)pl, *r = (ModuleInfo *)pr;
  if (l->base_address < r->base_address)
    return -1;
  return l->base_address > r->base_address;
}
#endif
}  // namespace

#if !SANITIZER_GO
void DumpProcessMap() {
  Report("Dumping process modules:\n");
  ListOfModules modules;
  modules.init();
  uptr num_modules = modules.size();

  InternalScopedBuffer<ModuleInfo> module_infos(num_modules);
  for (size_t i = 0; i < num_modules; ++i) {
    module_infos[i].filepath = modules[i].full_name();
    module_infos[i].base_address = modules[i].ranges().front()->beg;
    module_infos[i].end_address = modules[i].ranges().back()->end;
  }
  qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
        CompareModulesBase);

  for (size_t i = 0; i < num_modules; ++i) {
    const ModuleInfo &mi = module_infos[i];
    if (mi.end_address != 0) {
      Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
             mi.filepath[0] ? mi.filepath : "[no name]");
    } else if (mi.filepath[0]) {
      Printf("\t??\?-??? %s\n", mi.filepath);
    } else {
      Printf("\t???\n");
    }
  }
}
#endif

void DisableCoreDumperIfNecessary() {
  // Do nothing.
}

void ReExec() {
  UNIMPLEMENTED();
}

void PrepareForSandboxing(__sanitizer_sandbox_arguments *args) {
#if !SANITIZER_GO
  CovPrepareForSandboxing(args);
#endif
}

bool StackSizeIsUnlimited() {
  UNIMPLEMENTED();
}

void SetStackSizeLimitInBytes(uptr limit) {
  UNIMPLEMENTED();
}

bool AddressSpaceIsUnlimited() {
  UNIMPLEMENTED();
}

void SetAddressSpaceUnlimited() {
  UNIMPLEMENTED();
}

bool IsPathSeparator(const char c) {
  return c == '\\' || c == '/';
}

bool IsAbsolutePath(const char *path) {
  UNIMPLEMENTED();
}

void SleepForSeconds(int seconds) {
  Sleep(seconds * 1000);
}

void SleepForMillis(int millis) {
  Sleep(millis);
}

u64 NanoTime() {
  return 0;
}

void Abort() {
  if (::IsDebuggerPresent())
    __debugbreak();
  internal__exit(3);
}

#if !SANITIZER_GO
// Read the file to extract the ImageBase field from the PE header. If ASLR is
// disabled and this virtual address is available, the loader will typically
// load the image at this address. Therefore, we call it the preferred base. Any
// addresses in the DWARF typically assume that the object has been loaded at
// this address.
static uptr GetPreferredBase(const char *modname) {
  fd_t fd = OpenFile(modname, RdOnly, nullptr);
  if (fd == kInvalidFd)
    return 0;
  FileCloser closer(fd);

  // Read just the DOS header.
  IMAGE_DOS_HEADER dos_header;
  uptr bytes_read;
  if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
      bytes_read != sizeof(dos_header))
    return 0;

  // The file should start with the right signature.
  if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
    return 0;

  // The layout at e_lfanew is:
  // "PE\0\0"
  // IMAGE_FILE_HEADER
  // IMAGE_OPTIONAL_HEADER
  // Seek to e_lfanew and read all that data.
  char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)];
  if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
      INVALID_SET_FILE_POINTER)
    return 0;
  if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) ||
      bytes_read != sizeof(buf))
    return 0;

  // Check for "PE\0\0" before the PE header.
  char *pe_sig = &buf[0];
  if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
    return 0;

  // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
  IMAGE_OPTIONAL_HEADER *pe_header =
      (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));

  // Check for more magic in the PE header.
  if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
    return 0;

  // Finally, return the ImageBase.
  return (uptr)pe_header->ImageBase;
}

void ListOfModules::init() {
  clear();
  HANDLE cur_process = GetCurrentProcess();

  // Query the list of modules.  Start by assuming there are no more than 256
  // modules and retry if that's not sufficient.
  HMODULE *hmodules = 0;
  uptr modules_buffer_size = sizeof(HMODULE) * 256;
  DWORD bytes_required;
  while (!hmodules) {
    hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
    CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
                             &bytes_required));
    if (bytes_required > modules_buffer_size) {
      // Either there turned out to be more than 256 hmodules, or new hmodules
      // could have loaded since the last try.  Retry.
      UnmapOrDie(hmodules, modules_buffer_size);
      hmodules = 0;
      modules_buffer_size = bytes_required;
    }
  }

