Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
/* $NetBSD: meson_sdio.c,v 1.1 2019/01/19 20:56:03 jmcneill Exp $ */

/*-
 * Copyright (c) 2015-2019 Jared D. McNeill <jmcneill@invisible.ca>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: meson_sdio.c,v 1.1 2019/01/19 20:56:03 jmcneill Exp $");

#include <sys/param.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/intr.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/gpio.h>

#include <dev/sdmmc/sdmmcvar.h>
#include <dev/sdmmc/sdmmcchip.h>
#include <dev/sdmmc/sdmmc_ioreg.h>

#include <dev/fdt/fdtvar.h>

#include <arm/amlogic/meson_sdioreg.h>

static int	meson_sdio_match(device_t, cfdata_t, void *);
static void	meson_sdio_attach(device_t, device_t, void *);
static void	meson_sdio_attach_i(device_t);

static int	meson_sdio_intr(void *);

struct meson_sdio_softc {
	device_t		sc_dev;
	bus_space_tag_t		sc_bst;
	bus_space_handle_t	sc_bsh;
	bus_dma_tag_t		sc_dmat;
	void			*sc_ih;

	int			sc_slot_phandle;

	uint32_t		sc_bus_freq;
	u_int			sc_cur_width;
	int			sc_cur_port;

	struct fdtbus_gpio_pin	*sc_gpio_cd;
	int			sc_gpio_cd_inverted;
	struct fdtbus_gpio_pin	*sc_gpio_wp;
	int			sc_gpio_wp_inverted;

	struct fdtbus_regulator	*sc_reg_vmmc;
	struct fdtbus_regulator	*sc_reg_vqmmc;

	bool			sc_non_removable;
	bool			sc_broken_cd;

	device_t		sc_sdmmc_dev;
	kmutex_t		sc_intr_lock;
	kcondvar_t		sc_intr_cv;

	uint32_t		sc_intr_irqs;

	bus_dmamap_t		sc_dmamap;
	bus_dma_segment_t	sc_segs[1];
	void			*sc_bbuf;
};

CFATTACH_DECL_NEW(meson_sdio, sizeof(struct meson_sdio_softc),
	meson_sdio_match, meson_sdio_attach, NULL, NULL);

static int	meson_sdio_host_reset(sdmmc_chipset_handle_t);
static uint32_t	meson_sdio_host_ocr(sdmmc_chipset_handle_t);
static int	meson_sdio_host_maxblklen(sdmmc_chipset_handle_t);
static int	meson_sdio_card_detect(sdmmc_chipset_handle_t);
static int	meson_sdio_write_protect(sdmmc_chipset_handle_t);
static int	meson_sdio_bus_power(sdmmc_chipset_handle_t, uint32_t);
static int	meson_sdio_bus_clock(sdmmc_chipset_handle_t, int);
static int	meson_sdio_bus_width(sdmmc_chipset_handle_t, int);
static int	meson_sdio_bus_rod(sdmmc_chipset_handle_t, int);
static int	meson_sdio_signal_voltage(sdmmc_chipset_handle_t, int);
static void	meson_sdio_exec_command(sdmmc_chipset_handle_t,
				     struct sdmmc_command *);
static void	meson_sdio_card_enable_intr(sdmmc_chipset_handle_t, int);
static void	meson_sdio_card_intr_ack(sdmmc_chipset_handle_t);

static int	meson_sdio_set_clock(struct meson_sdio_softc *, u_int);
static int	meson_sdio_wait_irqs(struct meson_sdio_softc *, uint32_t, int);

static void	meson_sdio_dmainit(struct meson_sdio_softc *);

static struct sdmmc_chip_functions meson_sdio_chip_functions = {
	.host_reset = meson_sdio_host_reset,
	.host_ocr = meson_sdio_host_ocr,
	.host_maxblklen = meson_sdio_host_maxblklen,
	.card_detect = meson_sdio_card_detect,
	.write_protect = meson_sdio_write_protect,
	.bus_power = meson_sdio_bus_power,
	.bus_clock = meson_sdio_bus_clock,
	.bus_width = meson_sdio_bus_width,
	.bus_rod = meson_sdio_bus_rod,
	.signal_voltage = meson_sdio_signal_voltage,
	.exec_command = meson_sdio_exec_command,
	.card_enable_intr = meson_sdio_card_enable_intr,
	.card_intr_ack = meson_sdio_card_intr_ack,
};

