/* $NetBSD: pte.h,v 1.20 2019/06/19 09:54:15 skrll Exp $ */
/*
* Copyright (c) 2001, 2002 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _ARM_PTE_H_
#define _ARM_PTE_H_
/*
* The ARM MMU architecture was introduced with ARM v3 (previous ARM
* architecture versions used an optional off-CPU memory controller
* to perform address translation).
*
* The ARM MMU consists of a TLB and translation table walking logic.
* There is typically one TLB per memory interface (or, put another
* way, one TLB per software-visible cache).
*
* The ARM MMU is capable of mapping memory in the following chunks:
*
* 16M SuperSections (L1 table, ARMv6+)
*
* 1M Sections (L1 table)
*
* 64K Large Pages (L2 table)
*
* 4K Small Pages (L2 table)
*
* 1K Tiny Pages (L2 table)
*
* There are two types of L2 tables: Coarse Tables and Fine Tables (not
* available on ARMv6+). Coarse Tables can map Large and Small Pages.
* Fine Tables can map Tiny Pages.
*
* Coarse Tables can define 4 Subpages within Large and Small pages.
* Subpages define different permissions for each Subpage within
* a Page. ARMv6 format Coarse Tables have no subpages.
*
* Coarse Tables are 1K in length. Fine tables are 4K in length.
*
* The Translation Table Base register holds the pointer to the
* L1 Table. The L1 Table is a 16K contiguous chunk of memory
* aligned to a 16K boundary. Each entry in the L1 Table maps
* 1M of virtual address space, either via a Section mapping or
* via an L2 Table.
*
* ARMv6+ has a second TTBR register which can be used if any of the
* upper address bits are non-zero (think kernel). For NetBSD, this
* would be 1 upper bit splitting user/kernel in a 2GB/2GB split.
* This would also reduce the size of the L1 Table to 8K.
*
* In addition, the Fast Context Switching Extension (FCSE) is available
* on some ARM v4 and ARM v5 processors. FCSE is a way of eliminating
* TLB/cache flushes on context switch by use of a smaller address space
* and a "process ID" that modifies the virtual address before being
* presented to the translation logic.
*/
#ifndef _LOCORE
typedef uint32_t pd_entry_t; /* L1 table entry */
typedef uint32_t pt_entry_t; /* L2 table entry */
#endif /* _LOCORE */
#define L1_SS_SIZE 0x01000000 /* 16M */
#define L1_SS_OFFSET (L1_SS_SIZE - 1)
#define L1_SS_FRAME (~L1_SS_OFFSET)
#define L1_SS_SHIFT 24
#define L1_S_SIZE 0x00100000 /* 1M */
#define L1_S_OFFSET (L1_S_SIZE - 1)
#define L1_S_FRAME (~L1_S_OFFSET)
#define L1_S_SHIFT 20
#define L2_L_SIZE 0x00010000 /* 64K */
#define L2_L_OFFSET (L2_L_SIZE - 1)
#define L2_L_FRAME (~L2_L_OFFSET)
#define L2_L_SHIFT 16
#define L2_S_SEGSIZE (PAGE_SIZE * L2_S_SIZE / 4)
#define L2_S_SIZE 0x00001000 /* 4K */
#define L2_S_OFFSET (L2_S_SIZE - 1)
#define L2_S_FRAME (~L2_S_OFFSET)
#define L2_S_SHIFT 12
#define L2_T_SIZE 0x00000400 /* 1K */
#define L2_T_OFFSET (L2_T_SIZE - 1)
#define L2_T_FRAME (~L2_T_OFFSET)
#define L2_T_SHIFT 10
/*
* The NetBSD VM implementation only works on whole pages (4K),
* whereas the ARM MMU's Coarse tables are sized in terms of 1K
* (16K L1 table, 1K L2 table).
*
* So, we allocate L2 tables 4 at a time, thus yielding a 4K L2
* table.
*/
#define L1_ADDR_BITS 0xfff00000 /* L1 PTE address bits */
#define L2_ADDR_BITS 0x000ff000 /* L2 PTE address bits */
#define L1_TABLE_SIZE 0x4000 /* 16K */
#define L2_TABLE_SIZE 0x1000 /* 4K */
/*
* The new pmap deals with the 1KB coarse L2 tables by
* allocating them from a pool. Until every port has been converted,
* keep the old L2_TABLE_SIZE define lying around. Converted ports
* should use L2_TABLE_SIZE_REAL until then.
