Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
/* Test mpn_hgcd_appr.

Copyright 1991, 1993, 1994, 1996, 1997, 2000-2004, 2011 Free Software
Foundation, Inc.

This file is part of the GNU MP Library test suite.

The GNU MP Library test suite is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 3 of the License,
or (at your option) any later version.

The GNU MP Library test suite is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with
the GNU MP Library test suite.  If not, see https://www.gnu.org/licenses/.  */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "gmp.h"
#include "gmp-impl.h"
#include "tests.h"

static mp_size_t one_test (mpz_t, mpz_t, int);
static void debug_mp (mpz_t, int);

#define MIN_OPERAND_SIZE 2

struct hgcd_ref
{
  mpz_t m[2][2];
};

static void hgcd_ref_init (struct hgcd_ref *hgcd);
static void hgcd_ref_clear (struct hgcd_ref *hgcd);
static int hgcd_ref (struct hgcd_ref *hgcd, mpz_t a, mpz_t b);
static int hgcd_ref_equal (const struct hgcd_ref *, const struct hgcd_ref *);
static int hgcd_appr_valid_p (mpz_t, mpz_t, mp_size_t, struct hgcd_ref *,
			      mpz_t, mpz_t, mp_size_t, struct hgcd_matrix *);

static int verbose_flag = 0;

int
main (int argc, char **argv)
{
  mpz_t op1, op2, temp1, temp2;
  int i, j, chain_len;
  gmp_randstate_ptr rands;
  mpz_t bs;
  unsigned long size_range;

  if (argc > 1)
    {
      if (strcmp (argv[1], "-v") == 0)
	verbose_flag = 1;
      else
	{
	  fprintf (stderr, "Invalid argument.\n");
	  return 1;
	}
    }

  tests_start ();
  rands = RANDS;

  mpz_init (bs);
  mpz_init (op1);
  mpz_init (op2);
  mpz_init (temp1);
  mpz_init (temp2);

  for (i = 0; i < 15; i++)
    {
      /* Generate plain operands with unknown gcd.  These types of operands
	 have proven to trigger certain bugs in development versions of the
	 gcd code. */

      mpz_urandomb (bs, rands, 32);
      size_range = mpz_get_ui (bs) % 13 + 2;

      mpz_urandomb (bs, rands, size_range);
      mpz_urandomb (op1, rands, mpz_get_ui (bs) + MIN_OPERAND_SIZE);
      mpz_urandomb (bs, rands, size_range);
      mpz_urandomb (op2, rands, mpz_get_ui (bs) + MIN_OPERAND_SIZE);

      if (mpz_cmp (op1, op2) < 0)
	mpz_swap (op1, op2);

      if (mpz_size (op1) > 0)
	one_test (op1, op2, i);

      /* Generate a division chain backwards, allowing otherwise
	 unlikely huge quotients.  */

      mpz_set_ui (op1, 0);
      mpz_urandomb (bs, rands, 32);
      mpz_urandomb (bs, rands, mpz_get_ui (bs) % 16 + 1);
      mpz_rrandomb (op2, rands, mpz_get_ui (bs));
      mpz_add_ui (op2, op2, 1);

#if 0
      chain_len = 1000000;
#else
      mpz_urandomb (bs, rands, 32);
      chain_len = mpz_get_ui (bs) % (GMP_NUMB_BITS * GCD_DC_THRESHOLD / 256);
#endif

      for (j = 0; j < chain_len; j++)
	{
	  mpz_urandomb (bs, rands, 32);
	  mpz_urandomb (bs, rands, mpz_get_ui (bs) % 12 + 1);
	  mpz_rrandomb (temp2, rands, mpz_get_ui (bs) + 1);
	  mpz_add_ui (temp2, temp2, 1);
	  mpz_mul (temp1, op2, temp2);
	  mpz_add (op1, op1, temp1);

