/* $NetBSD: int.c,v 1.29 2018/09/27 17:34:28 macallan Exp $ */
/*
* Copyright (c) 2009 Stephen M. Rumble
* Copyright (c) 2004 Christopher SEKIYA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* INT1/INT2/INT3 interrupt controllers (IP6, IP10, IP12, IP20, IP22, IP24...)
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: int.c,v 1.29 2018/09/27 17:34:28 macallan Exp $");
#define __INTR_PRIVATE
#include "opt_cputype.h"
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/timetc.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <dev/ic/i8253reg.h>
#include <machine/sysconf.h>
#include <machine/machtype.h>
#include <sys/bus.h>
#include <mips/locore.h>
#include <mips/cache.h>
#include <sgimips/dev/int1reg.h>
#include <sgimips/dev/int2reg.h>
#include <sgimips/dev/int2var.h>
static bus_space_handle_t ioh;
static bus_space_tag_t iot;
static int int_match(device_t, cfdata_t, void *);
static void int_attach(device_t, device_t, void *);
static void *int1_intr_establish(int, int, int (*)(void *), void *);
static void *int2_intr_establish(int, int, int (*)(void *), void *);
static void int1_local_intr(vaddr_t, uint32_t, uint32_t);
static void int2_local0_intr(vaddr_t, uint32_t, uint32_t);
static void int2_local1_intr(vaddr_t, uint32_t, uint32_t);
static int int2_mappable_intr(void *);
static void int_8254_cal(void);
static u_int int_8254_get_timecount(struct timecounter *);
static void int_8254_intr0(vaddr_t, uint32_t, uint32_t);
static void int_8254_intr1(vaddr_t, uint32_t, uint32_t);
#ifdef MIPS3
static u_long int2_cpu_freq(device_t);
static u_long int2_cal_timer(void);
#endif
static struct timecounter int_8254_timecounter = {
int_8254_get_timecount, /* get_timecount */
0, /* no poll_pps */
~0u, /* counter_mask */
0, /* frequency; set in int_8254_cal */
"int i8254", /* name */
100, /* quality */
NULL, /* prev */
NULL, /* next */
};
static u_long int_8254_tc_count;
CFATTACH_DECL_NEW(int, 0,
int_match, int_attach, NULL, NULL);
static int
int_match(device_t parent, cfdata_t match, void *aux)
{
switch (mach_type) {
case MACH_SGI_IP6 | MACH_SGI_IP10:
case MACH_SGI_IP12:
case MACH_SGI_IP20:
case MACH_SGI_IP22:
return 1;
}
return 0;
}
static void
int_attach(device_t parent, device_t self, void *aux)
{
uint32_t address;
int i;
for (i = 0; i < NINTR; i++) {
intrtab[i].ih_fun = NULL;
snprintf(intrtab[i].ih_evname, 7, "%d", i);
}
switch (mach_type) {
case MACH_SGI_IP6 | MACH_SGI_IP10:
address = INT1_IP6_IP10;
break;
case MACH_SGI_IP12:
address = INT2_IP12;
break;
case MACH_SGI_IP20:
address = INT2_IP20;
break;
case MACH_SGI_IP22:
if (mach_subtype == MACH_SGI_IP22_FULLHOUSE)
address = INT2_IP22;
else
address = INT2_IP24;
break;
default:
panic("\nint0: passed match, but failed attach?");
}
printf(" addr 0x%x\n", address);
iot = normal_memt;
/*
* XXX INT1 registers are spread *way* out, but for now this should
* work
*/
bus_space_map(iot, address, 0x100, 0, &ioh);
switch (mach_type) {
case MACH_SGI_IP6 | MACH_SGI_IP10:
/* Clean out interrupt masks */
bus_space_write_1(iot, ioh, INT1_LOCAL_MASK, 0);
