/*-
* Copyright (c) 2014,2016 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Frank Kardel.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* IST-AG P14 calibrated Hygro-/Temperature sensor module
* Devices: HYT-271, HYT-221 and HYT-939
*
* see:
* http://www.ist-ag.com/eh/ist-ag/resource.nsf/imgref/Download_AHHYTM_E2.1.pdf/
* $FILE/AHHYTM_E2.1.pdf
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: hytp14.c,v 1.8 2018/06/16 21:24:36 thorpej Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/module.h>
#include <sys/sysctl.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/kthread.h>
#include <dev/sysmon/sysmonvar.h>
#include <dev/i2c/i2cvar.h>
#include <dev/i2c/hytp14reg.h>
#include <dev/i2c/hytp14var.h>
static int hytp14_match(device_t, cfdata_t, void *);
static void hytp14_attach(device_t, device_t, void *);
static int hytp14_detach(device_t, int);
static void hytp14_measurement_request(void *);
static int hytp14_refresh_sensor(struct hytp14_sc *sc);
static void hytp14_refresh(struct sysmon_envsys *, envsys_data_t *);
static void hytp14_refresh_humidity(struct hytp14_sc *, envsys_data_t *);
static void hytp14_refresh_temp(struct hytp14_sc *, envsys_data_t *);
static void hytp14_thread(void *);
static int sysctl_hytp14_interval(SYSCTLFN_ARGS);
/* #define HYT_DEBUG 3 */
#ifdef HYT_DEBUG
volatile int hythygtemp_debug = HYT_DEBUG;
#define DPRINTF(_L_, _X_) do { \
if ((_L_) <= hythygtemp_debug) { \
printf _X_; \
} \
} while (0)
#else
#define DPRINTF(_L_, _X_)
#endif
CFATTACH_DECL_NEW(hythygtemp, sizeof(struct hytp14_sc),
hytp14_match, hytp14_attach, hytp14_detach, NULL);
static struct hytp14_sensor hytp14_sensors[] = {
{
.desc = "humidity",
.type = ENVSYS_SRELHUMIDITY,
.refresh = hytp14_refresh_humidity
},
{
.desc = "temperature",
.type = ENVSYS_STEMP,
.refresh = hytp14_refresh_temp
}
};
static int
hytp14_match(device_t parent, cfdata_t match, void *aux)
{
struct i2c_attach_args *ia = aux;
int match_result;
if (iic_use_direct_match(ia, match, NULL, &match_result))
return match_result;
if (ia->ia_addr == 0x28)
return I2C_MATCH_ADDRESS_ONLY;
/*
* XXXJRT
* This device is an odd-ball; the i2c address can be changed
* at run-time using a command sequence documented in the
* application note, but the timing is critical (within 10ms
* after power-on of the device), and the device always starts
* up at address 0x28.
*
* How should we handle this?
*/
return 0;
}
static void
hytp14_attach(device_t parent, device_t self, void *aux)
{
const struct sysctlnode *rnode, *node;
struct hytp14_sc *sc;
struct i2c_attach_args *ia;
int i, rv;
ia = aux;
sc = device_private(self);
sc->sc_dev = self;
sc->sc_tag = ia->ia_tag;
sc->sc_addr = ia->ia_addr;
mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE);
cv_init(&sc->sc_condvar, "hytcv");
sc->sc_state = HYTP14_THR_INIT;
sc->sc_valid = ENVSYS_SINVALID;
sc->sc_numsensors = __arraycount(hytp14_sensors);
if ((sc->sc_sme = sysmon_envsys_create()) == NULL) {
aprint_error_dev(sc->sc_dev,
"unable to create sysmon structure\n");
return;
}
for (i = 0; i < sc->sc_numsensors; i++) {
strlcpy(sc->sc_sensors[i].desc,
hytp14_sensors[i].desc,
sizeof sc->sc_sensors[i].desc);
sc->sc_sensors[i].units = hytp14_sensors[i].type;
sc->sc_sensors[i].state = ENVSYS_SINVALID;
DPRINTF(2, ("hytp14_attach: registering sensor %d (%s)\n", i,
sc->sc_sensors[i].desc));
if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensors[i])) {
aprint_error_dev(sc->sc_dev,
"unable to attach sensor\n");
sysmon_envsys_destroy(sc->sc_sme);
return;
}
}
sc->sc_sme->sme_name = device_xname(sc->sc_dev);
sc->sc_sme->sme_cookie = sc;
