Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
*	$NetBSD: do_func.sa,v 1.3 2001/12/09 01:43:13 briggs Exp $

*	MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
*	M68000 Hi-Performance Microprocessor Division
*	M68040 Software Package 
*
*	M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
*	All rights reserved.
*
*	THE SOFTWARE is provided on an "AS IS" basis and without warranty.
*	To the maximum extent permitted by applicable law,
*	MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
*	INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
*	PARTICULAR PURPOSE and any warranty against infringement with
*	regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
*	and any accompanying written materials. 
*
*	To the maximum extent permitted by applicable law,
*	IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
*	(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
*	PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
*	OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
*	SOFTWARE.  Motorola assumes no responsibility for the maintenance
*	and support of the SOFTWARE.  
*
*	You are hereby granted a copyright license to use, modify, and
*	distribute the SOFTWARE so long as this entire notice is retained
*	without alteration in any modified and/or redistributed versions,
*	and that such modified versions are clearly identified as such.
*	No licenses are granted by implication, estoppel or otherwise
*	under any patents or trademarks of Motorola, Inc.

*
*	do_func.sa 3.4 2/18/91
*
* Do_func performs the unimplemented operation.  The operation
* to be performed is determined from the lower 7 bits of the
* extension word (except in the case of fmovecr and fsincos).
* The opcode and tag bits form an index into a jump table in 
* tbldo.sa.  Cases of zero, infinity and NaN are handled in 
* do_func by forcing the default result.  Normalized and
* denormalized (there are no unnormalized numbers at this
* point) are passed onto the emulation code.  
*
* CMDREG1B and STAG are extracted from the fsave frame
* and combined to form the table index.  The function called
* will start with a0 pointing to the ETEMP operand.  Dyadic
* functions can find FPTEMP at -12(a0).
*
* Called functions return their result in fp0.  Sincos returns
* sin(x) in fp0 and cos(x) in fp1.
*

DO_FUNC	IDNT    2,1 Motorola 040 Floating Point Software Package

	section	8

	include	fpsp.h

	xref	t_dz2
	xref	t_operr
	xref	t_inx2
	xref 	t_resdnrm
	xref	dst_nan
	xref	src_nan
	xref	nrm_set
	xref	sto_cos

	xref	tblpre
	xref	slognp1,slogn,slog10,slog2
	xref	slognd,slog10d,slog2d
	xref	smod,srem
	xref	sscale
	xref	smovcr

PONE	dc.l	$3fff0000,$80000000,$00000000	;+1
MONE	dc.l	$bfff0000,$80000000,$00000000	;-1
PZERO	dc.l	$00000000,$00000000,$00000000	;+0
MZERO	dc.l	$80000000,$00000000,$00000000	;-0
PINF	dc.l	$7fff0000,$00000000,$00000000	;+inf
MINF	dc.l	$ffff0000,$00000000,$00000000	;-inf
QNAN	dc.l	$7fff0000,$ffffffff,$ffffffff	;non-signaling nan
PPIBY2  dc.l	$3FFF0000,$C90FDAA2,$2168C235	;+PI/2
MPIBY2  dc.l	$bFFF0000,$C90FDAA2,$2168C235	;-PI/2

	xdef	do_func
do_func:
	clr.b	CU_ONLY(a6)
*
* Check for fmovecr.  It does not follow the format of fp gen
* unimplemented instructions.  The test is on the upper 6 bits;
* if they are $17, the inst is fmovecr.  Call entry smovcr
* directly.
*
	bfextu	CMDREG1B(a6){0:6},d0 ;get opclass and src fields
	cmpi.l	#$17,d0		;if op class and size fields are $17, 
*				;it is FMOVECR; if not, continue
	bne.b	not_fmovecr
	jmp	smovcr		;fmovecr; jmp directly to emulation

