Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
*	$NetBSD: util.sa,v 1.4 2001/12/09 01:43:13 briggs Exp $

*	MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
*	M68000 Hi-Performance Microprocessor Division
*	M68040 Software Package 
*
*	M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
*	All rights reserved.
*
*	THE SOFTWARE is provided on an "AS IS" basis and without warranty.
*	To the maximum extent permitted by applicable law,
*	MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
*	INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
*	PARTICULAR PURPOSE and any warranty against infringement with
*	regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
*	and any accompanying written materials. 
*
*	To the maximum extent permitted by applicable law,
*	IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
*	(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
*	PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
*	OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
*	SOFTWARE.  Motorola assumes no responsibility for the maintenance
*	and support of the SOFTWARE.  
*
*	You are hereby granted a copyright license to use, modify, and
*	distribute the SOFTWARE so long as this entire notice is retained
*	without alteration in any modified and/or redistributed versions,
*	and that such modified versions are clearly identified as such.
*	No licenses are granted by implication, estoppel or otherwise
*	under any patents or trademarks of Motorola, Inc.

*
*	util.sa 3.7 7/29/91
*
*	This file contains routines used by other programs.
*
*	ovf_res: used by overflow to force the correct
*		 result. ovf_r_k, ovf_r_x2, ovf_r_x3 are 
*		 derivatives of this routine.
*	get_fline: get user's opcode word
*	g_dfmtou: returns the destination format.
*	g_opcls: returns the opclass of the float instruction.
*	g_rndpr: returns the rounding precision. 
*	reg_dest: write byte, word, or long data to Dn
*

UTIL	IDNT    2,1 Motorola 040 Floating Point Software Package

	section	8

	include	fpsp.h

	xref	mem_read

	xdef	g_dfmtou
	xdef	g_opcls
	xdef	g_rndpr
	xdef	get_fline
	xdef	reg_dest

*
* Final result table for ovf_res. Note that the negative counterparts
* are unnecessary as ovf_res always returns the sign separately from
* the exponent.
*					;+inf
EXT_PINF	dc.l	$7fff0000,$00000000,$00000000,$00000000	
*					;largest +ext
EXT_PLRG	dc.l	$7ffe0000,$ffffffff,$ffffffff,$00000000	
*					;largest magnitude +sgl in ext
SGL_PLRG	dc.l	$407e0000,$ffffff00,$00000000,$00000000	
*					;largest magnitude +dbl in ext
DBL_PLRG	dc.l	$43fe0000,$ffffffff,$fffff800,$00000000	
*					;largest -ext

tblovfl:
	dc.l	EXT_RN
	dc.l	EXT_RZ
	dc.l	EXT_RM
	dc.l	EXT_RP
	dc.l	SGL_RN
	dc.l	SGL_RZ
	dc.l	SGL_RM
	dc.l	SGL_RP
	dc.l	DBL_RN
	dc.l	DBL_RZ
	dc.l	DBL_RM
	dc.l	DBL_RP
	dc.l	error
	dc.l	error
	dc.l	error
	dc.l	error


*
*	ovf_r_k --- overflow result calculation
*
* This entry point is used by kernel_ex.  
*
* This forces the destination precision to be extended
*
* Input:	operand in ETEMP
* Output:	a result is in ETEMP (internal extended format)
*
	xdef	ovf_r_k
ovf_r_k:
	lea	ETEMP(a6),a0	;a0 points to source operand	
	bclr.b	#sign_bit,ETEMP_EX(a6)
	sne	ETEMP_SGN(a6)	;convert to internal IEEE format