sc->sc_sme->sme_refresh = hytp14_refresh;
DPRINTF(2, ("hytp14_attach: registering with envsys\n"));
if (sysmon_envsys_register(sc->sc_sme)) {
aprint_error_dev(sc->sc_dev,
"unable to register with sysmon\n");
sysmon_envsys_destroy(sc->sc_sme);
return;
}
/* create a sysctl node for setting the measurement interval */
rnode = node = NULL;
sysctl_createv(NULL, 0, NULL, &rnode,
CTLFLAG_READWRITE,
CTLTYPE_NODE, device_xname(sc->sc_dev), NULL,
NULL, 0, NULL, 0,
CTL_HW, CTL_CREATE, CTL_EOL);
if (rnode != NULL)
sysctl_createv(NULL, 0, NULL, &node,
CTLFLAG_READWRITE | CTLFLAG_OWNDESC,
CTLTYPE_INT, "interval",
SYSCTL_DESCR("Sensor sampling interval in seconds"),
sysctl_hytp14_interval, 0, (void *)sc, 0,
CTL_HW, rnode->sysctl_num, CTL_CREATE, CTL_EOL);
/* set up the default measurement interval for worker thread */
sc->sc_mrinterval = HYTP14_MR_INTERVAL;
/* create worker kthread */
rv = kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
hytp14_thread, sc, &sc->sc_thread,
"%s", device_xname(sc->sc_dev));
if (rv)
aprint_error_dev(self, "unable to create intr thread\n");
aprint_normal(": HYT-221/271/939 humidity and temperature sensor\n");
}
static int
hytp14_detach(device_t self, int flags)
{
struct hytp14_sc *sc;
sc = device_private(self);
if (sc->sc_sme != NULL) {
sysmon_envsys_unregister(sc->sc_sme);
sc->sc_sme = NULL;
}
/* stop measurement thread */
mutex_enter(&sc->sc_mutex);
sc->sc_state = HYTP14_THR_STOP;
cv_signal(&sc->sc_condvar);
mutex_exit(&sc->sc_mutex);
/* await thread completion */
kthread_join(sc->sc_thread);
/* cleanup */
cv_destroy(&sc->sc_condvar);
mutex_destroy(&sc->sc_mutex);
return 0;
}
static void
hytp14_thread(void *aux)
{
struct hytp14_sc *sc = aux;
int rv;
mutex_enter(&sc->sc_mutex);
DPRINTF(2, ("%s(%s): thread start - state=%d\n",
__func__, device_xname(sc->sc_dev),
sc->sc_state));
while (sc->sc_state != HYTP14_THR_STOP) {
sc->sc_state = HYTP14_THR_RUN;
DPRINTF(2, ("%s(%s): waiting %d seconds\n",
__func__, device_xname(sc->sc_dev),
sc->sc_mrinterval));
rv = cv_timedwait(&sc->sc_condvar, &sc->sc_mutex, hz * sc->sc_mrinterval);
if (rv == EWOULDBLOCK) {
/* timeout - run measurement */
DPRINTF(2, ("%s(%s): timeout -> measurement\n",
__func__, device_xname(sc->sc_dev)));
hytp14_measurement_request(sc);
} else {
DPRINTF(2, ("%s(%s): condvar signalled - state=%d\n",
__func__, device_xname(sc->sc_dev),
sc->sc_state));
}
}
mutex_exit(&sc->sc_mutex);
DPRINTF(2, ("%s(%s): thread exit\n",
__func__, device_xname(sc->sc_dev)));
kthread_exit(0);
}
static void
hytp14_measurement_request(void *aux)
{
uint8_t buf[I2C_EXEC_MAX_BUFLEN];
struct hytp14_sc *sc;
int error;
sc = aux;
DPRINTF(2, ("%s(%s)\n", __func__, device_xname(sc->sc_dev)));
error = iic_acquire_bus(sc->sc_tag, 0);
if (error == 0) {
/* send DF command - read last data from sensor */
error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
sc->sc_addr, NULL, 0, sc->sc_data, sizeof(sc->sc_data), 0);
if (error != 0) {
DPRINTF(2, ("%s: %s: failed read from 0x%02x - error %d\n",
device_xname(sc->sc_dev), __func__,
sc->sc_addr, error));
sc->sc_valid = ENVSYS_SINVALID;
} else {
DPRINTF(3, ("%s(%s): DF success : "
"0x%02x%02x%02x%02x\n",
__func__, device_xname(sc->sc_dev),
sc->sc_data[0], sc->sc_data[1],
sc->sc_data[2], sc->sc_data[3]));
/* remember last data, when valid */
if (!(sc->sc_data[0] &
(HYTP14_RESP_CMDMODE | HYTP14_RESP_STALE))) {
memcpy(sc->sc_last, sc->sc_data,
sizeof(sc->sc_last));
sc->sc_valid = ENVSYS_SVALID;
}
}
/* send MR command to request a new measurement */
error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
sc->sc_addr, NULL, 0, buf, sizeof(buf), 0);