/* Turn off timers and clear interrupts */
bus_space_write_1(iot, ioh, INT1_TIMER_CONTROL,
(TIMER_SEL0 | TIMER_16BIT | TIMER_SWSTROBE));
bus_space_write_1(iot, ioh, INT1_TIMER_CONTROL,
(TIMER_SEL1 | TIMER_16BIT | TIMER_SWSTROBE));
bus_space_write_1(iot, ioh, INT1_TIMER_CONTROL,
(TIMER_SEL2 | TIMER_16BIT | TIMER_SWSTROBE));
wbflush();
delay(4);
bus_space_read_1(iot, ioh, INT1_TIMER_0_ACK);
bus_space_read_1(iot, ioh, INT1_TIMER_1_ACK);
platform.intr_establish = int1_intr_establish;
platform.intr1 = int1_local_intr;
platform.intr2 = int_8254_intr0;
platform.intr4 = int_8254_intr1;
int_8254_cal();
break;
case MACH_SGI_IP12:
case MACH_SGI_IP20:
case MACH_SGI_IP22:
/* Clean out interrupt masks */
bus_space_write_1(iot, ioh, INT2_LOCAL0_MASK, 0);
bus_space_write_1(iot, ioh, INT2_LOCAL1_MASK, 0);
bus_space_write_1(iot, ioh, INT2_MAP_MASK0, 0);
bus_space_write_1(iot, ioh, INT2_MAP_MASK1, 0);
/* Reset timer interrupts */
bus_space_write_1(iot, ioh, INT2_TIMER_CONTROL,
(TIMER_SEL0 | TIMER_16BIT | TIMER_SWSTROBE));
bus_space_write_1(iot, ioh, INT2_TIMER_CONTROL,
(TIMER_SEL1 | TIMER_16BIT | TIMER_SWSTROBE));
bus_space_write_1(iot, ioh, INT2_TIMER_CONTROL,
(TIMER_SEL2 | TIMER_16BIT | TIMER_SWSTROBE));
wbflush();
delay(4);
bus_space_write_1(iot, ioh, INT2_TIMER_CLEAR, 0x03);
if (mach_type == MACH_SGI_IP12) {
platform.intr_establish = int2_intr_establish;
platform.intr1 = int2_local0_intr;
platform.intr2 = int2_local1_intr;
platform.intr3 = int_8254_intr0;
platform.intr4 = int_8254_intr1;
int_8254_cal();
} else {
platform.intr_establish = int2_intr_establish;
platform.intr0 = int2_local0_intr;
platform.intr1 = int2_local1_intr;
#ifdef MIPS3
curcpu()->ci_cpu_freq = int2_cpu_freq(self);
#endif
}
break;
default:
panic("int0: unsupported machine type %i\n", mach_type);
}
curcpu()->ci_cycles_per_hz = curcpu()->ci_cpu_freq / (2 * hz);
curcpu()->ci_divisor_delay = curcpu()->ci_cpu_freq / (2 * 1000000);
if (mach_type == MACH_SGI_IP22) {
/* Wire interrupts 7, 11 to mappable interrupt 0,1 handlers */
intrtab[7].ih_fun = int2_mappable_intr;
intrtab[7].ih_arg = (void*) 0;
snprintf(intrtab[7].ih_evname, 7, "map0");
intrtab[11].ih_fun = int2_mappable_intr;
intrtab[11].ih_arg = (void*) 1;
snprintf(intrtab[11].ih_evname, 7, "map1");
}
for (i = 0; i < NINTR; i++) {
evcnt_attach_dynamic(&intrtab[i].ih_evcnt,
EVCNT_TYPE_INTR, NULL,
"int", intrtab[i].ih_evname);
}
}
int
int2_mappable_intr(void *arg)
{
int i;
int ret;
int intnum;
uint32_t mstat;
uint32_t mmask;
int which = (intptr_t)arg;
struct sgimips_intrhand *ih;
ret = 0;
mstat = bus_space_read_1(iot, ioh, INT2_MAP_STATUS);
mmask = bus_space_read_1(iot, ioh, INT2_MAP_MASK0 + (which << 2));
mstat &= mmask;
for (i = 0; i < 8; i++) {
intnum = i + 16 + (which << 3);
if (mstat & (1 << i)) {
intrtab[intnum].ih_evcnt.ev_count++;
for (ih = &intrtab[intnum]; ih != NULL;
ih = ih->ih_next) {
if (ih->ih_fun != NULL)
ret |= (ih->ih_fun)(ih->ih_arg);
else
printf("int0: unexpected mapped "
"interrupt %d\n", intnum);
}
}
}
return ret;
}
static void
int1_local_intr(vaddr_t pc, uint32_t status, uint32_t ipend)
{
int i;