*
*	ovf_r_x2 --- overflow result calculation
*
* This entry point used by x_ovfl.  (opclass 0 and 2)
*
* Input		a0  points to an operand in the internal extended format
* Output	a0  points to the result in the internal extended format
*
* This sets the round precision according to the user's FPCR unless the
* instruction is fsgldiv or fsglmul or fsadd, fdadd, fsub, fdsub, fsmul,
* fdmul, fsdiv, fddiv, fssqrt, fsmove, fdmove, fsabs, fdabs, fsneg, fdneg.
* If the instruction is fsgldiv of fsglmul, the rounding precision must be
* extended.  If the instruction is not fsgldiv or fsglmul but a force-
* precision instruction, the rounding precision is then set to the force
* precision.

	xdef	ovf_r_x2
ovf_r_x2:
	btst.b	#E3,E_BYTE(a6)		;check for nu exception
	beq.l	ovf_e1_exc		;it is cu exception
ovf_e3_exc:
	move.w	CMDREG3B(a6),d0		;get the command word
	andi.w	#$00000060,d0		;clear all bits except 6 and 5
	cmpi.l	#$00000040,d0
	beq.l	ovff_sgl		;force precision is single
	cmpi.l	#$00000060,d0
	beq.l	ovff_dbl		;force precision is double
	move.w	CMDREG3B(a6),d0		;get the command word again
	andi.l	#$7f,d0			;clear all except operation
	cmpi.l	#$33,d0			
	beq.l	ovf_fsgl		;fsglmul or fsgldiv
	cmpi.l	#$30,d0
	beq.l	ovf_fsgl		
	bra	ovf_fpcr		;instruction is none of the above
*					;use FPCR
ovf_e1_exc:
	move.w	CMDREG1B(a6),d0		;get command word
	andi.l	#$00000044,d0		;clear all bits except 6 and 2
	cmpi.l	#$00000040,d0
	beq.l	ovff_sgl		;the instruction is force single
	cmpi.l	#$00000044,d0
	beq.l	ovff_dbl		;the instruction is force double
	move.w	CMDREG1B(a6),d0		;again get the command word
	andi.l	#$0000007f,d0		;clear all except the op code
	cmpi.l	#$00000027,d0
	beq.l	ovf_fsgl		;fsglmul
	cmpi.l 	#$00000024,d0
	beq.l	ovf_fsgl		;fsgldiv
	bra	ovf_fpcr		;none of the above, use FPCR
* 
*
* Inst is either fsgldiv or fsglmul.  Force extended precision.
*
ovf_fsgl:
	clr.l	d0
	bra.b	short_ovf_res

ovff_sgl:
	move.l	#$00000001,d0		;set single
	bra.b	short_ovf_res
ovff_dbl:
	move.l	#$00000002,d0		;set double
	bra.b	short_ovf_res
*
* The precision is in the fpcr.
*
ovf_fpcr:
	bfextu	FPCR_MODE(a6){0:2},d0 ;set round precision
	bra.b	short_ovf_res
	
*
*
*	ovf_r_x3 --- overflow result calculation
*
* This entry point used by x_ovfl. (opclass 3 only)
*
* Input		a0  points to an operand in the internal extended format
* Output	a0  points to the result in the internal extended format
*
* This sets the round precision according to the destination size.
*
	xdef	ovf_r_x3
ovf_r_x3:
	bsr	g_dfmtou	;get dest fmt in d0{1:0}
*				;for fmovout, the destination format
*				;is the rounding precision

