Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
/*	$NetBSD: skeysubr.c,v 1.28 2012/03/22 22:59:43 joerg Exp $	*/

/* S/KEY v1.1b (skeysubr.c)
 *
 * Authors:
 *          Neil M. Haller <nmh@thumper.bellcore.com>
 *          Philip R. Karn <karn@chicago.qualcomm.com>
 *          John S. Walden <jsw@thumper.bellcore.com>
 *
 * Modifications:
 *          Scott Chasin <chasin@crimelab.com>
 *          Todd C. Miller <Todd.Miller@courtesan.com>
 *
 * S/KEY misc routines.
 */

#include <sys/cdefs.h>
__RCSID("$NetBSD: skeysubr.c,v 1.28 2012/03/22 22:59:43 joerg Exp $");

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <termios.h>

#include <md4.h>
#include <md5.h>
#include <sys/rmd160.h>
#include <sha1.h>

#include "skey.h"

/* Default hash function to use (index into skey_hash_types array) */
#ifndef SKEY_HASH_DEFAULT
#define SKEY_HASH_DEFAULT  	 0		/* MD4 */
#endif

static void f_md4(char *);
static void f_md5(char *);
static void f_sha1(char *);
/* static void f_rmd160(char *x); */
static int keycrunch_md4(char *, const char *, const char *);
static int keycrunch_md5(char *, const char *, const char *);
static int keycrunch_sha1(char *, const char *, const char *);
/* static int keycrunch_rmd160(char *, const char *, const char *); */
static void lowcase(char *);
static void skey_echo(int);
static void trapped(int) __dead;
static char *mkSeedPassword(const char *, const char *, size_t *);

/* Current hash type (index into skey_hash_types array) */
static int skey_hash_type = SKEY_HASH_DEFAULT;

/*
 * Hash types we support.
 * Each has an associated keycrunch() and f() function.
 */

struct skey_algorithm_table {
	const char *name;
	int (*keycrunch)(char *, const char *, const char *);
	void (*f)(char *);
};
static struct skey_algorithm_table skey_algorithm_table[] = {
	{ "md4", keycrunch_md4, f_md4 },
	{ "md5", keycrunch_md5, f_md5 },
	{ "sha1", keycrunch_sha1, f_sha1 },
#if 0
	{ "rmd160", keycrunch_rmd160, f_rmd160 },
#endif
	{ NULL, NULL, NULL }
};

/*
 * Crunch a key:
 * concatenate the (lower cased) seed and the password, run through
 * the hash algorithm and collapse to 64 bits.
 * This is defined as the user's starting key.
 */
int keycrunch(char *result, 	    /* SKEY_BINKEY_SIZE result */
	      const char *seed,     /* Seed, any length */
	      const char *passwd)   /* Password, any length */
{
    return(skey_algorithm_table[skey_hash_type].keycrunch(result, seed, passwd));
}

static char *mkSeedPassword(const char *seed, const char *passwd,
			    size_t *buflen)
{
	char *buf;

	*buflen = strlen(seed) + strlen(passwd);
	if ((buf = (char *) malloc(*buflen + 1)) == NULL)
		return NULL;
	strcpy(buf, seed);
	lowcase(buf);
	strcat(buf, passwd);
	sevenbit(buf);
	
	return buf;
}

static int keycrunch_md4(char *result,       /* SKEY_BINKEY_SIZE result */
			 const char *seed,   /* Seed, any length */
			 const char *passwd) /* Password, any length */
{
	char *buf;
	MD4_CTX md;
	size_t buflen;
	u_int32_t results[4];

	if ((buf = mkSeedPassword(seed, passwd, &buflen)) == NULL)
		return -1;

	/* Crunch the key through MD4 */
	MD4Init(&md);
	MD4Update(&md, (unsigned char *) buf, buflen);
	MD4Final((unsigned char *) (void *) results, &md);
	free(buf);

	/* Fold result from 128 to 64 bits */
	results[0] ^= results[2];
	results[1] ^= results[3];

	(void)memcpy(result, results, SKEY_BINKEY_SIZE);

	return 0;
}

static int keycrunch_md5(char *result,		/* SKEY_BINKEY_SIZE result */
			 const char *seed,	/* Seed, any length */
			 const char *passwd)	/* Password, any length */
{
	char *buf;
	MD5_CTX md;
	u_int32_t results[4];
	size_t buflen;

	if ((buf = mkSeedPassword(seed, passwd, &buflen)) == NULL)
		return -1;

	/* Crunch the key through MD5 */
	MD5Init(&md);
	MD5Update(&md, (unsigned char *)buf, buflen);
	MD5Final((unsigned char *) (void *)results, &md);
	free(buf);

	/* Fold result from 128 to 64 bits */
	results[0] ^= results[2];
	results[1] ^= results[3];