if (error == 0) {
DPRINTF(3, ("%s(%s): MR sent\n",
__func__, device_xname(sc->sc_dev)));
} else {
DPRINTF(2, ("%s: %s: failed read from 0x%02x - error %d\n",
device_xname(sc->sc_dev), __func__,
sc->sc_addr, error));
}
iic_release_bus(sc->sc_tag, 0);
DPRINTF(3, ("%s(%s): bus released\n",
__func__, device_xname(sc->sc_dev)));
} else {
DPRINTF(2, ("%s: %s: failed acquire i2c bus - error %d\n",
device_xname(sc->sc_dev), __func__, error));
}
}
static int
hytp14_refresh_sensor(struct hytp14_sc *sc)
{
int error;
DPRINTF(2, ("%s(%s)\n", __func__, device_xname(sc->sc_dev)));
error = iic_acquire_bus(sc->sc_tag, 0);
if (error == 0) {
/* send DF command - read last data from sensor */
error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
sc->sc_addr, NULL, 0, sc->sc_data, sizeof(sc->sc_data), 0);
if (error != 0) {
DPRINTF(2, ("%s: %s: failed read from 0x%02x - error %d\n",
device_xname(sc->sc_dev), __func__,
sc->sc_addr, error));
sc->sc_valid = ENVSYS_SINVALID;
} else {
DPRINTF(3, ("%s(%s): DF success : "
"0x%02x%02x%02x%02x\n",
__func__, device_xname(sc->sc_dev),
sc->sc_data[0], sc->sc_data[1],
sc->sc_data[2], sc->sc_data[3]));
/*
* Use old data from sc_last[] when new data
* is not yet valid (i.e. DF command came too
* quickly after the last command).
*/
if (!(sc->sc_data[0] &
(HYTP14_RESP_CMDMODE | HYTP14_RESP_STALE))) {
memcpy(sc->sc_last, sc->sc_data,
sizeof(sc->sc_last));
sc->sc_valid = ENVSYS_SVALID;
} else
memcpy(sc->sc_data, sc->sc_last,
sizeof(sc->sc_data));
}
iic_release_bus(sc->sc_tag, 0);
DPRINTF(3, ("%s(%s): bus released\n",
__func__, device_xname(sc->sc_dev)));
} else {
DPRINTF(2, ("%s: %s: failed acquire i2c bus - error %d\n",
device_xname(sc->sc_dev), __func__, error));
}
return sc->sc_valid;
}
static void
hytp14_refresh_humidity(struct hytp14_sc *sc, envsys_data_t *edata)
{
uint16_t hyg;
int status;
status = hytp14_refresh_sensor(sc);
if (status == ENVSYS_SVALID) {
hyg = (sc->sc_data[0] << 8) | sc->sc_data[1];
edata->value_cur = (1000000000 / HYTP14_HYG_SCALE) * (int32_t)HYTP14_HYG_RAWVAL(hyg);
edata->value_cur /= 10;
}
edata->state = status;
}
static void
hytp14_refresh_temp(struct hytp14_sc *sc, envsys_data_t *edata)
{
uint16_t temp;
int status;
status = hytp14_refresh_sensor(sc);
if (status == ENVSYS_SVALID) {
temp = HYTP14_TEMP_RAWVAL((sc->sc_data[2] << 8) | sc->sc_data[3]);
edata->value_cur = (HYTP14_TEMP_FACTOR * 1000000) / HYTP14_TEMP_SCALE;
edata->value_cur *= (int32_t)temp;
edata->value_cur += HYTP14_TEMP_OFFSET * 1000000 + 273150000;
}
edata->state = status;
}
static void
hytp14_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
{
struct hytp14_sc *sc;
sc = sme->sme_cookie;
hytp14_sensors[edata->sensor].refresh(sc, edata);
}
static int
sysctl_hytp14_interval(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct hytp14_sc *sc;
int32_t t;
int error;
node = *rnode;
sc = node.sysctl_data;
t = sc->sc_mrinterval;
node.sysctl_data = &t;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (t <= 0)
return EINVAL;
sc->sc_mrinterval = t;
return 0;
}
MODULE(MODULE_CLASS_DRIVER, hythygtemp, "i2cexec,sysmon_envsys");
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
hythygtemp_modcmd(modcmd_t cmd, void *opaque)
{
int error;
error = 0;
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
error = config_init_component(cfdriver_ioconf_hythygtemp,
cfattach_ioconf_hythygtemp, cfdata_ioconf_hythygtemp);
#endif
return error;
case MODULE_CMD_FINI:
#ifdef _MODULE
error = config_fini_component(cfdriver_ioconf_hythygtemp,
cfattach_ioconf_hythygtemp, cfdata_ioconf_hythygtemp);
#endif
return error;
default:
return ENOTTY;
}
}