*
*	ovf_res --- overflow result calculation
*
* Input:
*	a0 	points to operand in internal extended format
* Output:
*	a0 	points to result in internal extended format
*
	xdef	ovf_res
ovf_res:
short_ovf_res:
	lsl.l	#2,d0		;move round precision to d0{3:2}
	bfextu	FPCR_MODE(a6){2:2},d1 ;set round mode
	or.l	d1,d0		;index is fmt:mode in d0{3:0}
	lea.l	tblovfl,a1	;load a1 with table address
	move.l	(a1,d0*4),a1	;use d0 as index to the table
	jmp	(a1)		;go to the correct routine
*
*case DEST_FMT = EXT
*
EXT_RN:
	lea.l	EXT_PINF,a1	;answer is +/- infinity
	bset.b	#inf_bit,FPSR_CC(a6)
	bra	set_sign	;now go set the sign	
EXT_RZ:
	lea.l	EXT_PLRG,a1	;answer is +/- large number
	bra	set_sign	;now go set the sign
EXT_RM:
	tst.b	LOCAL_SGN(a0)	;if negative overflow
	beq.b	e_rm_pos
e_rm_neg:
	lea.l	EXT_PINF,a1	;answer is negative infinity
	or.l	#neginf_mask,USER_FPSR(a6)
	bra	end_ovfr
e_rm_pos:
	lea.l	EXT_PLRG,a1	;answer is large positive number
	bra	end_ovfr
EXT_RP:
	tst.b	LOCAL_SGN(a0)	;if negative overflow
	beq.b	e_rp_pos
e_rp_neg:
	lea.l	EXT_PLRG,a1	;answer is large negative number
	bset.b	#neg_bit,FPSR_CC(a6)
	bra	end_ovfr
e_rp_pos:
	lea.l	EXT_PINF,a1	;answer is positive infinity
	bset.b	#inf_bit,FPSR_CC(a6)
	bra	end_ovfr
*
*case DEST_FMT = DBL
*
DBL_RN:
	lea.l	EXT_PINF,a1	;answer is +/- infinity
	bset.b	#inf_bit,FPSR_CC(a6)
	bra	set_sign
DBL_RZ:
	lea.l	DBL_PLRG,a1	;answer is +/- large number
	bra	set_sign	;now go set the sign
DBL_RM:
	tst.b	LOCAL_SGN(a0)	;if negative overflow
	beq.b	d_rm_pos
d_rm_neg:
	lea.l	EXT_PINF,a1	;answer is negative infinity
	or.l	#neginf_mask,USER_FPSR(a6)
	bra	end_ovfr	;inf is same for all precisions (ext,dbl,sgl)
d_rm_pos:
	lea.l	DBL_PLRG,a1	;answer is large positive number
	bra	end_ovfr
DBL_RP:
	tst.b	LOCAL_SGN(a0)	;if negative overflow
	beq.b	d_rp_pos
d_rp_neg:
	lea.l	DBL_PLRG,a1	;answer is large negative number
	bset.b	#neg_bit,FPSR_CC(a6)
	bra	end_ovfr
d_rp_pos:
	lea.l	EXT_PINF,a1	;answer is positive infinity
	bset.b	#inf_bit,FPSR_CC(a6)
	bra	end_ovfr
*
*case DEST_FMT = SGL
*
SGL_RN:
	lea.l	EXT_PINF,a1	;answer is +/-  infinity
	bset.b	#inf_bit,FPSR_CC(a6)
	bra.b	set_sign
SGL_RZ:
	lea.l	SGL_PLRG,a1	;anwer is +/- large number
	bra.b	set_sign
SGL_RM:
	tst.b	LOCAL_SGN(a0)	;if negative overflow
	beq.b	s_rm_pos
s_rm_neg:
	lea.l	EXT_PINF,a1	;answer is negative infinity
	or.l	#neginf_mask,USER_FPSR(a6)
	bra.b	end_ovfr
s_rm_pos:
	lea.l	SGL_PLRG,a1	;answer is large positive number
	bra.b	end_ovfr
SGL_RP:
	tst.b	LOCAL_SGN(a0)	;if negative overflow
	beq.b	s_rp_pos
s_rp_neg:
	lea.l	SGL_PLRG,a1	;answer is large negative number
	bset.b	#neg_bit,FPSR_CC(a6)
	bra.b	end_ovfr
s_rp_pos:
	lea.l	EXT_PINF,a1	;answer is postive infinity
	bset.b	#inf_bit,FPSR_CC(a6)
	bra.b	end_ovfr

set_sign:
	tst.b	LOCAL_SGN(a0)	;if negative overflow
	beq.b	end_ovfr
neg_sign:
	bset.b	#neg_bit,FPSR_CC(a6)

end_ovfr:
	move.w	LOCAL_EX(a1),LOCAL_EX(a0) ;do not overwrite sign
	move.l	LOCAL_HI(a1),LOCAL_HI(a0)
	move.l	LOCAL_LO(a1),LOCAL_LO(a0)
	rts