not_fmovecr:
	move.w	CMDREG1B(a6),d0
	and.l	#$7F,d0
	cmpi.l	#$38,d0		;if the extension is >= $38, 
	bge.b	short_serror	;it is illegal
	bfextu	STAG(a6){0:3},d1
	lsl.l	#3,d0		;make room for STAG
	add.l	d1,d0		;combine for final index into table
	lea.l	tblpre,a1	;start of monster jump table
	move.l	(a1,d0.w*4),a1	;real target address
	lea.l	ETEMP(a6),a0	;a0 is pointer to src op
	move.l	USER_FPCR(a6),d1
	and.l	#$FF,d1		; discard all but rounding mode/prec
	fmove.l	#0,fpcr
	jmp	(a1)
*
*	ERROR
*
	xdef	serror
serror:
short_serror:
	st.b	STORE_FLG(a6)
	rts
*
* These routines load forced values into fp0.  They are called
* by index into tbldo.
*
* Load a signed zero to fp0 and set inex2/ainex
*
	xdef	snzrinx
snzrinx:
	btst.b	#sign_bit,LOCAL_EX(a0)	;get sign of source operand
	bne.b	ld_mzinx	;if negative, branch
	bsr	ld_pzero	;bsr so we can return and set inx
	bra	t_inx2		;now, set the inx for the next inst
ld_mzinx:
	bsr	ld_mzero	;if neg, load neg zero, return here
	bra	t_inx2		;now, set the inx for the next inst
*
* Load a signed zero to fp0; do not set inex2/ainex 
*
	xdef	szero
szero:
	btst.b	#sign_bit,LOCAL_EX(a0) ;get sign of source operand
	bne	ld_mzero	;if neg, load neg zero
	bra	ld_pzero	;load positive zero
*
* Load a signed infinity to fp0; do not set inex2/ainex 
*
	xdef	sinf
sinf:
	btst.b	#sign_bit,LOCAL_EX(a0)	;get sign of source operand
	bne	ld_minf			;if negative branch
	bra	ld_pinf
*
* Load a signed one to fp0; do not set inex2/ainex 
*
	xdef	sone
sone:
	btst.b	#sign_bit,LOCAL_EX(a0)	;check sign of source
	bne	ld_mone
	bra	ld_pone
*
* Load a signed pi/2 to fp0; do not set inex2/ainex 
*
	xdef	spi_2
spi_2:
	btst.b	#sign_bit,LOCAL_EX(a0)	;check sign of source
	bne	ld_mpi2
	bra	ld_ppi2
*
* Load either a +0 or +inf for plus/minus operand
*
	xdef	szr_inf
szr_inf:
	btst.b	#sign_bit,LOCAL_EX(a0)	;check sign of source
	bne	ld_pzero
	bra	ld_pinf
*
* Result is either an operr or +inf for plus/minus operand
* [Used by slogn, slognp1, slog10, and slog2]
*
	xdef	sopr_inf
sopr_inf:
	btst.b	#sign_bit,LOCAL_EX(a0)	;check sign of source
	bne	t_operr
	bra	ld_pinf
*
*	FLOGNP1 
*
	xdef	sslognp1
sslognp1:
	fmovem.x (a0),fp0
	fcmp.b	#-1,fp0
	fbgt	slognp1		
	fbeq	t_dz2		;if = -1, divide by zero exception
	fmove.l	#0,FPSR		;clr N flag
	bra	t_operr		;take care of operands < -1
*
*	FETOXM1
*
	xdef	setoxm1i
setoxm1i:
	btst.b	#sign_bit,LOCAL_EX(a0)	;check sign of source
	bne	ld_mone
	bra	ld_pinf
*
*	FLOGN
*
* Test for 1.0 as an input argument, returning +zero.  Also check
* the sign and return operr if negative.
*
	xdef	sslogn
sslogn:
	btst.b	#sign_bit,LOCAL_EX(a0) 
	bne	t_operr		;take care of operands < 0
	cmpi.w	#$3fff,LOCAL_EX(a0) ;test for 1.0 input
	bne	slogn
	cmpi.l	#$80000000,LOCAL_HI(a0)
	bne	slogn
	tst.l	LOCAL_LO(a0)
	bne	slogn
	fmove.x	PZERO,fp0
	rts

	xdef	sslognd
sslognd:
	btst.b	#sign_bit,LOCAL_EX(a0) 
	beq	slognd
	bra	t_operr		;take care of operands < 0

*
*	FLOG10
*
	xdef	sslog10
sslog10:
	btst.b	#sign_bit,LOCAL_EX(a0)
	bne	t_operr		;take care of operands < 0
	cmpi.w	#$3fff,LOCAL_EX(a0) ;test for 1.0 input
	bne	slog10
	cmpi.l	#$80000000,LOCAL_HI(a0)
	bne	slog10
	tst.l	LOCAL_LO(a0)
	bne	slog10
	fmove.x	PZERO,fp0
	rts

	xdef	sslog10d
sslog10d:
	btst.b	#sign_bit,LOCAL_EX(a0) 
	beq	slog10d
	bra	t_operr		;take care of operands < 0