	  /* Don't generate overly huge operands.  */
	  if (SIZ (op1) > 3 * GCD_DC_THRESHOLD)
	    break;

	  mpz_urandomb (bs, rands, 32);
	  mpz_urandomb (bs, rands, mpz_get_ui (bs) % 12 + 1);
	  mpz_rrandomb (temp2, rands, mpz_get_ui (bs) + 1);
	  mpz_add_ui (temp2, temp2, 1);
	  mpz_mul (temp1, op1, temp2);
	  mpz_add (op2, op2, temp1);

	  /* Don't generate overly huge operands.  */
	  if (SIZ (op2) > 3 * GCD_DC_THRESHOLD)
	    break;
	}
      if (mpz_cmp (op1, op2) < 0)
	mpz_swap (op1, op2);

      if (mpz_size (op1) > 0)
	one_test (op1, op2, i);
    }

  mpz_clear (bs);
  mpz_clear (op1);
  mpz_clear (op2);
  mpz_clear (temp1);
  mpz_clear (temp2);

  tests_end ();
  exit (0);
}

static void
debug_mp (mpz_t x, int base)
{
  mpz_out_str (stderr, base, x); fputc ('\n', stderr);
}

static mp_size_t
one_test (mpz_t a, mpz_t b, int i)
{
  struct hgcd_matrix hgcd;
  struct hgcd_ref ref;

  mpz_t ref_r0;
  mpz_t ref_r1;
  mpz_t hgcd_r0;
  mpz_t hgcd_r1;

  int res[2];
  mp_size_t asize;
  mp_size_t bsize;

  mp_size_t hgcd_init_scratch;
  mp_size_t hgcd_scratch;

  mp_ptr hgcd_init_tp;
  mp_ptr hgcd_tp;
  mp_limb_t marker[4];

  asize = a->_mp_size;
  bsize = b->_mp_size;

  ASSERT (asize >= bsize);

  hgcd_init_scratch = MPN_HGCD_MATRIX_INIT_ITCH (asize);
  hgcd_init_tp = refmpn_malloc_limbs (hgcd_init_scratch + 2) + 1;
  mpn_hgcd_matrix_init (&hgcd, asize, hgcd_init_tp);

  hgcd_scratch = mpn_hgcd_appr_itch (asize);
  hgcd_tp = refmpn_malloc_limbs (hgcd_scratch + 2) + 1;

  mpn_random (marker, 4);

  hgcd_init_tp[-1] = marker[0];
  hgcd_init_tp[hgcd_init_scratch] = marker[1];
  hgcd_tp[-1] = marker[2];
  hgcd_tp[hgcd_scratch] = marker[3];

#if 0
  fprintf (stderr,
	   "one_test: i = %d asize = %d, bsize = %d\n",
	   i, a->_mp_size, b->_mp_size);

  gmp_fprintf (stderr,
	       "one_test: i = %d\n"
	       "  a = %Zx\n"
	       "  b = %Zx\n",
	       i, a, b);
#endif
  hgcd_ref_init (&ref);

  mpz_init_set (ref_r0, a);
  mpz_init_set (ref_r1, b);
  res[0] = hgcd_ref (&ref, ref_r0, ref_r1);

  mpz_init_set (hgcd_r0, a);
  mpz_init_set (hgcd_r1, b);
  if (bsize < asize)
    {
      _mpz_realloc (hgcd_r1, asize);
      MPN_ZERO (hgcd_r1->_mp_d + bsize, asize - bsize);
    }
  res[1] = mpn_hgcd_appr (hgcd_r0->_mp_d,
			  hgcd_r1->_mp_d,
			  asize,
			  &hgcd, hgcd_tp);

  if (hgcd_init_tp[-1] != marker[0]
      || hgcd_init_tp[hgcd_init_scratch] != marker[1]
      || hgcd_tp[-1] != marker[2]
      || hgcd_tp[hgcd_scratch] != marker[3])
    {
      fprintf (stderr, "ERROR in test %d\n", i);
      fprintf (stderr, "scratch space overwritten!\n");