  // |num_modules| is the number of modules actually present,
  size_t num_modules = bytes_required / sizeof(HMODULE);
  for (size_t i = 0; i < num_modules; ++i) {
    HMODULE handle = hmodules[i];
    MODULEINFO mi;
    if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
      continue;

    // Get the UTF-16 path and convert to UTF-8.
    wchar_t modname_utf16[kMaxPathLength];
    int modname_utf16_len =
        GetModuleFileNameW(handle, modname_utf16, kMaxPathLength);
    if (modname_utf16_len == 0)
      modname_utf16[0] = '\0';
    char module_name[kMaxPathLength];
    int module_name_len =
        ::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1,
                              &module_name[0], kMaxPathLength, NULL, NULL);
    module_name[module_name_len] = '\0';

    uptr base_address = (uptr)mi.lpBaseOfDll;
    uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;

    // Adjust the base address of the module so that we get a VA instead of an
    // RVA when computing the module offset. This helps llvm-symbolizer find the
    // right DWARF CU. In the common case that the image is loaded at it's
    // preferred address, we will now print normal virtual addresses.
    uptr preferred_base = GetPreferredBase(&module_name[0]);
    uptr adjusted_base = base_address - preferred_base;

    LoadedModule cur_module;
    cur_module.set(module_name, adjusted_base);
    // We add the whole module as one single address range.
    cur_module.addAddressRange(base_address, end_address, /*executable*/ true);
    modules_.push_back(cur_module);
  }
  UnmapOrDie(hmodules, modules_buffer_size);
};

// We can't use atexit() directly at __asan_init time as the CRT is not fully
// initialized at this point.  Place the functions into a vector and use
// atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;

int Atexit(void (*function)(void)) {
  atexit_functions.push_back(function);
  return 0;
}

static int RunAtexit() {
  int ret = 0;
  for (uptr i = 0; i < atexit_functions.size(); ++i) {
    ret |= atexit(atexit_functions[i]);
  }
  return ret;
}

#pragma section(".CRT$XID", long, read)  // NOLINT
__declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
#endif

// ------------------ sanitizer_libc.h
fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
  // FIXME: Use the wide variants to handle Unicode filenames.
  fd_t res;
  if (mode == RdOnly) {
    res = CreateFileA(filename, GENERIC_READ,
                      FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
                      nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
  } else if (mode == WrOnly) {
    res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
                      FILE_ATTRIBUTE_NORMAL, nullptr);
  } else {
    UNIMPLEMENTED();
  }
  CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
  CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
  if (res == kInvalidFd && last_error)
    *last_error = GetLastError();
  return res;
}

void CloseFile(fd_t fd) {
  CloseHandle(fd);
}

bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
                  error_t *error_p) {
  CHECK(fd != kInvalidFd);

  // bytes_read can't be passed directly to ReadFile:
  // uptr is unsigned long long on 64-bit Windows.
  unsigned long num_read_long;

  bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
  if (!success && error_p)
    *error_p = GetLastError();
  if (bytes_read)
    *bytes_read = num_read_long;
  return success;
}

bool SupportsColoredOutput(fd_t fd) {
  // FIXME: support colored output.
  return false;
}

bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
                 error_t *error_p) {
  CHECK(fd != kInvalidFd);

  // Handle null optional parameters.
  error_t dummy_error;
  error_p = error_p ? error_p : &dummy_error;
  uptr dummy_bytes_written;
  bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;

  // Initialize output parameters in case we fail.
  *error_p = 0;
  *bytes_written = 0;

  // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
  // closed, in which case this will fail.
  if (fd == kStdoutFd || fd == kStderrFd) {
    fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
    if (fd == 0) {
      *error_p = ERROR_INVALID_HANDLE;
      return false;
    }
  }

  DWORD bytes_written_32;
  if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
    *error_p = GetLastError();
    return false;
  } else {
    *bytes_written = bytes_written_32;
    return true;
  }
}

bool RenameFile(const char *oldpath, const char *newpath, error_t *error_p) {
  UNIMPLEMENTED();
}

uptr internal_sched_yield() {
  Sleep(0);
  return 0;
}

void internal__exit(int exitcode) {
  ExitProcess(exitcode);
}

uptr internal_ftruncate(fd_t fd, uptr size) {
  UNIMPLEMENTED();
}

uptr GetRSS() {
  return 0;
}

void *internal_start_thread(void (*func)(void *arg), void *arg) { return 0; }
void internal_join_thread(void *th) { }