*/
#define L1_TABLE_SIZE_REAL 0x4000 /* 16K */
#define L2_TABLE_SIZE_REAL 0x400 /* 1K */
/*
* ARM L1 Descriptors
*/
#define L1_TYPE_INV 0x00 /* Invalid (fault) */
#define L1_TYPE_C 0x01 /* Coarse L2 */
#define L1_TYPE_S 0x02 /* Section */
#define L1_TYPE_F 0x03 /* Fine L2 */
#define L1_TYPE_MASK 0x03 /* mask of type bits */
/* L1 Section Descriptor */
#define L1_S_B 0x00000004 /* bufferable Section */
#define L1_S_C 0x00000008 /* cacheable Section */
#define L1_S_IMP 0x00000010 /* implementation defined */
#define L1_S_DOM(x) ((x) << 5) /* domain */
#define L1_S_DOM_MASK L1_S_DOM(0xf)
#define L1_S_AP(x) ((x) << 10) /* access permissions */
#define L1_S_ADDR_MASK 0xfff00000 /* phys address of section */
#define L1_S_XSCALE_P 0x00000200 /* ECC enable for this section */
#define L1_S_XS_TEX(x) ((x) << 12) /* Type Extension */
#define L1_S_V6_TEX(x) L1_S_XS_TEX(x)
#define L1_S_V6_P 0x00000200 /* ECC enable for this section */
#define L1_S_V6_SUPER 0x00040000 /* ARMv6 SuperSection (16MB) bit */
#define L1_S_V6_XN L1_S_IMP /* ARMv6 eXecute Never */
#define L1_S_V6_APX 0x00008000 /* ARMv6 AP eXtension */
#define L1_S_V6_S 0x00010000 /* ARMv6 Shared */
#define L1_S_V6_nG 0x00020000 /* ARMv6 not-Global */
#define L1_S_V6_SS 0x00040000 /* ARMv6 SuperSection */
#define L1_S_V6_NS 0x00080000 /* ARMv6 Not Secure */
/* L1 Coarse Descriptor */
#define L1_C_IMP0 0x00000004 /* implementation defined */
#define L1_C_IMP1 0x00000008 /* implementation defined */
#define L1_C_IMP2 0x00000010 /* implementation defined */
#define L1_C_DOM(x) ((x) << 5) /* domain */
#define L1_C_DOM_MASK L1_C_DOM(0xf)
#define L1_C_ADDR_MASK 0xfffffc00 /* phys address of L2 Table */
#define L1_C_XSCALE_P 0x00000200 /* ECC enable for this section */
#define L1_C_V6_P 0x00000200 /* ECC enable for this section */
/* L1 Fine Descriptor */
#define L1_F_IMP0 0x00000004 /* implementation defined */
#define L1_F_IMP1 0x00000008 /* implementation defined */
#define L1_F_IMP2 0x00000010 /* implementation defined */
#define L1_F_DOM(x) ((x) << 5) /* domain */
#define L1_F_DOM_MASK L1_F_DOM(0xf)
#define L1_F_ADDR_MASK 0xfffff000 /* phys address of L2 Table */
#define L1_F_XSCALE_P 0x00000200 /* ECC enable for this section */
/*
* ARM L2 Descriptors
*/
#define L2_TYPE_INV 0x00 /* Invalid (fault) */
#define L2_TYPE_L 0x01 /* Large Page */
#define L2_TYPE_S 0x02 /* Small Page */
#define L2_TYPE_T 0x03 /* Tiny Page (not armv7) */
#define L2_TYPE_MASK 0x03 /* mask of type bits */
/*
* This L2 Descriptor type is available on XScale processors
* when using a Coarse L1 Descriptor. The Extended Small
* Descriptor has the same format as the XScale Tiny Descriptor,
* but describes a 4K page, rather than a 1K page.
* For V6 MMU, this is used when XP bit is cleared.
*/
#define L2_TYPE_XS 0x03 /* XScale/ARMv6 Extended Small Page */
#define L2_B 0x00000004 /* Bufferable page */
#define L2_C 0x00000008 /* Cacheable page */
#define L2_AP0(x) ((x) << 4) /* access permissions (sp 0) */
#define L2_AP1(x) ((x) << 6) /* access permissions (sp 1) */
#define L2_AP2(x) ((x) << 8) /* access permissions (sp 2) */
#define L2_AP3(x) ((x) << 10) /* access permissions (sp 3) */
#define L2_AP(x) (L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
#define L2_XS_L_TEX(x) ((x) << 12) /* Type Extension */
#define L2_XS_T_TEX(x) ((x) << 6) /* Type Extension */
#define L2_XS_XN 0x00000001 /* ARMv6 eXecute Never (when XP=1) */
#define L2_XS_APX 0x00000200 /* ARMv6 AP eXtension */
#define L2_XS_S 0x00000400 /* ARMv6 Shared */
#define L2_XS_nG 0x00000800 /* ARMv6 Not-Global */
#define L2_V6_L_TEX L2_XS_L_TEX
#define L2_V6_XS_TEX L2_XS_T_TEX
#define L2_XS_L_XN 0x00008000 /* ARMv6 eXecute Never */
/*
* Access Permissions for L1 and L2 Descriptors.