      if (hgcd_init_tp[-1] != marker[0])
	gmp_fprintf (stderr,
		     "before init_tp: %Mx\n"
		     "expected: %Mx\n",
		     hgcd_init_tp[-1], marker[0]);
      if (hgcd_init_tp[hgcd_init_scratch] != marker[1])
	gmp_fprintf (stderr,
		     "after init_tp: %Mx\n"
		     "expected: %Mx\n",
		     hgcd_init_tp[hgcd_init_scratch], marker[1]);
      if (hgcd_tp[-1] != marker[2])
	gmp_fprintf (stderr,
		     "before tp: %Mx\n"
		     "expected: %Mx\n",
		     hgcd_tp[-1], marker[2]);
      if (hgcd_tp[hgcd_scratch] != marker[3])
	gmp_fprintf (stderr,
		     "after tp: %Mx\n"
		     "expected: %Mx\n",
		     hgcd_tp[hgcd_scratch], marker[3]);

      abort ();
    }

  if (!hgcd_appr_valid_p (a, b, res[0], &ref, ref_r0, ref_r1,
			  res[1], &hgcd))
    {
      fprintf (stderr, "ERROR in test %d\n", i);
      fprintf (stderr, "Invalid results for hgcd and hgcd_ref\n");
      fprintf (stderr, "op1=");                 debug_mp (a, -16);
      fprintf (stderr, "op2=");                 debug_mp (b, -16);
      fprintf (stderr, "hgcd_ref: %ld\n", (long) res[0]);
      fprintf (stderr, "mpn_hgcd_appr: %ld\n", (long) res[1]);
      abort ();
    }

  refmpn_free_limbs (hgcd_init_tp - 1);
  refmpn_free_limbs (hgcd_tp - 1);
  hgcd_ref_clear (&ref);
  mpz_clear (ref_r0);
  mpz_clear (ref_r1);
  mpz_clear (hgcd_r0);
  mpz_clear (hgcd_r1);

  return res[0];
}

static void
hgcd_ref_init (struct hgcd_ref *hgcd)
{
  unsigned i;
  for (i = 0; i<2; i++)
    {
      unsigned j;
      for (j = 0; j<2; j++)
	mpz_init (hgcd->m[i][j]);
    }
}

static void
hgcd_ref_clear (struct hgcd_ref *hgcd)
{
  unsigned i;
  for (i = 0; i<2; i++)
    {
      unsigned j;
      for (j = 0; j<2; j++)
	mpz_clear (hgcd->m[i][j]);
    }
}

static int
sdiv_qr (mpz_t q, mpz_t r, mp_size_t s, const mpz_t a, const mpz_t b)
{
  mpz_fdiv_qr (q, r, a, b);
  if (mpz_size (r) <= s)
    {
      mpz_add (r, r, b);
      mpz_sub_ui (q, q, 1);
    }

  return (mpz_sgn (q) > 0);
}

static int
hgcd_ref (struct hgcd_ref *hgcd, mpz_t a, mpz_t b)
{
  mp_size_t n = MAX (mpz_size (a), mpz_size (b));
  mp_size_t s = n/2 + 1;
  mpz_t q;
  int res;

  if (mpz_size (a) <= s || mpz_size (b) <= s)
    return 0;

  res = mpz_cmp (a, b);
  if (res < 0)
    {
      mpz_sub (b, b, a);
      if (mpz_size (b) <= s)
	return 0;

      mpz_set_ui (hgcd->m[0][0], 1); mpz_set_ui (hgcd->m[0][1], 0);
      mpz_set_ui (hgcd->m[1][0], 1); mpz_set_ui (hgcd->m[1][1], 1);
    }
  else if (res > 0)
    {
      mpz_sub (a, a, b);
      if (mpz_size (a) <= s)
	return 0;