*
*	ERROR
*
error:
	rts
*
*	get_fline --- get f-line opcode of interrupted instruction
*
*	Returns opcode in the low word of d0.
*
get_fline:
	move.l	USER_FPIAR(a6),a0	;opcode address
	clr.l	-(a7)		;reserve a word on the stack
	lea.l	2(a7),a1	;point to low word of temporary
	move.l	#2,d0		;count
	bsr.l	mem_read
	move.l	(a7)+,d0
	rts
*
* 	g_rndpr --- put rounding precision in d0{1:0}
*	
*	valid return codes are:
*		00 - extended 
*		01 - single
*		10 - double
*
* begin
* get rounding precision (cmdreg3b{6:5})
* begin
*  case	opclass = 011 (move out)
*	get destination format - this is the also the rounding precision
*
*  case	opclass = 0x0
*	if E3
*	    *case RndPr(from cmdreg3b{6:5} = 11  then RND_PREC = DBL
*	    *case RndPr(from cmdreg3b{6:5} = 10  then RND_PREC = SGL
*	     case RndPr(from cmdreg3b{6:5} = 00 | 01
*		use precision from FPCR{7:6}
*			case 00 then RND_PREC = EXT
*			case 01 then RND_PREC = SGL
*			case 10 then RND_PREC = DBL
*	else E1
*	     use precision in FPCR{7:6}
*	     case 00 then RND_PREC = EXT
*	     case 01 then RND_PREC = SGL
*	     case 10 then RND_PREC = DBL
* end
*
g_rndpr:
	bsr.w	g_opcls		;get opclass in d0{2:0}
	cmp.w	#$0003,d0	;check for opclass 011
	bne.b	op_0x0

*
* For move out instructions (opclass 011) the destination format
* is the same as the rounding precision.  Pass results from g_dfmtou.
*
	bsr.w 	g_dfmtou	
	rts
op_0x0:
	btst.b	#E3,E_BYTE(a6)
	beq.l	unf_e1_exc	;branch to e1 underflow
unf_e3_exc:
	move.l	CMDREG3B(a6),d0	;rounding precision in d0{10:9}
	bfextu	d0{9:2},d0	;move the rounding prec bits to d0{1:0}
	cmpi.l	#$2,d0
	beq.l	unff_sgl	;force precision is single
	cmpi.l	#$3,d0		;force precision is double
	beq.l	unff_dbl
	move.w	CMDREG3B(a6),d0	;get the command word again
	andi.l	#$7f,d0		;clear all except operation
	cmpi.l	#$33,d0			
	beq.l	unf_fsgl	;fsglmul or fsgldiv
	cmpi.l	#$30,d0
	beq.l	unf_fsgl	;fsgldiv or fsglmul
	bra	unf_fpcr
unf_e1_exc:
	move.l	CMDREG1B(a6),d0	;get 32 bits off the stack, 1st 16 bits
*				;are the command word
	andi.l	#$00440000,d0	;clear all bits except bits 6 and 2
	cmpi.l	#$00400000,d0
	beq.l	unff_sgl	;force single
	cmpi.l	#$00440000,d0	;force double
	beq.l	unff_dbl
	move.l	CMDREG1B(a6),d0	;get the command word again
	andi.l	#$007f0000,d0	;clear all bits except the operation
	cmpi.l	#$00270000,d0
	beq.l	unf_fsgl	;fsglmul
	cmpi.l	#$00240000,d0
	beq.l	unf_fsgl	;fsgldiv
	bra	unf_fpcr