uint16_t stat;
uint8_t mask;
struct sgimips_intrhand *ih;
stat = bus_space_read_2(iot, ioh, INT1_LOCAL_STATUS);
mask = bus_space_read_1(iot, ioh, INT1_LOCAL_MASK);
/* for STATUS, a 0 bit means interrupt is pending */
stat = ~stat & mask;
for (i = 0; stat != 0; i++, stat >>= 1) {
if (stat & 1) {
intrtab[i].ih_evcnt.ev_count++;
for (ih = &intrtab[i]; ih != NULL; ih = ih->ih_next) {
if (ih->ih_fun != NULL)
(ih->ih_fun)(ih->ih_arg);
else
printf("int0: unexpected local "
"interrupt %d\n", i);
}
}
}
}
void
int2_local0_intr(vaddr_t pc, uint32_t status, uint32_t ipending)
{
int i;
uint32_t l0stat;
uint32_t l0mask;
struct sgimips_intrhand *ih;
l0stat = bus_space_read_1(iot, ioh, INT2_LOCAL0_STATUS);
l0mask = bus_space_read_1(iot, ioh, INT2_LOCAL0_MASK);
l0stat &= l0mask;
for (i = 0; i < 8; i++) {
if (l0stat & (1 << i)) {
intrtab[i].ih_evcnt.ev_count++;
for (ih = &intrtab[i]; ih != NULL; ih = ih->ih_next) {
if (ih->ih_fun != NULL)
(ih->ih_fun)(ih->ih_arg);
else
printf("int0: unexpected local0 "
"interrupt %d\n", i);
}
}
}
}
void
int2_local1_intr(vaddr_t pc, uint32_t status, uint32_t ipending)
{
int i;
uint32_t l1stat;
uint32_t l1mask;
struct sgimips_intrhand *ih;
l1stat = bus_space_read_1(iot, ioh, INT2_LOCAL1_STATUS);
l1mask = bus_space_read_1(iot, ioh, INT2_LOCAL1_MASK);
l1stat &= l1mask;
for (i = 0; i < 8; i++) {
if (l1stat & (1 << i)) {
intrtab[i].ih_evcnt.ev_count++;
for (ih = &intrtab[8+i]; ih != NULL; ih = ih->ih_next) {
if (ih->ih_fun != NULL)
(ih->ih_fun)(ih->ih_arg);
else
printf("int0: unexpected local1 "
" interrupt %x\n", 8 + i);
}
}
}
}
void *
int1_intr_establish(int level, int ipl, int (*handler) (void *), void *arg)
{
uint8_t mask;
if (level < 0 || level >= NINTR)
panic("invalid interrupt level");
if (intrtab[level].ih_fun == NULL) {
intrtab[level].ih_fun = handler;
intrtab[level].ih_arg = arg;
intrtab[level].ih_next = NULL;
} else {
struct sgimips_intrhand *n, *ih;
ih = malloc(sizeof *ih, M_DEVBUF, M_NOWAIT);
if (ih == NULL) {
printf("int0: can't allocate handler\n");
return (void *)NULL;
}
ih->ih_fun = handler;
ih->ih_arg = arg;
ih->ih_next = NULL;
for (n = &intrtab[level]; n->ih_next != NULL; n = n->ih_next)
;
n->ih_next = ih;
return NULL; /* vector already set */
}
if (level < 8) {
mask = bus_space_read_1(iot, ioh, INT1_LOCAL_MASK);
mask |= (1 << level);
bus_space_write_1(iot, ioh, INT1_LOCAL_MASK, mask);
} else {
printf("int0: level >= 16 (%d)\n", level);
}
return NULL;
}
void *
int2_intr_establish(int level, int ipl, int (*handler) (void *), void *arg)
{
uint32_t mask;
if (level < 0 || level >= NINTR)
panic("invalid interrupt level");
if (intrtab[level].ih_fun == NULL) {
intrtab[level].ih_fun = handler;
intrtab[level].ih_arg = arg;
intrtab[level].ih_next = NULL;
} else {
struct sgimips_intrhand *n, *ih;
ih = malloc(sizeof *ih, M_DEVBUF, M_NOWAIT);
if (ih == NULL) {
printf("int0: can't allocate handler\n");
return NULL;
}
ih->ih_fun = handler;
ih->ih_arg = arg;
ih->ih_next = NULL;
for (n = &intrtab[level]; n->ih_next != NULL; n = n->ih_next)
;
n->ih_next = ih;
return NULL; /* vector already set */
