/* $NetBSD: mpii.c,v 1.22.4.1 2020/08/09 14:14:34 martin Exp $ */
/* $OpenBSD: mpii.c,v 1.115 2018/08/14 05:22:21 jmatthew Exp $ */
/*
* Copyright (c) 2010, 2012 Mike Belopuhov
* Copyright (c) 2009 James Giannoules
* Copyright (c) 2005 - 2010 David Gwynne <dlg@openbsd.org>
* Copyright (c) 2005 - 2010 Marco Peereboom <marco@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: mpii.c,v 1.22.4.1 2020/08/09 14:14:34 martin Exp $");
#include "bio.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/device.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/dkio.h>
#include <sys/tree.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsiconf.h>
#if NBIO > 0
#include <dev/biovar.h>
#include <dev/sysmon/sysmonvar.h>
#include <sys/envsys.h>
#endif
#include <dev/pci/mpiireg.h>
// #define MPII_DEBUG
#ifdef MPII_DEBUG
#define DPRINTF(x...) do { if (mpii_debug) printf(x); } while(0)
#define DNPRINTF(n,x...) do { if (mpii_debug & (n)) printf(x); } while(0)
#define MPII_D_CMD (0x0001)
#define MPII_D_INTR (0x0002)
#define MPII_D_MISC (0x0004)
#define MPII_D_DMA (0x0008)
#define MPII_D_IOCTL (0x0010)
#define MPII_D_RW (0x0020)
#define MPII_D_MEM (0x0040)
#define MPII_D_CCB (0x0080)
#define MPII_D_PPR (0x0100)
#define MPII_D_RAID (0x0200)
#define MPII_D_EVT (0x0400)
#define MPII_D_CFG (0x0800)
#define MPII_D_MAP (0x1000)
u_int32_t mpii_debug = 0
// | MPII_D_CMD
// | MPII_D_INTR
// | MPII_D_MISC
// | MPII_D_DMA
// | MPII_D_IOCTL
// | MPII_D_RW
// | MPII_D_MEM
// | MPII_D_CCB
// | MPII_D_PPR
// | MPII_D_RAID
// | MPII_D_EVT
// | MPII_D_CFG
// | MPII_D_MAP
;
#else
#define DPRINTF(x...)
#define DNPRINTF(n,x...)
#endif
#define MPII_REQUEST_SIZE (512)
#define MPII_REQUEST_CREDIT (128)
struct mpii_dmamem {
bus_dmamap_t mdm_map;
bus_dma_segment_t mdm_seg;
size_t mdm_size;
void *mdm_kva;
};
#define MPII_DMA_MAP(_mdm) ((_mdm)->mdm_map)
#define MPII_DMA_DVA(_mdm) ((uint64_t)(_mdm)->mdm_map->dm_segs[0].ds_addr)
#define MPII_DMA_KVA(_mdm) ((_mdm)->mdm_kva)
struct mpii_softc;
struct mpii_rcb {
SIMPLEQ_ENTRY(mpii_rcb) rcb_link;
void *rcb_reply;
u_int32_t rcb_reply_dva;
};
SIMPLEQ_HEAD(mpii_rcb_list, mpii_rcb);
struct mpii_device {
int flags;
#define MPII_DF_ATTACH (0x0001)
#define MPII_DF_DETACH (0x0002)
#define MPII_DF_HIDDEN (0x0004)
#define MPII_DF_UNUSED (0x0008)
#define MPII_DF_VOLUME (0x0010)
#define MPII_DF_VOLUME_DISK (0x0020)
#define MPII_DF_HOT_SPARE (0x0040)
short slot;
short percent;
u_int16_t dev_handle;
u_int16_t enclosure;
u_int16_t expander;
u_int8_t phy_num;
u_int8_t physical_port;
};
struct mpii_ccb {
struct mpii_softc *ccb_sc;
void * ccb_cookie;
kmutex_t ccb_mtx;
kcondvar_t ccb_cv;
bus_dmamap_t ccb_dmamap;
bus_addr_t ccb_offset;
void *ccb_cmd;
bus_addr_t ccb_cmd_dva;
u_int16_t ccb_dev_handle;
u_int16_t ccb_smid;
volatile enum {
MPII_CCB_FREE,
MPII_CCB_READY,
MPII_CCB_QUEUED,
MPII_CCB_TIMEOUT
} ccb_state;
void (*ccb_done)(struct mpii_ccb *);
struct mpii_rcb *ccb_rcb;
SIMPLEQ_ENTRY(mpii_ccb) ccb_link;
};
SIMPLEQ_HEAD(mpii_ccb_list, mpii_ccb);
struct mpii_softc {
device_t sc_dev;
pci_chipset_tag_t sc_pc;
pcitag_t sc_tag;
void *sc_ih;
pci_intr_handle_t *sc_pihp;
struct scsipi_adapter sc_adapt;
struct scsipi_channel sc_chan;
device_t sc_child; /* our scsibus */
int sc_flags;
#define MPII_F_RAID (1<<1)
#define MPII_F_SAS3 (1<<2)
struct mpii_device **sc_devs;
kmutex_t sc_devs_mtx;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
bus_size_t sc_ios;
bus_dma_tag_t sc_dmat;
kmutex_t sc_req_mtx;
kmutex_t sc_rep_mtx;
ushort sc_reply_size;
ushort sc_request_size;
ushort sc_max_cmds;
ushort sc_num_reply_frames;
u_int sc_reply_free_qdepth;
u_int sc_reply_post_qdepth;
ushort sc_chain_sge;
ushort sc_max_sgl;