      mpz_set_ui (hgcd->m[0][0], 1); mpz_set_ui (hgcd->m[0][1], 1);
      mpz_set_ui (hgcd->m[1][0], 0); mpz_set_ui (hgcd->m[1][1], 1);
    }
  else
    return 0;

  mpz_init (q);

  for (;;)
    {
      ASSERT (mpz_size (a) > s);
      ASSERT (mpz_size (b) > s);

      if (mpz_cmp (a, b) > 0)
	{
	  if (!sdiv_qr (q, a, s, a, b))
	    break;
	  mpz_addmul (hgcd->m[0][1], q, hgcd->m[0][0]);
	  mpz_addmul (hgcd->m[1][1], q, hgcd->m[1][0]);
	}
      else
	{
	  if (!sdiv_qr (q, b, s, b, a))
	    break;
	  mpz_addmul (hgcd->m[0][0], q, hgcd->m[0][1]);
	  mpz_addmul (hgcd->m[1][0], q, hgcd->m[1][1]);
	}
    }

  mpz_clear (q);

  return 1;
}

static int
hgcd_ref_equal (const struct hgcd_ref *A, const struct hgcd_ref *B)
{
  unsigned i;

  for (i = 0; i<2; i++)
    {
      unsigned j;

      for (j = 0; j<2; j++)
	if (mpz_cmp (A->m[i][j], B->m[i][j]) != 0)
	  return 0;
    }

  return 1;
}

static int
hgcd_appr_valid_p (mpz_t a, mpz_t b, mp_size_t res0,
		   struct hgcd_ref *ref, mpz_t ref_r0, mpz_t ref_r1,
		   mp_size_t res1, struct hgcd_matrix *hgcd)
{
  mp_size_t n = MAX (mpz_size (a), mpz_size (b));
  mp_size_t s = n/2 + 1;

  mp_bitcnt_t dbits, abits, margin;
  mpz_t appr_r0, appr_r1, t, q;
  struct hgcd_ref appr;

  if (!res0)
    {
      if (!res1)
	return 1;

      fprintf (stderr, "mpn_hgcd_appr returned 1 when no reduction possible.\n");
      return 0;
    }

  /* NOTE: No *_clear calls on error return, since we're going to
     abort anyway. */
  mpz_init (t);
  mpz_init (q);
  hgcd_ref_init (&appr);
  mpz_init (appr_r0);
  mpz_init (appr_r1);

  if (mpz_size (ref_r0) <= s)
    {
      fprintf (stderr, "ref_r0 too small!!!: "); debug_mp (ref_r0, 16);
      return 0;
    }
  if (mpz_size (ref_r1) <= s)
    {
      fprintf (stderr, "ref_r1 too small!!!: "); debug_mp (ref_r1, 16);
      return 0;
    }

  mpz_sub (t, ref_r0, ref_r1);
  dbits = mpz_sizeinbase (t, 2);
  if (dbits > s*GMP_NUMB_BITS)
    {
      fprintf (stderr, "ref |r0 - r1| too large!!!: "); debug_mp (t, 16);
      return 0;
    }

  if (!res1)
    {
      mpz_set (appr_r0, a);
      mpz_set (appr_r1, b);
    }
  else
    {
      unsigned i;

      for (i = 0; i<2; i++)
	{
	  unsigned j;

	  for (j = 0; j<2; j++)
	    {
	      mp_size_t mn = hgcd->n;
	      MPN_NORMALIZE (hgcd->p[i][j], mn);
	      mpz_realloc (appr.m[i][j], mn);
	      MPN_COPY (PTR (appr.m[i][j]), hgcd->p[i][j], mn);
	      SIZ (appr.m[i][j]) = mn;
	    }
	}
      mpz_mul (appr_r0, appr.m[1][1], a);
      mpz_mul (t, appr.m[0][1], b);
      mpz_sub (appr_r0, appr_r0, t);
      if (mpz_sgn (appr_r0) <= 0
	  || mpz_size (appr_r0) <= s)
	{
	  fprintf (stderr, "appr_r0 too small: "); debug_mp (appr_r0, 16);
	  return 0;
	}