// ---------------------- BlockingMutex ---------------- {{{1
const uptr LOCK_UNINITIALIZED = 0;
const uptr LOCK_READY = (uptr)-1;

BlockingMutex::BlockingMutex(LinkerInitialized li) {
  // FIXME: see comments in BlockingMutex::Lock() for the details.
  CHECK(li == LINKER_INITIALIZED || owner_ == LOCK_UNINITIALIZED);

  CHECK(sizeof(CRITICAL_SECTION) <= sizeof(opaque_storage_));
  InitializeCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
  owner_ = LOCK_READY;
}

BlockingMutex::BlockingMutex() {
  CHECK(sizeof(CRITICAL_SECTION) <= sizeof(opaque_storage_));
  InitializeCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
  owner_ = LOCK_READY;
}

void BlockingMutex::Lock() {
  if (owner_ == LOCK_UNINITIALIZED) {
    // FIXME: hm, global BlockingMutex objects are not initialized?!?
    // This might be a side effect of the clang+cl+link Frankenbuild...
    new(this) BlockingMutex((LinkerInitialized)(LINKER_INITIALIZED + 1));

    // FIXME: If it turns out the linker doesn't invoke our
    // constructors, we should probably manually Lock/Unlock all the global
    // locks while we're starting in one thread to avoid double-init races.
  }
  EnterCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
  CHECK_EQ(owner_, LOCK_READY);
  owner_ = GetThreadSelf();
}

void BlockingMutex::Unlock() {
  CHECK_EQ(owner_, GetThreadSelf());
  owner_ = LOCK_READY;
  LeaveCriticalSection((LPCRITICAL_SECTION)opaque_storage_);
}

void BlockingMutex::CheckLocked() {
  CHECK_EQ(owner_, GetThreadSelf());
}

uptr GetTlsSize() {
  return 0;
}

void InitTlsSize() {
}

void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
                          uptr *tls_addr, uptr *tls_size) {
#if SANITIZER_GO
  *stk_addr = 0;
  *stk_size = 0;
  *tls_addr = 0;
  *tls_size = 0;
#else
  uptr stack_top, stack_bottom;
  GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
  *stk_addr = stack_bottom;
  *stk_size = stack_top - stack_bottom;
  *tls_addr = 0;
  *tls_size = 0;
#endif
}

#if !SANITIZER_GO
void BufferedStackTrace::SlowUnwindStack(uptr pc, u32 max_depth) {
  CHECK_GE(max_depth, 2);
  // FIXME: CaptureStackBackTrace might be too slow for us.
  // FIXME: Compare with StackWalk64.
  // FIXME: Look at LLVMUnhandledExceptionFilter in Signals.inc
  size = CaptureStackBackTrace(1, Min(max_depth, kStackTraceMax),
                               (void**)trace, 0);
  if (size == 0)
    return;

  // Skip the RTL frames by searching for the PC in the stacktrace.
  uptr pc_location = LocatePcInTrace(pc);
  PopStackFrames(pc_location);
}

void BufferedStackTrace::SlowUnwindStackWithContext(uptr pc, void *context,
                                                    u32 max_depth) {
  CONTEXT ctx = *(CONTEXT *)context;
  STACKFRAME64 stack_frame;
  memset(&stack_frame, 0, sizeof(stack_frame));

  InitializeDbgHelpIfNeeded();

  size = 0;
#if defined(_WIN64)
  int machine_type = IMAGE_FILE_MACHINE_AMD64;
  stack_frame.AddrPC.Offset = ctx.Rip;
  stack_frame.AddrFrame.Offset = ctx.Rbp;
  stack_frame.AddrStack.Offset = ctx.Rsp;
#else
  int machine_type = IMAGE_FILE_MACHINE_I386;
  stack_frame.AddrPC.Offset = ctx.Eip;
  stack_frame.AddrFrame.Offset = ctx.Ebp;
  stack_frame.AddrStack.Offset = ctx.Esp;
#endif
  stack_frame.AddrPC.Mode = AddrModeFlat;
  stack_frame.AddrFrame.Mode = AddrModeFlat;
  stack_frame.AddrStack.Mode = AddrModeFlat;
  while (StackWalk64(machine_type, GetCurrentProcess(), GetCurrentThread(),
                     &stack_frame, &ctx, NULL, &SymFunctionTableAccess64,
                     &SymGetModuleBase64, NULL) &&
         size < Min(max_depth, kStackTraceMax)) {
    trace_buffer[size++] = (uptr)stack_frame.AddrPC.Offset;
  }
}
#endif  // #if !SANITIZER_GO