#define SDIO_WRITE(sc, reg, val) \
	bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
#define SDIO_READ(sc, reg) \
	bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))

static const char * const compatible[] = {
	"amlogic,meson8b-sdio",
	NULL
};

static const char * const slot_compatible[] = {
	"mmc-slot",
	NULL
};

static int
meson_sdio_match(device_t parent, cfdata_t cf, void *aux)
{
	struct fdt_attach_args * const faa = aux;

	return of_match_compatible(faa->faa_phandle, compatible);
}

static void
meson_sdio_attach(device_t parent, device_t self, void *aux)
{
	struct meson_sdio_softc * const sc = device_private(self);
	struct fdt_attach_args * const faa = aux;
	const int phandle = faa->faa_phandle;
	char intrstr[128];
	struct clk *clk_clkin, *clk_core;
	bus_addr_t addr, port;
	bus_size_t size;
	int child;

	if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) {
		aprint_error(": couldn't get registers\n");
		return;
	}

	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
		aprint_error(": failed to decode interrupt\n");
		return;
	}

	clk_core = fdtbus_clock_get(phandle, "core");
	if (clk_core == NULL || clk_enable(clk_core) != 0) {
		aprint_error(": failed to enable core clock\n");
		return;
	}

	clk_clkin = fdtbus_clock_get(phandle, "clkin");
	if (clk_clkin == NULL) {
		aprint_error(": failed to get clkin clock\n");
		return;
	}

	sc->sc_dev = self;
	sc->sc_bst = faa->faa_bst;
	sc->sc_dmat = faa->faa_dmat;
	if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
		aprint_error(": failed to map registers\n");
		return;
	}

	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_BIO);
	cv_init(&sc->sc_intr_cv, "sdiointr");

	sc->sc_cur_port = -1;
	for (child = OF_child(phandle); child; child = OF_peer(child))
		if (of_match_compatible(child, slot_compatible) > 0) {
			if (fdtbus_get_reg(child, 0, &port, NULL) == 0) {
				sc->sc_slot_phandle = child;
				sc->sc_cur_port = port;
			}
			break;
		}
	if (sc->sc_cur_port == -1) {
		aprint_error(": couldn't get mmc slot\n");
		return;
	}

	aprint_naive("\n");
	aprint_normal(": SDIO controller (port %c)\n", sc->sc_cur_port + 'A');

	sc->sc_reg_vmmc = fdtbus_regulator_acquire(sc->sc_slot_phandle, "vmmc-supply");
	sc->sc_reg_vqmmc = fdtbus_regulator_acquire(sc->sc_slot_phandle, "vqmmc-supply");

	sc->sc_gpio_cd = fdtbus_gpio_acquire(sc->sc_slot_phandle, "cd-gpios",
	    GPIO_PIN_INPUT);
	sc->sc_gpio_wp = fdtbus_gpio_acquire(sc->sc_slot_phandle, "wp-gpios",
	    GPIO_PIN_INPUT);

	sc->sc_gpio_cd_inverted = of_hasprop(sc->sc_slot_phandle, "cd-inverted");
	sc->sc_gpio_wp_inverted = of_hasprop(sc->sc_slot_phandle, "wp-inverted");

	sc->sc_non_removable = of_hasprop(sc->sc_slot_phandle, "non-removable");
	sc->sc_broken_cd = of_hasprop(sc->sc_slot_phandle, "broken-cd");

	sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_BIO, 0, meson_sdio_intr, sc);
	if (sc->sc_ih == NULL) {
		aprint_error_dev(self, "couldn't establish interrupt on %s\n",
		    intrstr);
		return;
	}
	aprint_normal_dev(self, "interrupting on %s\n", intrstr);

