/* $NetBSD: pthread_mutex.c,v 1.65.2.1 2020/01/26 10:55:16 martin Exp $ */
/*-
* Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* To track threads waiting for mutexes to be released, we use lockless
* lists built on atomic operations and memory barriers.
*
* A simple spinlock would be faster and make the code easier to
* follow, but spinlocks are problematic in userspace. If a thread is
* preempted by the kernel while holding a spinlock, any other thread
* attempting to acquire that spinlock will needlessly busy wait.
*
* There is no good way to know that the holding thread is no longer
* running, nor to request a wake-up once it has begun running again.
* Of more concern, threads in the SCHED_FIFO class do not have a
* limited time quantum and so could spin forever, preventing the
* thread holding the spinlock from getting CPU time: it would never
* be released.
*/
#include <sys/cdefs.h>
__RCSID("$NetBSD: pthread_mutex.c,v 1.65.2.1 2020/01/26 10:55:16 martin Exp $");
#include <sys/types.h>
#include <sys/lwpctl.h>
#include <sys/sched.h>
#include <sys/lock.h>
#include <errno.h>
#include <limits.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <stdio.h>
#include "pthread.h"
#include "pthread_int.h"
#include "reentrant.h"
#define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
#define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
#define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
#define MUTEX_PROTECT_BIT ((uintptr_t)0x08)
#define MUTEX_THREAD ((uintptr_t)~0x0f)
#define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
#define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
#define MUTEX_PROTECT(x) ((uintptr_t)(x) & MUTEX_PROTECT_BIT)
#define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
#define MUTEX_GET_TYPE(x) \
((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
#define MUTEX_SET_TYPE(x, t) \
(x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
#define MUTEX_GET_PROTOCOL(x) \
((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
#define MUTEX_SET_PROTOCOL(x, p) \
(x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
#define MUTEX_GET_CEILING(x) \
((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
#define MUTEX_SET_CEILING(x, c) \
(x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
#if __GNUC_PREREQ__(3, 0)
#define NOINLINE __attribute ((noinline))
#else
#define NOINLINE /* nothing */
#endif
static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
static int pthread__mutex_lock_slow(pthread_mutex_t *,
const struct timespec *);
static int pthread__mutex_unlock_slow(pthread_mutex_t *);
static void pthread__mutex_pause(void);
int _pthread_mutex_held_np(pthread_mutex_t *);
pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
__weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
__weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
__strong_alias(__libc_mutex_init,pthread_mutex_init)
__strong_alias(__libc_mutex_lock,pthread_mutex_lock)
__strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
__strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
__strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
__strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
__strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
__strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
int
pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
{
uintptr_t type, proto, val, ceil;
#if 0
/*
* Always initialize the mutex structure, maybe be used later
* and the cost should be minimal.
*/
if (__predict_false(__uselibcstub))
return __libc_mutex_init_stub(ptm, attr);
#endif
if (attr == NULL) {
type = PTHREAD_MUTEX_NORMAL;
proto = PTHREAD_PRIO_NONE;
ceil = 0;
} else {
val = (uintptr_t)attr->ptma_private;
type = MUTEX_GET_TYPE(val);
proto = MUTEX_GET_PROTOCOL(val);
ceil = MUTEX_GET_CEILING(val);
}
switch (type) {
case PTHREAD_MUTEX_ERRORCHECK:
__cpu_simple_lock_set(&ptm->ptm_errorcheck);
ptm->ptm_owner = NULL;
break;
case PTHREAD_MUTEX_RECURSIVE:
__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
break;
default:
__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
ptm->ptm_owner = NULL;
break;
}
switch (proto) {
case PTHREAD_PRIO_PROTECT:
val = (uintptr_t)ptm->ptm_owner;
val |= MUTEX_PROTECT_BIT;
ptm->ptm_owner = (void *)val;
break;
}
ptm->ptm_magic = _PT_MUTEX_MAGIC;
ptm->ptm_waiters = NULL;
ptm->ptm_recursed = 0;
ptm->ptm_ceiling = (unsigned char)ceil;
return 0;
}
int
pthread_mutex_destroy(pthread_mutex_t *ptm)
{
if (__predict_false(__uselibcstub))
return __libc_mutex_destroy_stub(ptm);
pthread__error(EINVAL, "Invalid mutex",
ptm->ptm_magic == _PT_MUTEX_MAGIC);
pthread__error(EBUSY, "Destroying locked mutex",
MUTEX_OWNER(ptm->ptm_owner) == 0);
ptm->ptm_magic = _PT_MUTEX_DEAD;
return 0;
}
int
pthread_mutex_lock(pthread_mutex_t *ptm)
{
pthread_t self;
void *val;
if (__predict_false(__uselibcstub))
return __libc_mutex_lock_stub(ptm);
self = pthread__self();
val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
if (__predict_true(val == NULL)) {
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
membar_enter();
#endif
return 0;
}
return pthread__mutex_lock_slow(ptm, NULL);
}
int
pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
{
pthread_t self;
void *val;
self = pthread__self();
val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
if (__predict_true(val == NULL)) {
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
membar_enter();
#endif
return 0;
}
return pthread__mutex_lock_slow(ptm, ts);
}
/* We want function call overhead. */
NOINLINE static void
pthread__mutex_pause(void)
{
pthread__smt_pause();
}
/*
* Spin while the holder is running. 'lwpctl' gives us the true
* status of the thread.