	(void)memcpy((void *)result, (void *)results, SKEY_BINKEY_SIZE);

	return(0);
}

static int keycrunch_sha1(char *result,		/* SKEY_BINKEY_SIZE result */
			  const char *seed,	/* Seed, any length */
			  const char *passwd)	/* Password, any length */
{
	char *buf;
	SHA1_CTX sha;
	size_t buflen;
	int i, j;

	if ((buf = mkSeedPassword(seed, passwd, &buflen)) == NULL)
		return -1;

	/* Crunch the key through SHA1 */
	SHA1Init(&sha);
	SHA1Update(&sha, (unsigned char *)buf, buflen);
	SHA1Final(NULL, &sha);
	free(buf);

	/* Fold 160 to 64 bits */
	sha.state[0] ^= sha.state[2];
	sha.state[1] ^= sha.state[3];
	sha.state[0] ^= sha.state[4];

	/*
	 * SHA1 is a big endian algorithm but RFC2289 mandates that
	 * the result be in little endian form, so we copy to the
	 * result buffer manually.
	 */

	for(i=j=0; j<8; i++, j+=4) {
		result[j]   = (unsigned char)(sha.state[i] & 0xff);
		result[j+1] = (unsigned char)((sha.state[i] >> 8) & 0xff);
		result[j+2] = (unsigned char)((sha.state[i] >> 16) & 0xff);
		result[j+3] = (unsigned char)((sha.state[i] >> 24) & 0xff);
	}

	return(0);
}

#if 0
static int keycrunch_rmd160(char *result,	/* SKEY_BINKEY_SIZE result */
			    const char *seed,	/* Seed, any length */
			    const char *passwd)	/* Password, any length */
{
	char *buf;
	RMD160_CTX rmd;
	u_int32_t results[5];
	size_t buflen;

	if ((buf = mkSeedPassword(seed, passwd, &buflen)) == NULL)
		return -1;

	/* Crunch the key through RMD-160 */
	RMD160Init(&rmd);
	RMD160Update(&rmd, (unsigned char *)buf, buflen);
	RMD160Final((unsigned char *)(void *)results, &rmd);
	free(buf);

	/* Fold 160 to 64 bits */
	results[0] ^= results[2];
	results[1] ^= results[3];
	results[0] ^= results[4];

	(void)memcpy((void *)result, (void *)results, SKEY_BINKEY_SIZE);

	return(0);
}
#endif

/* The one-way function f(). Takes 8 bytes and returns 8 bytes in place */
void f(char *x)
{
	skey_algorithm_table[skey_hash_type].f(x);
}

static void f_md4(char *x)
{
	MD4_CTX md;
	u_int32_t results[4];

	MD4Init(&md);
	MD4Update(&md, (unsigned char *) x, SKEY_BINKEY_SIZE);
	MD4Final((unsigned char *) (void *) results, &md);

	/* Fold 128 to 64 bits */
	results[0] ^= results[2];
	results[1] ^= results[3];

	(void)memcpy(x, results, SKEY_BINKEY_SIZE);
}

static void f_md5(char *x)
{
	MD5_CTX md;
	u_int32_t results[4];

	MD5Init(&md);
	MD5Update(&md, (unsigned char *)x, SKEY_BINKEY_SIZE);
	MD5Final((unsigned char *) (void *)results, &md);

	/* Fold 128 to 64 bits */
	results[0] ^= results[2];
	results[1] ^= results[3];

	(void)memcpy((void *)x, (void *)results, SKEY_BINKEY_SIZE);
}

static void f_sha1(char *x)
{
	SHA1_CTX sha;
	int i, j;
	
	SHA1Init(&sha);
	SHA1Update(&sha, (unsigned char *)x, SKEY_BINKEY_SIZE);
	SHA1Final(NULL, &sha);

	/* Fold 160 to 64 bits */
	sha.state[0] ^= sha.state[2];
	sha.state[1] ^= sha.state[3];
	sha.state[0] ^= sha.state[4];

	for(i=j=0; j<8; i++, j+=4) {
		x[j]   = (unsigned char)(sha.state[i] & 0xff);
		x[j+1] = (unsigned char)((sha.state[i] >> 8) & 0xff);
		x[j+2] = (unsigned char)((sha.state[i] >> 16) & 0xff);
		x[j+3] = (unsigned char)((sha.state[i] >> 24) & 0xff);
	}
}

#if 0
static void f_rmd160(char *x)
{
	RMD160_CTX rmd;
	u_int32_t results[5];

	RMD160Init(&rmd);
	RMD160Update(&rmd, (unsigned char *)x, SKEY_BINKEY_SIZE);
	RMD160Final((unsigned char *)(void *)results, &rmd);