	sc->sc_bus_freq = clk_get_rate(clk_clkin);

	aprint_normal_dev(self, "core %u Hz, clkin %u Hz\n", clk_get_rate(clk_core), clk_get_rate(clk_clkin));

	meson_sdio_dmainit(sc);

	config_interrupts(self, meson_sdio_attach_i);
}

static void
meson_sdio_attach_i(device_t self)
{
	struct meson_sdio_softc *sc = device_private(self);
	struct sdmmcbus_attach_args saa;

	meson_sdio_signal_voltage(sc, SDMMC_SIGNAL_VOLTAGE_330);
	meson_sdio_host_reset(sc);
	meson_sdio_bus_clock(sc, 400);
	meson_sdio_bus_width(sc, 1);

	memset(&saa, 0, sizeof(saa));
	saa.saa_busname = "sdmmc";
	saa.saa_sct = &meson_sdio_chip_functions;
	saa.saa_dmat = sc->sc_dmat;
	saa.saa_sch = sc;
	saa.saa_clkmin = 400;
	saa.saa_clkmax = sc->sc_bus_freq;
	/* Do not advertise DMA capabilities, we handle DMA ourselves */
	saa.saa_caps = SMC_CAPS_4BIT_MODE|
		       SMC_CAPS_SD_HIGHSPEED|
		       SMC_CAPS_MMC_HIGHSPEED;

	sc->sc_sdmmc_dev = config_found(self, &saa, NULL);
}

static int
meson_sdio_intr(void *priv)
{
	struct meson_sdio_softc *sc = priv;

	mutex_enter(&sc->sc_intr_lock);
	const u_int irqs = SDIO_READ(sc, SDIO_IRQS_REG);
	if (irqs & SDIO_IRQS_CLEAR) {
		SDIO_WRITE(sc, SDIO_IRQS_REG, irqs);
		sc->sc_intr_irqs |= irqs;
		cv_broadcast(&sc->sc_intr_cv);
	}
	mutex_exit(&sc->sc_intr_lock);

	return 1;
}

static void
meson_sdio_dmainit(struct meson_sdio_softc *sc)
{
	int error, rseg;

	error = bus_dmamem_alloc(sc->sc_dmat, MAXPHYS, PAGE_SIZE, MAXPHYS,
	    sc->sc_segs, 1, &rseg, BUS_DMA_WAITOK);
	if (error) {
		device_printf(sc->sc_dev, "bus_dmamem_alloc failed\n");
		return;
	}
	KASSERT(rseg == 1);

	error = bus_dmamem_map(sc->sc_dmat, sc->sc_segs, rseg, MAXPHYS,
	    &sc->sc_bbuf, BUS_DMA_WAITOK);
	if (error) {
		device_printf(sc->sc_dev, "bus_dmamem_map failed\n");
		return;
	}

	error = bus_dmamap_create(sc->sc_dmat, MAXPHYS, 1, MAXPHYS, 0,
	    BUS_DMA_WAITOK, &sc->sc_dmamap);
	if (error) {
		device_printf(sc->sc_dev, "bus_dmamap_create failed\n");
		return;
	}
}

static int
meson_sdio_set_clock(struct meson_sdio_softc *sc, u_int freq)
{
	const u_int pll_freq = sc->sc_bus_freq / 2000;
	uint32_t conf;
	int clk_div;

	if (freq == 0)
		return 0;

	clk_div = howmany(pll_freq, freq);

	conf = SDIO_READ(sc, SDIO_CONF_REG);
	conf &= ~SDIO_CONF_COMMAND_CLK_DIV;
	conf |= __SHIFTIN(clk_div - 1, SDIO_CONF_COMMAND_CLK_DIV);
	SDIO_WRITE(sc, SDIO_CONF_REG, conf);

	return 0;
}

static int
meson_sdio_wait_irqs(struct meson_sdio_softc *sc, uint32_t mask, int timeout)
{
	int retry, error;