*
* Convert to return format.  The values from cmdreg3b and the return
* values are:
*	cmdreg3b	return	     precision
*	--------	------	     ---------
*	  00,01		  0		ext
*	   10		  1		sgl
*	   11		  2		dbl
* Force single
*
unff_sgl:
	move.l	#1,d0		;return 1
	rts
*
* Force double
*
unff_dbl:
	move.l	#2,d0		;return 2
	rts
*
* Force extended
*
unf_fsgl:
	clr.l	d0		
	rts
*
* Get rounding precision set in FPCR{7:6}.
*
unf_fpcr:
	move.l	USER_FPCR(a6),d0 ;rounding precision bits in d0{7:6}
	bfextu	d0{24:2},d0	;move the rounding prec bits to d0{1:0}
	rts
*
*	g_opcls --- put opclass in d0{2:0}
*
g_opcls:
	btst.b	#E3,E_BYTE(a6)
	beq.b	opc_1b		;if set, go to cmdreg1b
opc_3b:
	clr.l	d0		;if E3, only opclass 0x0 is possible
	rts
opc_1b:
	move.l	CMDREG1B(a6),d0
	bfextu	d0{0:3},d0	;shift opclass bits d0{31:29} to d0{2:0}
	rts
*
*	g_dfmtou --- put destination format in d0{1:0}
*
*	If E1, the format is from cmdreg1b{12:10}
*	If E3, the format is extended.
*
*	Dest. Fmt.	
*		extended  010 -> 00
*		single    001 -> 01
*		double    101 -> 10
*
g_dfmtou:
	btst.b	#E3,E_BYTE(a6)
	beq.b	op011
	clr.l	d0		;if E1, size is always ext
	rts
op011:
	move.l	CMDREG1B(a6),d0
	bfextu	d0{3:3},d0	;dest fmt from cmdreg1b{12:10}
	cmp.b	#1,d0		;check for single
	bne.b	not_sgl
	move.l	#1,d0
	rts
not_sgl:
	cmp.b	#5,d0		;check for double
	bne.b	not_dbl
	move.l	#2,d0
	rts
not_dbl:
	clr.l	d0		;must be extended
	rts

*
*
* Final result table for unf_sub. Note that the negative counterparts
* are unnecessary as unf_sub always returns the sign separately from
* the exponent.
*					;+zero
EXT_PZRO	dc.l	$00000000,$00000000,$00000000,$00000000	
*					;+zero
SGL_PZRO	dc.l	$3f810000,$00000000,$00000000,$00000000	
*					;+zero
DBL_PZRO	dc.l	$3c010000,$00000000,$00000000,$00000000	
*					;smallest +ext denorm
EXT_PSML	dc.l	$00000000,$00000000,$00000001,$00000000	
*					;smallest +sgl denorm
SGL_PSML	dc.l	$3f810000,$00000100,$00000000,$00000000	
*					;smallest +dbl denorm
DBL_PSML	dc.l	$3c010000,$00000000,$00000800,$00000000	
*
*	UNF_SUB --- underflow result calculation
*
* Input:
*	d0 	contains round precision
*	a0	points to input operand in the internal extended format
*
* Output:
*	a0 	points to correct internal extended precision result.
*

tblunf:
	dc.l	uEXT_RN
	dc.l	uEXT_RZ
	dc.l	uEXT_RM
	dc.l	uEXT_RP
	dc.l	uSGL_RN
	dc.l	uSGL_RZ
	dc.l	uSGL_RM
	dc.l	uSGL_RP
	dc.l	uDBL_RN
	dc.l	uDBL_RZ
	dc.l	uDBL_RM
	dc.l	uDBL_RP
	dc.l	uDBL_RN
	dc.l	uDBL_RZ
	dc.l	uDBL_RM
	dc.l	uDBL_RP