*
*	FLOG2
*
	xdef	sslog2
sslog2:
	btst.b	#sign_bit,LOCAL_EX(a0)
	bne	t_operr		;take care of operands < 0
	cmpi.w	#$3fff,LOCAL_EX(a0) ;test for 1.0 input
	bne	slog2
	cmpi.l	#$80000000,LOCAL_HI(a0)
	bne	slog2
	tst.l	LOCAL_LO(a0)
	bne	slog2
	fmove.x	PZERO,fp0
	rts

	xdef	sslog2d
sslog2d:
	btst.b	#sign_bit,LOCAL_EX(a0) 
	beq	slog2d
	bra	t_operr		;take care of operands < 0

*
*	FMOD
*
pmodt:
*				;$21 fmod
*				;dtag,stag
	dc.l	smod		;  00,00  norm,norm = normal
	dc.l	smod_oper	;  00,01  norm,zero = nan with operr
	dc.l	smod_fpn	;  00,10  norm,inf  = fpn
	dc.l	smod_snan	;  00,11  norm,nan  = nan
	dc.l	smod_zro	;  01,00  zero,norm = +-zero
	dc.l	smod_oper	;  01,01  zero,zero = nan with operr
	dc.l	smod_zro	;  01,10  zero,inf  = +-zero
	dc.l	smod_snan	;  01,11  zero,nan  = nan
	dc.l	smod_oper	;  10,00  inf,norm  = nan with operr
	dc.l	smod_oper	;  10,01  inf,zero  = nan with operr
	dc.l	smod_oper	;  10,10  inf,inf   = nan with operr
	dc.l	smod_snan	;  10,11  inf,nan   = nan
	dc.l	smod_dnan	;  11,00  nan,norm  = nan
	dc.l	smod_dnan	;  11,01  nan,zero  = nan
	dc.l	smod_dnan	;  11,10  nan,inf   = nan
	dc.l	smod_dnan	;  11,11  nan,nan   = nan

	xdef	pmod
pmod:
	clr.b	FPSR_QBYTE(a6) ; clear quotient field
	bfextu	STAG(a6){0:3},d0 ;stag = d0
	bfextu	DTAG(a6){0:3},d1 ;dtag = d1

*
* Alias extended denorms to norms for the jump table.
*
	bclr.l	#2,d0
	bclr.l	#2,d1

	lsl.b	#2,d1
	or.b	d0,d1		;d1{3:2} = dtag, d1{1:0} = stag
*				;Tag values:
*				;00 = norm or denorm
*				;01 = zero
*				;10 = inf
*				;11 = nan
	lea	pmodt,a1
	move.l	(a1,d1.w*4),a1
	jmp	(a1)

smod_snan:
	bra	src_nan
smod_dnan:
	bra	dst_nan
smod_oper:
	bra	t_operr
smod_zro:
	move.b	ETEMP(a6),d1	;get sign of src op
	move.b	FPTEMP(a6),d0	;get sign of dst op
	eor.b	d0,d1		;get exor of sign bits
	btst.l	#7,d1		;test for sign
	beq.b	smod_zsn	;if clr, do not set sign big
	bset.b	#q_sn_bit,FPSR_QBYTE(a6) ;set q-byte sign bit
smod_zsn:
	btst.l	#7,d0		;test if + or -
	beq	ld_pzero	;if pos then load +0
	bra	ld_mzero	;else neg load -0
	
smod_fpn:
	move.b	ETEMP(a6),d1	;get sign of src op
	move.b	FPTEMP(a6),d0	;get sign of dst op
	eor.b	d0,d1		;get exor of sign bits
	btst.l	#7,d1		;test for sign
	beq.b	smod_fsn	;if clr, do not set sign big
	bset.b	#q_sn_bit,FPSR_QBYTE(a6) ;set q-byte sign bit
smod_fsn:
	tst.b	DTAG(a6)	;filter out denormal destination case
	bpl.b	smod_nrm	;
	lea.l	FPTEMP(a6),a0	;a0<- addr(FPTEMP)
	bra	t_resdnrm	;force UNFL(but exact) result
smod_nrm:
	fmove.l USER_FPCR(a6),fpcr ;use user's rmode and precision
	fmove.x FPTEMP(a6),fp0	;return dest to fp0
	rts
		