*/
NOINLINE static void *
pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
{
pthread_t thread;
unsigned int count, i;
for (count = 2;; owner = ptm->ptm_owner) {
thread = (pthread_t)MUTEX_OWNER(owner);
if (thread == NULL)
break;
if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE)
break;
if (count < 128)
count += count;
for (i = count; i != 0; i--)
pthread__mutex_pause();
}
return owner;
}
NOINLINE static bool
pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
{
void *owner, *next;
/*
* Note that the mutex can become unlocked before we set
* the waiters bit. If that happens it's not safe to sleep
* as we may never be awoken: we must remove the current
* thread from the waiters list and try again.
*
* Because we are doing this atomically, we can't remove
* one waiter: we must remove all waiters and awken them,
* then sleep in _lwp_park() until we have been awoken.
*
* Issue a memory barrier to ensure that we are reading
* the value of ptm_owner/pt_mutexwait after we have entered
* the waiters list (the CAS itself must be atomic).
*/
for (owner = ptm->ptm_owner;; owner = next) {
if (MUTEX_OWNER(owner) == 0) {
pthread__mutex_wakeup(self, ptm);
return true;
}
if (MUTEX_HAS_WAITERS(owner)) {
return false;
}
next = atomic_cas_ptr(&ptm->ptm_owner, owner,
(void *)((uintptr_t)owner | MUTEX_WAITERS_BIT));
}
}
NOINLINE static int
pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
{
void *waiters, *new, *owner, *next;
pthread_t self;
int serrno;
int error;
pthread__error(EINVAL, "Invalid mutex",
ptm->ptm_magic == _PT_MUTEX_MAGIC);
owner = ptm->ptm_owner;
self = pthread__self();
/* Recursive or errorcheck? */
if (MUTEX_OWNER(owner) == (uintptr_t)self) {
if (MUTEX_RECURSIVE(owner)) {
if (ptm->ptm_recursed == INT_MAX)
return EAGAIN;
ptm->ptm_recursed++;
return 0;
}
if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
return EDEADLK;
}
/* priority protect */
if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
return errno;
}
serrno = errno;
for (;; owner = ptm->ptm_owner) {
/* Spin while the owner is running. */
if (MUTEX_OWNER(owner) != (uintptr_t)self)
owner = pthread__mutex_spin(ptm, owner);
/* If it has become free, try to acquire it again. */
if (MUTEX_OWNER(owner) == 0) {
do {
new = (void *)
((uintptr_t)self | (uintptr_t)owner);
next = atomic_cas_ptr(&ptm->ptm_owner, owner,
new);
if (next == owner) {
errno = serrno;
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
membar_enter();
#endif
return 0;
}
owner = next;
} while (MUTEX_OWNER(owner) == 0);
/*
* We have lost the race to acquire the mutex.
* The new owner could be running on another
* CPU, in which case we should spin and avoid
* the overhead of blocking.
*/
continue;
}
/*
* Nope, still held. Add thread to the list of waiters.
* Issue a memory barrier to ensure mutexwait/mutexnext
* are visible before we enter the waiters list.
*/
self->pt_mutexwait = 1;
for (waiters = ptm->ptm_waiters;; waiters = next) {
self->pt_mutexnext = waiters;
membar_producer();
next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
if (next == waiters)
break;
}
/* Set the waiters bit and block. */
membar_sync();
if (pthread__mutex_setwaiters(self, ptm)) {
continue;
}
/*
* We may have been awoken by the current thread above,
* or will be awoken by the current holder of the mutex.