}
if (level < 8) {
mask = bus_space_read_1(iot, ioh, INT2_LOCAL0_MASK);
mask |= (1 << level);
bus_space_write_1(iot, ioh, INT2_LOCAL0_MASK, mask);
} else if (level < 16) {
mask = bus_space_read_1(iot, ioh, INT2_LOCAL1_MASK);
mask |= (1 << (level - 8));
bus_space_write_1(iot, ioh, INT2_LOCAL1_MASK, mask);
} else if (level < 24) {
/* Map0 interrupt maps to l0 bit 7, so turn that on too */
mask = bus_space_read_1(iot, ioh, INT2_LOCAL0_MASK);
mask |= (1 << 7);
bus_space_write_1(iot, ioh, INT2_LOCAL0_MASK, mask);
mask = bus_space_read_1(iot, ioh, INT2_MAP_MASK0);
mask |= (1 << (level - 16));
bus_space_write_1(iot, ioh, INT2_MAP_MASK0, mask);
} else {
/* Map1 interrupt maps to l1 bit 3, so turn that on too */
mask = bus_space_read_1(iot, ioh, INT2_LOCAL1_MASK);
mask |= (1 << 3);
bus_space_write_1(iot, ioh, INT2_LOCAL1_MASK, mask);
mask = bus_space_read_1(iot, ioh, INT2_MAP_MASK1);
mask |= (1 << (level - 24));
bus_space_write_1(iot, ioh, INT2_MAP_MASK1, mask);
}
return NULL;
}
#ifdef MIPS3
static u_long
int2_cpu_freq(device_t self)
{
int i;
unsigned long cps;
unsigned long ctrdiff[3];
/* calibrate timer */
int2_cal_timer();
cps = 0;
for (i = 0;
i < sizeof(ctrdiff) / sizeof(ctrdiff[0]); i++) {
do {
ctrdiff[i] = int2_cal_timer();
} while (ctrdiff[i] == 0);
cps += ctrdiff[i];
}
cps = cps / (sizeof(ctrdiff) / sizeof(ctrdiff[0]));
printf("%s: bus %luMHz, CPU %luMHz\n",
device_xname(self), cps / 10000, cps / 5000);
/* R4k/R4400/R4600/R5k count at half CPU frequency */
return (2 * cps * hz);
}
static u_long
int2_cal_timer(void)
{
int s;
int roundtime;
int sampletime;
int msb;
unsigned long startctr, endctr;
/*
* NOTE: HZ must be greater than 15 for this to work, as otherwise
* we'll overflow the counter. We round the answer to nearest 1
* MHz of the master (2x) clock.
*/
roundtime = (1000000 / hz) / 2;
sampletime = (1000000 / hz) + 0xff;
s = splhigh();
bus_space_write_1(iot, ioh, INT2_TIMER_CONTROL,
(TIMER_SEL2 | TIMER_16BIT | TIMER_RATEGEN));
bus_space_write_1(iot, ioh, INT2_TIMER_2, (sampletime & 0xff));
bus_space_write_1(iot, ioh, INT2_TIMER_2, (sampletime >> 8));
startctr = mips3_cp0_count_read();
/* Wait for the MSB to count down to zero */
do {
bus_space_write_1(iot, ioh, INT2_TIMER_CONTROL, TIMER_SEL2);
(void)bus_space_read_1(iot, ioh, INT2_TIMER_2);
msb = bus_space_read_1(iot, ioh, INT2_TIMER_2) & 0xff;
endctr = mips3_cp0_count_read();
} while (msb);
/* Turn off timer */
bus_space_write_1(iot, ioh, INT2_TIMER_CONTROL,
(TIMER_SEL2 | TIMER_16BIT | TIMER_SWSTROBE));
splx(s);
return (endctr - startctr) / roundtime * roundtime;
}
#endif /* MIPS3 */
/*
* A master clock is wired to TIMER_2, which in turn clocks the two other
* timers. The master frequencies are as follows:
* IP6, IP10: 3.6864MHz
* IP12, IP20, IP22: 1MHz
* IP17: 10MHz
*
* TIMER_0 and TIMER_1 interrupts are tied to MIPS interrupts as follows:
* IP6, IP10: TIMER_0: INT2, TIMER_1: INT4
* IP12: TIMER_0: INT3, TIMER_1: INT4
* IP17, IP20, IP22: TIMER_0: INT2, TIMER_1: INT3
*
* NB: Apparently int2 doesn't like counting down from one, but two works.