	xdef	unf_sub
unf_sub:
	lsl.l	#2,d0		;move round precision to d0{3:2}
	bfextu	FPCR_MODE(a6){2:2},d1 ;set round mode
	or.l	d1,d0		;index is fmt:mode in d0{3:0}
	lea.l	tblunf,a1	;load a1 with table address
	move.l	(a1,d0*4),a1	;use d0 as index to the table
	jmp	(a1)		;go to the correct routine
*
*case DEST_FMT = EXT
*
uEXT_RN:
	lea.l	EXT_PZRO,a1	;answer is +/- zero
	bset.b	#z_bit,FPSR_CC(a6)
	bra	uset_sign	;now go set the sign	
uEXT_RZ:
	lea.l	EXT_PZRO,a1	;answer is +/- zero
	bset.b	#z_bit,FPSR_CC(a6)
	bra	uset_sign	;now go set the sign
uEXT_RM:
	tst.b	LOCAL_SGN(a0)	;if negative underflow
	beq.b	ue_rm_pos
ue_rm_neg:
	lea.l	EXT_PSML,a1	;answer is negative smallest denorm
	bset.b	#neg_bit,FPSR_CC(a6)
	bra	end_unfr
ue_rm_pos:
	lea.l	EXT_PZRO,a1	;answer is positive zero
	bset.b	#z_bit,FPSR_CC(a6)
	bra	end_unfr
uEXT_RP:
	tst.b	LOCAL_SGN(a0)	;if negative underflow
	beq.b	ue_rp_pos
ue_rp_neg:
	lea.l	EXT_PZRO,a1	;answer is negative zero
	ori.l	#negz_mask,USER_FPSR(a6)
	bra	end_unfr
ue_rp_pos:
	lea.l	EXT_PSML,a1	;answer is positive smallest denorm
	bra	end_unfr
*
*case DEST_FMT = DBL
*
uDBL_RN:
	lea.l	DBL_PZRO,a1	;answer is +/- zero
	bset.b	#z_bit,FPSR_CC(a6)
	bra	uset_sign
uDBL_RZ:
	lea.l	DBL_PZRO,a1	;answer is +/- zero
	bset.b	#z_bit,FPSR_CC(a6)
	bra	uset_sign	;now go set the sign
uDBL_RM:
	tst.b	LOCAL_SGN(a0)	;if negative overflow
	beq.b	ud_rm_pos
ud_rm_neg:
	lea.l	DBL_PSML,a1	;answer is smallest denormalized negative
	bset.b	#neg_bit,FPSR_CC(a6)
	bra	end_unfr
ud_rm_pos:
	lea.l	DBL_PZRO,a1	;answer is positive zero
	bset.b	#z_bit,FPSR_CC(a6)
	bra	end_unfr
uDBL_RP:
	tst.b	LOCAL_SGN(a0)	;if negative overflow
	beq.b	ud_rp_pos
ud_rp_neg:
	lea.l	DBL_PZRO,a1	;answer is negative zero
	ori.l	#negz_mask,USER_FPSR(a6)
	bra	end_unfr
ud_rp_pos:
	lea.l	DBL_PSML,a1	;answer is smallest denormalized negative
	bra	end_unfr
*
*case DEST_FMT = SGL
*
uSGL_RN:
	lea.l	SGL_PZRO,a1	;answer is +/- zero
	bset.b	#z_bit,FPSR_CC(a6)
	bra.b	uset_sign
uSGL_RZ:
	lea.l	SGL_PZRO,a1	;answer is +/- zero
	bset.b	#z_bit,FPSR_CC(a6)
	bra.b	uset_sign
uSGL_RM:
	tst.b	LOCAL_SGN(a0)	;if negative overflow
	beq.b	us_rm_pos
us_rm_neg:
	lea.l	SGL_PSML,a1	;answer is smallest denormalized negative
	bset.b	#neg_bit,FPSR_CC(a6)
	bra.b	end_unfr
us_rm_pos:
	lea.l	SGL_PZRO,a1	;answer is positive zero
	bset.b	#z_bit,FPSR_CC(a6)
	bra.b	end_unfr
uSGL_RP:
	tst.b	LOCAL_SGN(a0)	;if negative overflow
	beq.b	us_rp_pos
us_rp_neg:
	lea.l	SGL_PZRO,a1	;answer is negative zero
	ori.l	#negz_mask,USER_FPSR(a6)
	bra.b	end_unfr
us_rp_pos:
	lea.l	SGL_PSML,a1	;answer is smallest denormalized positive
	bra.b	end_unfr