	KASSERT(mutex_owned(&sc->sc_intr_lock));

	if (sc->sc_intr_irqs & mask)
		return 0;

	retry = timeout / hz;

	while (retry > 0) {
		error = cv_timedwait(&sc->sc_intr_cv, &sc->sc_intr_lock, hz);
		if (error && error != EWOULDBLOCK)
			return error;
		if (sc->sc_intr_irqs & mask)
			return 0;
		--retry;
	}

	return ETIMEDOUT;
}

static int
meson_sdio_host_reset(sdmmc_chipset_handle_t sch)
{
	struct meson_sdio_softc *sc = sch;

	SDIO_WRITE(sc, SDIO_IRQC_REG, SDIO_IRQC_SOFT_RESET);

	delay(2);

	SDIO_WRITE(sc, SDIO_IRQS_REG, SDIO_IRQS_CLEAR);
	SDIO_WRITE(sc, SDIO_CONF_REG,
	    __SHIFTIN(2, SDIO_CONF_WRITE_CRC_OK_STATUS) |
	    __SHIFTIN(2, SDIO_CONF_WRITE_NWR) |
	    __SHIFTIN(3, SDIO_CONF_M_ENDIAN) |
	    __SHIFTIN(39, SDIO_CONF_COMMAND_ARG_BITS) |
	    __SHIFTIN(0x1f4, SDIO_CONF_COMMAND_CLK_DIV));

	SDIO_WRITE(sc, SDIO_MULT_REG,
	    __SHIFTIN(sc->sc_cur_port, SDIO_MULT_PORT_SEL));

	return 0;
}

static uint32_t
meson_sdio_host_ocr(sdmmc_chipset_handle_t sch)
{
	return MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V;
}

static int
meson_sdio_host_maxblklen(sdmmc_chipset_handle_t sch)
{
	return 512;
}

static int
meson_sdio_card_detect(sdmmc_chipset_handle_t sch)
{
	struct meson_sdio_softc *sc = sch;
	int val;

	if (sc->sc_non_removable || sc->sc_broken_cd) {
		return 1;
	} else if (sc->sc_gpio_cd != NULL) {
		val = fdtbus_gpio_read(sc->sc_gpio_cd);
		if (sc->sc_gpio_cd_inverted)
			val = !val;
		return val;
	} else {
		return 1;
	}
}

static int
meson_sdio_write_protect(sdmmc_chipset_handle_t sch)
{
	struct meson_sdio_softc *sc = sch;
	int val;

	if (sc->sc_gpio_wp != NULL) {
		val = fdtbus_gpio_read(sc->sc_gpio_wp);
		if (sc->sc_gpio_wp_inverted)
			val = !val;
		return val;
	}

	return 0;
}

static int
meson_sdio_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
{
	return 0;
}

static int
meson_sdio_bus_clock(sdmmc_chipset_handle_t sch, int freq)
{
	struct meson_sdio_softc *sc = sch;

	return meson_sdio_set_clock(sc, freq);
}

static int
meson_sdio_bus_width(sdmmc_chipset_handle_t sch, int width)
{
	struct meson_sdio_softc *sc = sch;
	uint32_t conf;

	conf = SDIO_READ(sc, SDIO_CONF_REG);
	if (width == 1) {
		conf &= ~SDIO_CONF_BUS_WIDTH;
	} else if (width == 4) {
		conf |= SDIO_CONF_BUS_WIDTH;
	} else {
		return EINVAL;
	}
	SDIO_WRITE(sc, SDIO_CONF_REG, conf);

	sc->sc_cur_width = width;

	return 0;
}

static int
meson_sdio_bus_rod(sdmmc_chipset_handle_t sch, int on)
{
	return ENOTSUP;
}

static int
meson_sdio_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
{
	struct meson_sdio_softc *sc = sch;
	u_int uvol;
	int error;

	if (sc->sc_reg_vqmmc == NULL)
		return 0;

	switch (signal_voltage) {
	case SDMMC_SIGNAL_VOLTAGE_330:
		uvol = 3300000;
		break;
	case SDMMC_SIGNAL_VOLTAGE_180:
		uvol = 1800000;
		break;
	default:
		return EINVAL;
	}

	error = fdtbus_regulator_supports_voltage(sc->sc_reg_vqmmc, uvol, uvol);
	if (error != 0)
		return 0;

	error = fdtbus_regulator_set_voltage(sc->sc_reg_vqmmc, uvol, uvol);
	if (error != 0)
		return error;

	return fdtbus_regulator_enable(sc->sc_reg_vqmmc);
}

static void
meson_sdio_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
{
	struct meson_sdio_softc *sc = sch;
	uint32_t send, ext, mult, addr;
	bool use_bbuf = false;
	int i;