* The key requirement is that we must not proceed until
* told that we are no longer waiting (via pt_mutexwait
* being set to zero). Otherwise it is unsafe to re-enter
* the thread onto the waiters list.
*/
membar_sync();
while (self->pt_mutexwait) {
error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME,
__UNCONST(ts), self->pt_unpark,
__UNVOLATILE(&ptm->ptm_waiters),
__UNVOLATILE(&ptm->ptm_waiters));
self->pt_unpark = 0;
if (__predict_true(error != -1)) {
continue;
}
if (errno == ETIMEDOUT && self->pt_mutexwait) {
/*Remove self from waiters list*/
pthread__mutex_wakeup(self, ptm);
/*priority protect*/
if (MUTEX_PROTECT(owner))
(void)_sched_protect(-1);
return ETIMEDOUT;
}
}
}
}
int
pthread_mutex_trylock(pthread_mutex_t *ptm)
{
pthread_t self;
void *val, *new, *next;
if (__predict_false(__uselibcstub))
return __libc_mutex_trylock_stub(ptm);
self = pthread__self();
val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
if (__predict_true(val == NULL)) {
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
membar_enter();
#endif
return 0;
}
if (MUTEX_RECURSIVE(val)) {
if (MUTEX_OWNER(val) == 0) {
new = (void *)((uintptr_t)self | (uintptr_t)val);
next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
if (__predict_true(next == val)) {
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
membar_enter();
#endif
return 0;
}
}
if (MUTEX_OWNER(val) == (uintptr_t)self) {
if (ptm->ptm_recursed == INT_MAX)
return EAGAIN;
ptm->ptm_recursed++;
return 0;
}
}
return EBUSY;
}
int
pthread_mutex_unlock(pthread_mutex_t *ptm)
{
pthread_t self;
void *value;
if (__predict_false(__uselibcstub))
return __libc_mutex_unlock_stub(ptm);
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
membar_exit();
#endif
self = pthread__self();
value = atomic_cas_ptr(&ptm->ptm_owner, self, NULL);
if (__predict_true(value == self)) {
pthread__smt_wake();
return 0;
}
return pthread__mutex_unlock_slow(ptm);
}
NOINLINE static int
pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
{
pthread_t self, owner, new;
int weown, error, deferred;
pthread__error(EINVAL, "Invalid mutex",
ptm->ptm_magic == _PT_MUTEX_MAGIC);
self = pthread__self();
owner = ptm->ptm_owner;
weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
error = 0;
if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
if (!weown) {
error = EPERM;
new = owner;
} else {
new = NULL;
}
} else if (MUTEX_RECURSIVE(owner)) {
if (!weown) {
error = EPERM;
new = owner;
} else if (ptm->ptm_recursed) {
ptm->ptm_recursed--;
new = owner;
} else {
new = (pthread_t)MUTEX_RECURSIVE_BIT;
}
} else {
pthread__error(EPERM,
"Unlocking unlocked mutex", (owner != NULL));
pthread__error(EPERM,
"Unlocking mutex owned by another thread", weown);
new = NULL;
}
/*
* Release the mutex. If there appear to be waiters, then
* wake them up.
*/
if (new != owner) {
owner = atomic_swap_ptr(&ptm->ptm_owner, new);
if (__predict_false(MUTEX_PROTECT(owner))) {
/* restore elevated priority */
(void)_sched_protect(-1);
}
if (MUTEX_HAS_WAITERS(owner) != 0) {
pthread__mutex_wakeup(self, ptm);
return 0;
}
}
/*
* There were no waiters, but we may have deferred waking
* other threads until mutex unlock - we must wake them now.
*/
if (!deferred)
return error;
if (self->pt_nwaiters == 1) {
/*
* If the calling thread is about to block, defer
* unparking the target until _lwp_park() is called.
*/
if (self->pt_willpark && self->pt_unpark == 0) {
self->pt_unpark = self->pt_waiters[0];
} else {
(void)_lwp_unpark(self->pt_waiters[0],
__UNVOLATILE(&ptm->ptm_waiters));
}
} else {
(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
__UNVOLATILE(&ptm->ptm_waiters));
}
self->pt_nwaiters = 0;
return error;
}
/*
* pthread__mutex_wakeup: unpark threads waiting for us
*
* unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
*/
static void
pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
{
pthread_t thread, next;
ssize_t n, rv;
/* Take ownership of the current set of waiters. */
thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
membar_datadep_consumer(); /* for alpha */
pthread__smt_wake();
for (;;) {
/*
* Pull waiters from the queue and add to our list.