uset_sign:
	tst.b	LOCAL_SGN(a0)	;if negative overflow
	beq.b	end_unfr
uneg_sign:
	bset.b	#neg_bit,FPSR_CC(a6)

end_unfr:
	move.w	LOCAL_EX(a1),LOCAL_EX(a0) ;be careful not to overwrite sign
	move.l	LOCAL_HI(a1),LOCAL_HI(a0)
	move.l	LOCAL_LO(a1),LOCAL_LO(a0)
	rts
*
*	reg_dest --- write byte, word, or long data to Dn
*
*
* Input:
*	L_SCR1: Data 
*	d1:     data size and dest register number formatted as:
*
*	32		5    4     3     2     1     0
*       -----------------------------------------------
*       |        0        |    Size   |  Dest Reg #   |
*       -----------------------------------------------
*
*	Size is:
*		0 - Byte
*		1 - Word
*		2 - Long/Single
*
pregdst:
	dc.l	byte_d0
	dc.l	byte_d1
	dc.l	byte_d2
	dc.l	byte_d3
	dc.l	byte_d4
	dc.l	byte_d5
	dc.l	byte_d6
	dc.l	byte_d7
	dc.l	word_d0
	dc.l	word_d1
	dc.l	word_d2
	dc.l	word_d3
	dc.l	word_d4
	dc.l	word_d5
	dc.l	word_d6
	dc.l	word_d7
	dc.l	long_d0
	dc.l	long_d1
	dc.l	long_d2
	dc.l	long_d3
	dc.l	long_d4
	dc.l	long_d5
	dc.l	long_d6
	dc.l	long_d7

reg_dest:
	lea.l	pregdst,a0
	move.l	(a0,d1*4),a0
	jmp	(a0)

byte_d0:
	move.b	L_SCR1(a6),USER_D0+3(a6)
	rts
byte_d1:
	move.b	L_SCR1(a6),USER_D1+3(a6)
	rts
byte_d2:
	move.b	L_SCR1(a6),d2
	rts
byte_d3:
	move.b	L_SCR1(a6),d3
	rts
byte_d4:
	move.b	L_SCR1(a6),d4
	rts
byte_d5:
	move.b	L_SCR1(a6),d5
	rts
byte_d6:
	move.b	L_SCR1(a6),d6
	rts
byte_d7:
	move.b	L_SCR1(a6),d7
	rts
word_d0:
	move.w	L_SCR1(a6),USER_D0+2(a6)
	rts
word_d1:
	move.w	L_SCR1(a6),USER_D1+2(a6)
	rts
word_d2:
	move.w	L_SCR1(a6),d2
	rts
word_d3:
	move.w	L_SCR1(a6),d3
	rts
word_d4:
	move.w	L_SCR1(a6),d4
	rts
word_d5:
	move.w	L_SCR1(a6),d5
	rts
word_d6:
	move.w	L_SCR1(a6),d6
	rts
word_d7:
	move.w	L_SCR1(a6),d7
	rts
long_d0:
	move.l	L_SCR1(a6),USER_D0(a6)
	rts
long_d1:
	move.l	L_SCR1(a6),USER_D1(a6)
	rts
long_d2:
	move.l	L_SCR1(a6),d2
	rts
long_d3:
	move.l	L_SCR1(a6),d3
	rts
long_d4:
	move.l	L_SCR1(a6),d4
	rts
long_d5:
	move.l	L_SCR1(a6),d5
	rts
long_d6:
	move.l	L_SCR1(a6),d6
	rts
long_d7:
	move.l	L_SCR1(a6),d7
	rts
	end