	KASSERT(cmd->c_blklen <= 512);

	send = ext = mult = addr = 0;

	mutex_enter(&sc->sc_intr_lock);

	if (cmd->c_opcode == SD_IO_SEND_OP_COND ||
	    cmd->c_opcode == SD_IO_RW_DIRECT ||
	    cmd->c_opcode == SD_IO_RW_EXTENDED) {
		cmd->c_error = EINVAL;
		goto done;
	}

	sc->sc_intr_irqs = 0;

	if (cmd->c_flags & SCF_RSP_PRESENT) {
		if (cmd->c_flags & SCF_RSP_136) {
			send |= __SHIFTIN(133, SDIO_SEND_RESPONSE_BITS);
			send |= SDIO_SEND_RESPONSE_CRC7_FROM_8;
		} else {
			send |= __SHIFTIN(45, SDIO_SEND_RESPONSE_BITS);
		}
	}
	if ((cmd->c_flags & SCF_RSP_CRC) == 0) {
		send |= SDIO_SEND_RESPONSE_NO_CRC;
	}
	if (cmd->c_flags & SCF_RSP_BSY) {
		send |= SDIO_SEND_CHECK_BUSY_DAT0;
	}

	if (cmd->c_datalen > 0) {
		unsigned int nblks, packlen;

		nblks = cmd->c_datalen / cmd->c_blklen;
		if (nblks == 0 || (cmd->c_datalen % cmd->c_blklen) != 0)
			++nblks;
		packlen = (cmd->c_blklen * 8) + (0xf * sc->sc_cur_width);

		send |= __SHIFTIN(nblks - 1, SDIO_SEND_REPEAT_PACKAGE);
		ext |= __SHIFTIN(packlen, SDIO_EXT_DATA_RW_NUMBER);

		if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
			send |= SDIO_SEND_RESPONSE_DATA;
		} else {
			send |= SDIO_SEND_COMMAND_HAS_DATA;
		}

		cmd->c_error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
		    sc->sc_bbuf, MAXPHYS, NULL, BUS_DMA_WAITOK);
		if (cmd->c_error) {
			device_printf(sc->sc_dev, "bus_dmamap_load failed\n");
			goto done;
		}
		if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
			bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, 0,
			    MAXPHYS, BUS_DMASYNC_PREREAD);
		} else {
			memcpy(sc->sc_bbuf, cmd->c_data, cmd->c_datalen);
			bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, 0,
			    MAXPHYS, BUS_DMASYNC_PREWRITE);
		}
		addr = sc->sc_dmamap->dm_segs[0].ds_addr;
		use_bbuf = true;
	}
	send |= __SHIFTIN(cmd->c_opcode | 0x40, SDIO_SEND_COMMAND_INDEX);

	mult |= __SHIFTIN(sc->sc_cur_port, SDIO_MULT_PORT_SEL);

	SDIO_WRITE(sc, SDIO_IRQC_REG, SDIO_IRQC_SOFT_RESET);
	delay(2);

	SDIO_WRITE(sc, SDIO_IRQC_REG, SDIO_IRQC_ARC_CMD_INTEN);
	SDIO_WRITE(sc, SDIO_IRQS_REG, SDIO_IRQS_CLEAR);