	/* Fold 160 to 64 bits */
	results[0] ^= results[2];
	results[1] ^= results[3];
	results[0] ^= results[4];

	(void)memcpy((void *)x, (void *)results, SKEY_BINKEY_SIZE);
}
#endif

/* Strip trailing cr/lf from a line of text */
void rip(char *buf)
{
	buf += strcspn(buf, "\r\n");

	if (*buf)
		*buf = '\0';
}

/* Read in secret password (turns off echo) */
char *readpass(char *buf, int n)
{
	void *old_handler;

	/* Turn off echoing */
	skey_echo(0);

	/* Catch SIGINT and save old signal handler */
	old_handler = signal(SIGINT, trapped);

	fgets(buf, n, stdin);
	rip(buf);

	putc('\n', stderr);
	fflush(stderr);

	/* Restore signal handler and turn echo back on */
	if (old_handler != SIG_ERR)
		(void)signal(SIGINT, old_handler);
	skey_echo(1);

	sevenbit(buf);

	return buf;
}

/* Read in an s/key OTP (does not turn off echo) */
char *readskey(char *buf, int n)
{
	fgets(buf, n, stdin);

	rip(buf);

	sevenbit (buf);

	return buf;
}

/* Signal handler for trapping ^C */
/*ARGSUSED*/
static void trapped(int sig)
{
	fputs("^C\n", stderr);
	fflush(stderr);

	/* Turn on echo if necessary */
	skey_echo(1);

	exit(1);
}

/*
 * Convert 8-byte hex-ascii string to binary array
 * Returns 0 on success, -1 on error
 */
int atob8(char *out, const char *in)
{
	int i;
	int val;

	if (in == NULL || out == NULL)
		return -1;

	for (i=0; i<8; i++) {
		if ((in = skipspace(in)) == NULL)
			return -1;
		if ((val = htoi(*in++)) == -1)
			return -1;
		*out = val << 4;

		if ((in = skipspace(in)) == NULL)
			return -1;
		if ((val = htoi(*in++)) == -1)
			return -1;
		*out++ |= val;
	}
	return 0;
}

/* Convert 8-byte binary array to hex-ascii string */
int btoa8(char *out, const char *in)
{
	int i;

	if (in == NULL || out == NULL)
		return -1;

	for (i=0;i<8;i++) {
		sprintf(out, "%02x", *in++ & 0xff);
		out += 2;
	}
	return 0;
}


/* Convert hex digit to binary integer */
int htoi(int c)
{
	if ('0' <= c && c <= '9')
		return c - '0';
	if ('a' <= c && c <= 'f')
		return 10 + c - 'a';
	if ('A' <= c && c <= 'F')
		return 10 + c - 'A';
	return -1;
}

/* Skip leading spaces from the string */
const char *skipspace(const char *cp)
{
	while (*cp == ' ' || *cp == '\t')
		cp++;

	if (*cp == '\0')
		return NULL;
	else
		return cp;
}

/* Remove backspaced over charaters from the string */
void backspace(char *buf)
{
	char bs = 0x8;
	char *cp = buf;
	char *out = buf;

	while (*cp) {
		if (*cp == bs) {
			if (out == buf) {
				cp++;
				continue;
			} else {
			  cp++;
			  out--;
			}
		} else {
			*out++ = *cp++;
		}

	}
	*out = '\0';
}

/* Make sure line is all seven bits */
void sevenbit(char *s)
{
	while (*s)
		*s++ &= 0x7f;
}

/* Set hash algorithm type */
const char *skey_set_algorithm(const char *new)
{
	int i;

	for (i = 0; skey_algorithm_table[i].name; i++) {
		if (strcmp(new, skey_algorithm_table[i].name) == 0) {
			skey_hash_type = i;
			return(new);
		}
	}

	return(NULL);
}

/* Get current hash type */
const char *skey_get_algorithm(void)
{
	return(skey_algorithm_table[skey_hash_type].name);
}

/* Turn echo on/off */
static void skey_echo(int action)
{
	static struct termios term;
	static int echo = 0;

	if (action == 0) {
		/* Turn echo off */
		(void) tcgetattr(fileno(stdin), &term);
		if ((echo = (term.c_lflag & ECHO)) != 0) {
			term.c_lflag &= ~ECHO;
			(void) tcsetattr(fileno(stdin), TCSAFLUSH|TCSASOFT, &term);
		}
	} else if (action && echo) {
		/* Turn echo on */
		term.c_lflag |= ECHO;
		(void) tcsetattr(fileno(stdin), TCSAFLUSH|TCSASOFT, &term);
		echo = 0;
	}
}

/* Convert string to lower case */
static void lowcase(char *s)
{
	u_char *p;

	for (p = (u_char *) s; *p; p++)
		if (isupper(*p))
			*p = tolower(*p);
}