*/
#define AP_W 0x01 /* writable */
#define AP_U 0x02 /* user */
/*
* Access Permissions for L1 and L2 of ARMv6 with XP=1 and ARMv7
*/
#define AP_R 0x01 /* readable */
#define AP_RO 0x20 /* read-only (L2_XS_APX >> 4) */
/*
* Short-hand for common AP_* constants.
*
* Note: These values assume the S (System) bit is set and
* the R (ROM) bit is clear in CP15 register 1.
*/
#define AP_KR 0x00 /* kernel read */
#define AP_KRW 0x01 /* kernel read/write */
#define AP_KRWUR 0x02 /* kernel read/write user read */
#define AP_KRWURW 0x03 /* kernel read/write user read/write */
/*
* Note: These values assume the S (System) and the R (ROM) bits are clear and
* the XP (eXtended page table) bit is set in CP15 register 1. ARMv6 only.
*/
#define APX_KR(APX) (APX|0x01) /* kernel read */
#define APX_KRUR(APX) (APX|0x02) /* kernel read user read */
#define APX_KRW(APX) ( 0x01) /* kernel read/write */
#define APX_KRWUR(APX) ( 0x02) /* kernel read/write user read */
#define APX_KRWURW(APX) ( 0x03) /* kernel read/write user read/write */
/*
* Note: These values are for the simplified access permissions model
* of ARMv7. Assumes that AFE is clear in CP15 register 1.
* Also used for ARMv6 with XP bit set.
*/
#define AP7_KR 0x21 /* kernel read */
#define AP7_KRUR 0x23 /* kernel read user read */
#define AP7_KRW 0x01 /* kernel read/write */
#define AP7_KRWURW 0x03 /* kernel read/write user read/write */
/*
* Domain Types for the Domain Access Control Register.
*/
#define DOMAIN_FAULT 0x00 /* no access */
#define DOMAIN_CLIENT 0x01 /* client */
#define DOMAIN_RESERVED 0x02 /* reserved */
#define DOMAIN_MANAGER 0x03 /* manager */
/*
* Type Extension bits for XScale processors.
*
* Behavior of C and B when X == 0:
*
* C B Cacheable Bufferable Write Policy Line Allocate Policy
* 0 0 N N - -
* 0 1 N Y - -
* 1 0 Y Y Write-through Read Allocate
* 1 1 Y Y Write-back Read Allocate
*
* Behavior of C and B when X == 1:
* C B Cacheable Bufferable Write Policy Line Allocate Policy
* 0 0 - - - - DO NOT USE
* 0 1 N Y - -
* 1 0 Mini-Data - - -
* 1 1 Y Y Write-back R/W Allocate
*/
#define TEX_XSCALE_X 0x01 /* X modifies C and B */
/*
* Type Extension bits for ARM V6 and V7 MMU
*
* TEX C B Shared
* 000 0 0 Strong order yes
* 000 0 1 Shared device yes
* 000 1 0 Outer and Inner write through, no write alloc S-bit
* 000 1 1 Outer and Inner write back, no write alloc S-bit
* 001 0 0 Outer and Inner non-cacheable S-bit
* 001 0 1 reserved
* 001 1 0 reserved
* 001 1 1 Outer and Inner write back, write alloc S-bit
* 010 0 0 Non-shared device no
* 010 0 1 reserved
* 010 1 X reserved
* 011 X X reserved
* 1BB A A BB for inner, AA for outer S-bit
*
* BB inner cache
* 0 0 Non-cacheable
* 0 1 Write back, write alloc
* 1 0 Write through, no write alloc
* 1 1 Write back, no write alloc
*
* AA outer cache
* 0 0 Non-cacheable
* 0 1 Write back, write alloc
* 1 0 Write through, no write alloc
* 1 1 Write back, no write alloc
*/
#define TEX_ARMV6_TEX 0x07 /* 3 bits in TEX */
#endif /* _ARM_PTE_H_ */