*
*	FREM
*
premt:
*				;$25 frem
*				;dtag,stag
	dc.l	srem		;  00,00  norm,norm = normal
	dc.l	srem_oper	;  00,01  norm,zero = nan with operr
	dc.l	srem_fpn	;  00,10  norm,inf  = fpn
	dc.l	srem_snan	;  00,11  norm,nan  = nan
	dc.l	srem_zro	;  01,00  zero,norm = +-zero
	dc.l	srem_oper	;  01,01  zero,zero = nan with operr
	dc.l	srem_zro	;  01,10  zero,inf  = +-zero
	dc.l	srem_snan	;  01,11  zero,nan  = nan
	dc.l	srem_oper	;  10,00  inf,norm  = nan with operr
	dc.l	srem_oper	;  10,01  inf,zero  = nan with operr
	dc.l	srem_oper	;  10,10  inf,inf   = nan with operr
	dc.l	srem_snan	;  10,11  inf,nan   = nan
	dc.l	srem_dnan	;  11,00  nan,norm  = nan
	dc.l	srem_dnan	;  11,01  nan,zero  = nan
	dc.l	srem_dnan	;  11,10  nan,inf   = nan
	dc.l	srem_dnan	;  11,11  nan,nan   = nan

	xdef	prem
prem:
	clr.b	FPSR_QBYTE(a6)   ;clear quotient field
	bfextu	STAG(a6){0:3},d0 ;stag = d0
	bfextu	DTAG(a6){0:3},d1 ;dtag = d1
*
* Alias extended denorms to norms for the jump table.
*
	bclr	#2,d0
	bclr	#2,d1

	lsl.b	#2,d1
	or.b	d0,d1		;d1{3:2} = dtag, d1{1:0} = stag
*				;Tag values:
*				;00 = norm or denorm
*				;01 = zero
*				;10 = inf
*				;11 = nan
	lea	premt,a1
	move.l	(a1,d1.w*4),a1
	jmp	(a1)
	
srem_snan:
	bra	src_nan
srem_dnan:
	bra	dst_nan
srem_oper:
	bra	t_operr
srem_zro:
	move.b	ETEMP(a6),d1	;get sign of src op
	move.b	FPTEMP(a6),d0	;get sign of dst op
	eor.b	d0,d1		;get exor of sign bits
	btst.l	#7,d1		;test for sign
	beq.b	srem_zsn	;if clr, do not set sign big
	bset.b	#q_sn_bit,FPSR_QBYTE(a6) ;set q-byte sign bit
srem_zsn:
	btst.l	#7,d0		;test if + or -
	beq	ld_pzero	;if pos then load +0
	bra	ld_mzero	;else neg load -0
	
srem_fpn:
	move.b	ETEMP(a6),d1	;get sign of src op
	move.b	FPTEMP(a6),d0	;get sign of dst op
	eor.b	d0,d1		;get exor of sign bits
	btst.l	#7,d1		;test for sign
	beq.b	srem_fsn	;if clr, do not set sign big
	bset.b	#q_sn_bit,FPSR_QBYTE(a6) ;set q-byte sign bit
srem_fsn:
	tst.b	DTAG(a6)	;filter out denormal destination case
	bpl.b	srem_nrm	;
	lea.l	FPTEMP(a6),a0	;a0<- addr(FPTEMP)
	bra	t_resdnrm	;force UNFL(but exact) result
srem_nrm:
	fmove.l USER_FPCR(a6),fpcr ;use user's rmode and precision
	fmove.x FPTEMP(a6),fp0	;return dest to fp0
	rts
*
*	FSCALE
*
pscalet:
*				;$26 fscale
*				;dtag,stag
	dc.l	sscale		;  00,00  norm,norm = result
	dc.l	sscale		;  00,01  norm,zero = fpn
	dc.l	scl_opr		;  00,10  norm,inf  = nan with operr
	dc.l	scl_snan	;  00,11  norm,nan  = nan
	dc.l	scl_zro		;  01,00  zero,norm = +-zero
	dc.l	scl_zro		;  01,01  zero,zero = +-zero
	dc.l	scl_opr		;  01,10  zero,inf  = nan with operr
	dc.l	scl_snan	;  01,11  zero,nan  = nan
	dc.l	scl_inf		;  10,00  inf,norm  = +-inf
	dc.l	scl_inf		;  10,01  inf,zero  = +-inf
	dc.l	scl_opr		;  10,10  inf,inf   = nan with operr
 	dc.l	scl_snan	;  10,11  inf,nan   = nan
 	dc.l	scl_dnan	;  11,00  nan,norm  = nan
 	dc.l	scl_dnan	;  11,01  nan,zero  = nan
 	dc.l	scl_dnan	;  11,10  nan,inf   = nan
	dc.l	scl_dnan	;  11,11  nan,nan   = nan