	SDIO_WRITE(sc, SDIO_ARGU_REG, cmd->c_arg);
	SDIO_WRITE(sc, SDIO_MULT_REG, mult);
	SDIO_WRITE(sc, SDIO_EXT_REG, ext);
	SDIO_WRITE(sc, SDIO_ADDR_REG, addr);
	SDIO_WRITE(sc, SDIO_SEND_REG, send);

	cmd->c_error = meson_sdio_wait_irqs(sc, SDIO_IRQS_CMD_INT, hz * 3);
	if (cmd->c_error) {
		goto done;
	}

	if (SDIO_READ(sc, SDIO_IRQS_REG) & SDIO_IRQS_CMD_BUSY) {
		int retry;
		for (retry = 10000; retry > 0; retry--) {
			const uint32_t irqs = SDIO_READ(sc, SDIO_IRQS_REG);
			if ((irqs & SDIO_IRQS_CMD_BUSY) == 0)
				break;
			delay(100);
		}
		if (retry == 0) {
			aprint_debug_dev(sc->sc_dev,
			    "busy timeout, opcode %d flags %#x datalen %d\n",
			    cmd->c_opcode, cmd->c_flags, cmd->c_datalen);
			cmd->c_error = ETIMEDOUT;
			goto done;
		}
	}

	const uint32_t irqs = SDIO_READ(sc, SDIO_IRQS_REG);
	if (cmd->c_flags & SCF_RSP_CRC) {
		if ((irqs & SDIO_IRQS_RESPONSE_CRC7_OK) == 0) {
			device_printf(sc->sc_dev, "response crc error\n");
			cmd->c_error = EIO;
			goto done;
		}
	}
	if (cmd->c_datalen > 0) {
		uint32_t crcmask = SDIO_IRQS_DATA_READ_CRC16_OK|
				   SDIO_IRQS_DATA_WRITE_CRC16_OK;
		if ((irqs & crcmask) == 0) {
			device_printf(sc->sc_dev, "data crc error\n");
			cmd->c_error = EIO;
			goto done;
		}
	}

	if (cmd->c_flags & SCF_RSP_PRESENT) {
		mult |= SDIO_MULT_WRITE_READ_OUT_INDEX;
		mult &= ~SDIO_MULT_RESPONSE_READ_INDEX;
		SDIO_WRITE(sc, SDIO_MULT_REG, mult);

		if (cmd->c_flags & SCF_RSP_136) {
			for (i = 0; i < 4; i++) {
				cmd->c_resp[i] = SDIO_READ(sc, SDIO_ARGU_REG);
			}
		} else {
			cmd->c_resp[0] = SDIO_READ(sc, SDIO_ARGU_REG);
		}
	}

done:
	if (use_bbuf) {
		if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
			bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, 0,
			    MAXPHYS, BUS_DMASYNC_POSTREAD);
		} else {
			bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, 0,
			    MAXPHYS, BUS_DMASYNC_POSTWRITE);
		}
		bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
		if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
			memcpy(cmd->c_data, sc->sc_bbuf, cmd->c_datalen);
		}
	}
	cmd->c_flags |= SCF_ITSDONE;

	SDIO_WRITE(sc, SDIO_IRQC_REG, 0);
	SDIO_WRITE(sc, SDIO_IRQS_REG, SDIO_IRQS_CLEAR);

	mutex_exit(&sc->sc_intr_lock);
}

static void
meson_sdio_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
{
	struct meson_sdio_softc *sc = sch;
	uint32_t irqc;

	mutex_enter(&sc->sc_intr_lock);
	irqc = SDIO_READ(sc, SDIO_IRQC_REG);
	if (enable) {
		irqc |= SDIO_IRQC_ARC_IF_INTEN;
	} else {
		irqc &= ~SDIO_IRQC_ARC_IF_INTEN;
	}
	SDIO_WRITE(sc, SDIO_IRQC_REG, irqc);
	mutex_exit(&sc->sc_intr_lock);
}

static void
meson_sdio_card_intr_ack(sdmmc_chipset_handle_t sch)
{
	struct meson_sdio_softc *sc = sch;

	mutex_enter(&sc->sc_intr_lock);
	SDIO_WRITE(sc, SDIO_IRQS_REG, SDIO_IRQS_IF_INT);
	mutex_exit(&sc->sc_intr_lock);
}