*/
void
int_8254_cal(void)
{
bus_size_t timer_control, timer_0, timer_1, timer_2;
int s;
switch (mach_type) {
case MACH_SGI_IP6 | MACH_SGI_IP10:
int_8254_timecounter.tc_frequency = 3686400 / 8;
timer_control = INT1_TIMER_CONTROL;
timer_0 = INT1_TIMER_0;
timer_1 = INT1_TIMER_1;
timer_2 = INT1_TIMER_2;
break;
case MACH_SGI_IP12:
int_8254_timecounter.tc_frequency = 1000000 / 8;
timer_control = INT2_TIMER_CONTROL;
timer_0 = INT2_TIMER_0;
timer_1 = INT2_TIMER_1;
timer_2 = INT2_TIMER_2;
break;
default:
panic("int_8254_cal");
}
s = splhigh();
/* Timer0 is our hz. */
bus_space_write_1(iot, ioh, timer_control,
TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
bus_space_write_1(iot, ioh, timer_0,
(int_8254_timecounter.tc_frequency / hz) % 256);
wbflush();
delay(4);
bus_space_write_1(iot, ioh, timer_0,
(int_8254_timecounter.tc_frequency / hz) / 256);
/* Timer1 is for timecounting. */
bus_space_write_1(iot, ioh, timer_control,
TIMER_SEL1 | TIMER_RATEGEN | TIMER_16BIT);
bus_space_write_1(iot, ioh, timer_1, 0xff);
wbflush();
delay(4);
bus_space_write_1(iot, ioh, timer_1, 0xff);
/* Timer2 clocks timer0 and timer1. */
bus_space_write_1(iot, ioh, timer_control,
TIMER_SEL2 | TIMER_RATEGEN | TIMER_16BIT);
bus_space_write_1(iot, ioh, timer_2, 8);
wbflush();
delay(4);
bus_space_write_1(iot, ioh, timer_2, 0);
splx(s);
tc_init(&int_8254_timecounter);
}
static u_int
int_8254_get_timecount(struct timecounter *tc)
{
int s;
u_int count;
u_char lo, hi;
s = splhigh();
switch (mach_type) {
case MACH_SGI_IP6 | MACH_SGI_IP10:
bus_space_write_1(iot, ioh, INT1_TIMER_CONTROL,
TIMER_SEL1 | TIMER_LATCH);
lo = bus_space_read_1(iot, ioh, INT1_TIMER_1);
hi = bus_space_read_1(iot, ioh, INT1_TIMER_1);
break;
case MACH_SGI_IP12:
bus_space_write_1(iot, ioh, INT2_TIMER_CONTROL,
TIMER_SEL1 | TIMER_LATCH);
lo = bus_space_read_1(iot, ioh, INT2_TIMER_1);
hi = bus_space_read_1(iot, ioh, INT2_TIMER_1);
break;
default:
panic("int_8254_get_timecount");
}
count = 0xffff - ((hi << 8) | lo);
splx(s);
return (int_8254_tc_count + count);
}
static void
int_8254_intr0(vaddr_t pc, uint32_t status, uint32_t ipending)
{
struct clockframe cf;
cf.pc = pc;
cf.sr = status;
cf.intr = (curcpu()->ci_idepth > 1);
hardclock(&cf);
switch (mach_type) {
case MACH_SGI_IP6 | MACH_SGI_IP10:
bus_space_read_1(iot, ioh, INT1_TIMER_0_ACK);
break;
case MACH_SGI_IP12:
bus_space_write_1(iot, ioh, INT2_TIMER_CLEAR, 0x01);
break;
default:
panic("int_8254_intr0");
}
}
static void
int_8254_intr1(vaddr_t pc, uint32_t status, uint32_t ipending)
{
int s;
s = splhigh();
int_8254_tc_count += 0xffff;
switch (mach_type) {
case MACH_SGI_IP6 | MACH_SGI_IP10:
bus_space_read_1(iot, ioh, INT1_TIMER_1_ACK);
break;
case MACH_SGI_IP12:
bus_space_write_1(iot, ioh, INT2_TIMER_CLEAR, 0x02);
break;
default:
panic("int_8254_intr1");
}
splx(s);
}
void
int2_wait_fifo(uint32_t flag)
{
if (ioh == 0)
delay(5000);
else
while (bus_space_read_1(iot, ioh, INT2_LOCAL0_STATUS) & flag)
;
}