	xdef	pscale
pscale:
	bfextu	STAG(a6){0:3},d0 ;stag in d0
	bfextu	DTAG(a6){0:3},d1 ;dtag in d1
	bclr.l	#2,d0		;alias  denorm into norm
	bclr.l	#2,d1		;alias  denorm into norm
	lsl.b	#2,d1
	or.b	d0,d1		;d1{4:2} = dtag, d1{1:0} = stag
*				;dtag values     stag values:
*				;000 = norm      00 = norm
*				;001 = zero	 01 = zero
*				;010 = inf	 10 = inf
*				;011 = nan	 11 = nan
*				;100 = dnrm
*
*
	lea.l	pscalet,a1	;load start of jump table
	move.l	(a1,d1.w*4),a1	;load a1 with label depending on tag
	jmp	(a1)		;go to the routine

scl_opr:
	bra	t_operr

scl_dnan:
	bra	dst_nan

scl_zro:
	btst.b	#sign_bit,FPTEMP_EX(a6)	;test if + or -
	beq	ld_pzero		;if pos then load +0
	bra	ld_mzero		;if neg then load -0
scl_inf:
	btst.b	#sign_bit,FPTEMP_EX(a6)	;test if + or -
	beq	ld_pinf			;if pos then load +inf
	bra	ld_minf			;else neg load -inf
scl_snan:
	bra	src_nan
*
*	FSINCOS
*
	xdef	ssincosz
ssincosz:
	btst.b	#sign_bit,ETEMP(a6)	;get sign
	beq.b	sincosp
	fmove.x	MZERO,fp0
	bra.b	sincoscom
sincosp:
	fmove.x PZERO,fp0
sincoscom:
  	fmovem.x PONE,fp1	;do not allow FPSR to be affected
	bra	sto_cos		;store cosine result

	xdef	ssincosi
ssincosi:
	fmove.x QNAN,fp1	;load NAN
	bsr	sto_cos		;store cosine result
	fmove.x QNAN,fp0	;load NAN
	bra	t_operr

	xdef	ssincosnan
ssincosnan:
	move.l	ETEMP_EX(a6),FP_SCR1(a6)
	move.l	ETEMP_HI(a6),FP_SCR1+4(a6)
	move.l	ETEMP_LO(a6),FP_SCR1+8(a6)
	bset.b	#signan_bit,FP_SCR1+4(a6)
	fmovem.x FP_SCR1(a6),fp1
	bsr	sto_cos
	bra	src_nan
*
* This code forces default values for the zero, inf, and nan cases 
* in the transcendentals code.  The CC bits must be set in the
* stacked FPSR to be correctly reported.
*
***Returns +PI/2
	xdef	ld_ppi2
ld_ppi2:
	fmove.x PPIBY2,fp0		;load +pi/2
	bra	t_inx2			;set inex2 exc

***Returns -PI/2
	xdef	ld_mpi2
ld_mpi2:
	fmove.x MPIBY2,fp0		;load -pi/2
	or.l	#neg_mask,USER_FPSR(a6)	;set N bit
	bra	t_inx2			;set inex2 exc

***Returns +inf
	xdef	ld_pinf
ld_pinf:
	fmove.x PINF,fp0		;load +inf
	or.l	#inf_mask,USER_FPSR(a6)	;set I bit
	rts

***Returns -inf
	xdef	ld_minf
ld_minf:
	fmove.x MINF,fp0		;load -inf
	or.l	#neg_mask+inf_mask,USER_FPSR(a6)	;set N and I bits
	rts

***Returns +1
	xdef	ld_pone
ld_pone:
	fmove.x PONE,fp0		;load +1
	rts

***Returns -1
	xdef	ld_mone
ld_mone:
	fmove.x MONE,fp0		;load -1
	or.l	#neg_mask,USER_FPSR(a6)	;set N bit
	rts

***Returns +0
	xdef	ld_pzero
ld_pzero:
	fmove.x PZERO,fp0		;load +0
	or.l	#z_mask,USER_FPSR(a6)	;set Z bit
	rts

***Returns -0
	xdef	ld_mzero
ld_mzero:
	fmove.x MZERO,fp0		;load -0
	or.l	#neg_mask+z_mask,USER_FPSR(a6)	;set N and Z bits
	rts

	end