* Use a memory barrier to ensure that we safely
* read the value of pt_mutexnext before 'thread'
* sees pt_mutexwait being cleared.
*/
for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
n < pthread__unpark_max && thread != NULL;
thread = next) {
next = thread->pt_mutexnext;
if (thread != self) {
self->pt_waiters[n++] = thread->pt_lid;
membar_sync();
}
thread->pt_mutexwait = 0;
/* No longer safe to touch 'thread' */
}
switch (n) {
case 0:
return;
case 1:
/*
* If the calling thread is about to block,
* defer unparking the target until _lwp_park()
* is called.
*/
if (self->pt_willpark && self->pt_unpark == 0) {
self->pt_unpark = self->pt_waiters[0];
return;
}
rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
__UNVOLATILE(&ptm->ptm_waiters));
if (rv != 0 && errno != EALREADY && errno != EINTR &&
errno != ESRCH) {
pthread__errorfunc(__FILE__, __LINE__,
__func__, "_lwp_unpark failed");
}
return;
default:
rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
__UNVOLATILE(&ptm->ptm_waiters));
if (rv != 0 && errno != EINTR) {
pthread__errorfunc(__FILE__, __LINE__,
__func__, "_lwp_unpark_all failed");
}
break;
}
}
}
int
pthread_mutexattr_init(pthread_mutexattr_t *attr)
{
if (__predict_false(__uselibcstub))
return __libc_mutexattr_init_stub(attr);
attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
return 0;
}
int
pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
{
if (__predict_false(__uselibcstub))
return __libc_mutexattr_destroy_stub(attr);
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
return 0;
}
int
pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
{
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
*typep = MUTEX_GET_TYPE(attr->ptma_private);
return 0;
}
int
pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
{
if (__predict_false(__uselibcstub))
return __libc_mutexattr_settype_stub(attr, type);
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
switch (type) {
case PTHREAD_MUTEX_NORMAL:
case PTHREAD_MUTEX_ERRORCHECK:
case PTHREAD_MUTEX_RECURSIVE:
MUTEX_SET_TYPE(attr->ptma_private, type);
return 0;
default:
return EINVAL;
}
}
int
pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
{
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
*proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
return 0;
}
int
pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
{
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
switch (proto) {
case PTHREAD_PRIO_NONE:
case PTHREAD_PRIO_PROTECT:
MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
return 0;
case PTHREAD_PRIO_INHERIT:
return ENOTSUP;
default:
return EINVAL;
}
}
int
pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
{
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
*ceil = MUTEX_GET_CEILING(attr->ptma_private);
return 0;
}
int
pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
{
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
if (ceil & ~0xff)
return EINVAL;
MUTEX_SET_CEILING(attr->ptma_private, ceil);
return 0;
}
#ifdef _PTHREAD_PSHARED
int
pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
int * __restrict pshared)
{
*pshared = PTHREAD_PROCESS_PRIVATE;
return 0;
}
int
pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
{
switch(pshared) {
case PTHREAD_PROCESS_PRIVATE:
return 0;
case PTHREAD_PROCESS_SHARED:
return ENOSYS;
}
return EINVAL;
}
#endif
/*
* pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
*
* In order to avoid unnecessary contention on the interlocking mutex,
* we defer waking up threads until we unlock the mutex. The threads will
* be woken up when the calling thread (self) releases the first mutex with
* MUTEX_DEFERRED_BIT set. It likely be the mutex 'ptm', but no problem
* even if it isn't.
*/
void
pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
{
if (__predict_false(ptm == NULL ||
MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
__UNVOLATILE(&ptm->ptm_waiters));
self->pt_nwaiters = 0;
} else {
atomic_or_ulong((volatile unsigned long *)
(uintptr_t)&ptm->ptm_owner,
(unsigned long)MUTEX_DEFERRED_BIT);
}
}
int
pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
{
*ceil = ptm->ptm_ceiling;
return 0;
}
int
pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
{
int error;
error = pthread_mutex_lock(ptm);
if (error == 0) {
*old_ceil = ptm->ptm_ceiling;
/*check range*/
ptm->ptm_ceiling = ceil;
pthread_mutex_unlock(ptm);
}
return error;
}
int
_pthread_mutex_held_np(pthread_mutex_t *ptm)
{
return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
}
pthread_t
_pthread_mutex_owner_np(pthread_mutex_t *ptm)
{
return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
}