      mpz_mul (appr_r1, appr.m[1][0], a);
      mpz_mul (t, appr.m[0][0], b);
      mpz_sub (appr_r1, t, appr_r1);
      if (mpz_sgn (appr_r1) <= 0
	  || mpz_size (appr_r1) <= s)
	{
	  fprintf (stderr, "appr_r1 too small: "); debug_mp (appr_r1, 16);
	  return 0;
	}
    }

  mpz_sub (t, appr_r0, appr_r1);
  abits = mpz_sizeinbase (t, 2);
  if (abits < dbits)
    {
      fprintf (stderr, "|r0 - r1| too small: "); debug_mp (t, 16);
      return 0;
    }

  /* We lose one bit each time we discard the least significant limbs.
     For the lehmer code, that can happen at most s * (GMP_NUMB_BITS)
     / (GMP_NUMB_BITS - 1) times. For the dc code, we lose an entire
     limb (or more?) for each level of recursion. */

  margin = (n/2+1) * GMP_NUMB_BITS / (GMP_NUMB_BITS - 1);
  {
    mp_size_t rn;
    for (rn = n; ABOVE_THRESHOLD (rn, HGCD_APPR_THRESHOLD); rn = (rn + 1)/2)
      margin += GMP_NUMB_BITS;
  }

  if (verbose_flag && abits > dbits)
    fprintf (stderr, "n = %u: sbits = %u: ref #(r0-r1): %u, appr #(r0-r1): %u excess: %d, margin: %u\n",
	     (unsigned) n, (unsigned) s*GMP_NUMB_BITS,
	     (unsigned) dbits, (unsigned) abits,
	     (int) (abits - s * GMP_NUMB_BITS), (unsigned) margin);

  if (abits > s*GMP_NUMB_BITS + margin)
    {
      fprintf (stderr, "appr |r0 - r1| much larger than minimal (by %u bits, margin = %u bits)\n",
	       (unsigned) (abits - s*GMP_NUMB_BITS), (unsigned) margin);
      return 0;
    }

  while (mpz_cmp (appr_r0, ref_r0) > 0 || mpz_cmp (appr_r1, ref_r1) > 0)
    {
      ASSERT (mpz_size (appr_r0) > s);
      ASSERT (mpz_size (appr_r1) > s);

      if (mpz_cmp (appr_r0, appr_r1) > 0)
	{
	  if (!sdiv_qr (q, appr_r0, s, appr_r0, appr_r1))
	    break;
	  mpz_addmul (appr.m[0][1], q, appr.m[0][0]);
	  mpz_addmul (appr.m[1][1], q, appr.m[1][0]);
	}
      else
	{
	  if (!sdiv_qr (q, appr_r1, s, appr_r1, appr_r0))
	    break;
	  mpz_addmul (appr.m[0][0], q, appr.m[0][1]);
	  mpz_addmul (appr.m[1][0], q, appr.m[1][1]);
	}
    }

  if (mpz_cmp (appr_r0, ref_r0) != 0
      || mpz_cmp (appr_r1, ref_r1) != 0
      || !hgcd_ref_equal (ref, &appr))
    {
      fprintf (stderr, "appr_r0: "); debug_mp (appr_r0, 16);
      fprintf (stderr, "ref_r0: "); debug_mp (ref_r0, 16);

      fprintf (stderr, "appr_r1: "); debug_mp (appr_r1, 16);
      fprintf (stderr, "ref_r1: "); debug_mp (ref_r1, 16);

      return 0;
    }
  mpz_clear (t);
  mpz_clear (q);
  hgcd_ref_clear (&appr);
  mpz_clear (appr_r0);
  mpz_clear (appr_r1);

  return 1;
}