void ReportFile::Write(const char *buffer, uptr length) {
  SpinMutexLock l(mu);
  ReopenIfNecessary();
  if (!WriteToFile(fd, buffer, length)) {
    // stderr may be closed, but we may be able to print to the debugger
    // instead.  This is the case when launching a program from Visual Studio,
    // and the following routine should write to its console.
    OutputDebugStringA(buffer);
  }
}

void SetAlternateSignalStack() {
  // FIXME: Decide what to do on Windows.
}

void UnsetAlternateSignalStack() {
  // FIXME: Decide what to do on Windows.
}

void InstallDeadlySignalHandlers(SignalHandlerType handler) {
  (void)handler;
  // FIXME: Decide what to do on Windows.
}

bool IsHandledDeadlySignal(int signum) {
  // FIXME: Decide what to do on Windows.
  return false;
}

bool IsAccessibleMemoryRange(uptr beg, uptr size) {
  SYSTEM_INFO si;
  GetNativeSystemInfo(&si);
  uptr page_size = si.dwPageSize;
  uptr page_mask = ~(page_size - 1);

  for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
       page <= end;) {
    MEMORY_BASIC_INFORMATION info;
    if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
      return false;

    if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
        info.Protect == PAGE_EXECUTE)
      return false;

    if (info.RegionSize == 0)
      return false;

    page += info.RegionSize;
  }

  return true;
}

SignalContext SignalContext::Create(void *siginfo, void *context) {
  EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
  CONTEXT *context_record = (CONTEXT *)context;

  uptr pc = (uptr)exception_record->ExceptionAddress;
#ifdef _WIN64
  uptr bp = (uptr)context_record->Rbp;
  uptr sp = (uptr)context_record->Rsp;
#else
  uptr bp = (uptr)context_record->Ebp;
  uptr sp = (uptr)context_record->Esp;
#endif
  uptr access_addr = exception_record->ExceptionInformation[1];

  // The contents of this array are documented at
  // https://msdn.microsoft.com/en-us/library/windows/desktop/aa363082(v=vs.85).aspx
  // The first element indicates read as 0, write as 1, or execute as 8.  The
  // second element is the faulting address.
  WriteFlag write_flag = SignalContext::UNKNOWN;
  switch (exception_record->ExceptionInformation[0]) {
  case 0: write_flag = SignalContext::READ; break;
  case 1: write_flag = SignalContext::WRITE; break;
  case 8: write_flag = SignalContext::UNKNOWN; break;
  }
  bool is_memory_access = write_flag != SignalContext::UNKNOWN;
  return SignalContext(context, access_addr, pc, sp, bp, is_memory_access,
                       write_flag);
}

uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
  // FIXME: Actually implement this function.
  CHECK_GT(buf_len, 0);
  buf[0] = 0;
  return 0;
}

uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
  return ReadBinaryName(buf, buf_len);
}

void CheckVMASize() {
  // Do nothing.
}

void MaybeReexec() {
  // No need to re-exec on Windows.
}

char **GetArgv() {
  // FIXME: Actually implement this function.
  return 0;
}

pid_t StartSubprocess(const char *program, const char *const argv[],
                      fd_t stdin_fd, fd_t stdout_fd, fd_t stderr_fd) {
  // FIXME: implement on this platform
  // Should be implemented based on
  // SymbolizerProcess::StarAtSymbolizerSubprocess
  // from lib/sanitizer_common/sanitizer_symbolizer_win.cc.
  return -1;
}

bool IsProcessRunning(pid_t pid) {
  // FIXME: implement on this platform.
  return false;
}

int WaitForProcess(pid_t pid) { return -1; }

// FIXME implement on this platform.
void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { }


}  // namespace __sanitizer

#if !SANITIZER_GO
// Workaround to implement weak hooks on Windows. COFF doesn't directly support
// weak symbols, but it does support /alternatename, which is similar. If the
// user does not override the hook, we will use this default definition instead
// of null.
extern "C" void __sanitizer_print_memory_profile(int top_percent) {}

#ifdef _WIN64
#pragma comment(linker, "/alternatename:__sanitizer_print_memory_profile=__sanitizer_default_print_memory_profile") // NOLINT
#else
#pragma comment(linker, "/alternatename:___sanitizer_print_memory_profile=___sanitizer_default_print_memory_profile") // NOLINT
#endif
#endif

#endif  // _WIN32