u_int8_t sc_ioc_event_replay;
u_int8_t sc_porttype;
u_int8_t sc_max_volumes;
u_int16_t sc_max_devices;
u_int16_t sc_vd_count;
u_int16_t sc_vd_id_low;
u_int16_t sc_pd_id_start;
int sc_ioc_number;
u_int8_t sc_vf_id;
struct mpii_ccb *sc_ccbs;
struct mpii_ccb_list sc_ccb_free;
kmutex_t sc_ccb_free_mtx;
kcondvar_t sc_ccb_free_cv;
struct mpii_ccb_list sc_ccb_tmos;
kmutex_t sc_ssb_tmomtx;
struct workqueue *sc_ssb_tmowk;
struct work sc_ssb_tmowork;
struct mpii_dmamem *sc_requests;
struct mpii_dmamem *sc_replies;
struct mpii_rcb *sc_rcbs;
struct mpii_dmamem *sc_reply_postq;
struct mpii_reply_descr *sc_reply_postq_kva;
u_int sc_reply_post_host_index;
struct mpii_dmamem *sc_reply_freeq;
u_int sc_reply_free_host_index;
kmutex_t sc_reply_free_mtx;
struct mpii_rcb_list sc_evt_sas_queue;
kmutex_t sc_evt_sas_mtx;
struct workqueue *sc_evt_sas_wq;
struct work sc_evt_sas_work;
struct mpii_rcb_list sc_evt_ack_queue;
kmutex_t sc_evt_ack_mtx;
struct workqueue *sc_evt_ack_wq;
struct work sc_evt_ack_work;
#if NBIO > 0
struct sysmon_envsys *sc_sme;
envsys_data_t *sc_sensors;
#endif
};
int mpii_match(device_t, cfdata_t, void *);
void mpii_attach(device_t, device_t, void *);
int mpii_detach(device_t, int);
void mpii_childdetached(device_t, device_t);
int mpii_rescan(device_t, const char *, const int *);
int mpii_intr(void *);
CFATTACH_DECL3_NEW(mpii, sizeof(struct mpii_softc),
mpii_match, mpii_attach, mpii_detach, NULL, mpii_rescan,
mpii_childdetached, DVF_DETACH_SHUTDOWN);
void mpii_scsipi_request(struct scsipi_channel *,
scsipi_adapter_req_t, void *);
void mpii_scsi_cmd_done(struct mpii_ccb *);
struct mpii_dmamem *
mpii_dmamem_alloc(struct mpii_softc *, size_t);
void mpii_dmamem_free(struct mpii_softc *,
struct mpii_dmamem *);
int mpii_alloc_ccbs(struct mpii_softc *);
struct mpii_ccb *mpii_get_ccb(struct mpii_softc *);
void mpii_put_ccb(struct mpii_softc *, struct mpii_ccb *);
int mpii_alloc_replies(struct mpii_softc *);
int mpii_alloc_queues(struct mpii_softc *);
void mpii_push_reply(struct mpii_softc *, struct mpii_rcb *);
void mpii_push_replies(struct mpii_softc *);
void mpii_scsi_cmd_tmo(void *);
void mpii_scsi_cmd_tmo_handler(struct work *, void *);
void mpii_scsi_cmd_tmo_done(struct mpii_ccb *);
int mpii_insert_dev(struct mpii_softc *, struct mpii_device *);
int mpii_remove_dev(struct mpii_softc *, struct mpii_device *);
struct mpii_device *
mpii_find_dev(struct mpii_softc *, u_int16_t);
void mpii_start(struct mpii_softc *, struct mpii_ccb *);
int mpii_poll(struct mpii_softc *, struct mpii_ccb *);
void mpii_poll_done(struct mpii_ccb *);
struct mpii_rcb *
mpii_reply(struct mpii_softc *, struct mpii_reply_descr *);
void mpii_wait(struct mpii_softc *, struct mpii_ccb *);
void mpii_wait_done(struct mpii_ccb *);
void mpii_init_queues(struct mpii_softc *);
int mpii_load_xs(struct mpii_ccb *);
int mpii_load_xs_sas3(struct mpii_ccb *);
u_int32_t mpii_read(struct mpii_softc *, bus_size_t);
void mpii_write(struct mpii_softc *, bus_size_t, u_int32_t);
int mpii_wait_eq(struct mpii_softc *, bus_size_t, u_int32_t,
u_int32_t);
int mpii_wait_ne(struct mpii_softc *, bus_size_t, u_int32_t,
u_int32_t);
int mpii_init(struct mpii_softc *);
int mpii_reset_soft(struct mpii_softc *);
int mpii_reset_hard(struct mpii_softc *);
int mpii_handshake_send(struct mpii_softc *, void *, size_t);
int mpii_handshake_recv_dword(struct mpii_softc *,
u_int32_t *);
int mpii_handshake_recv(struct mpii_softc *, void *, size_t);
void mpii_empty_done(struct mpii_ccb *);
int mpii_iocinit(struct mpii_softc *);
int mpii_iocfacts(struct mpii_softc *);
int mpii_portfacts(struct mpii_softc *);
int mpii_portenable(struct mpii_softc *);
int mpii_cfg_coalescing(struct mpii_softc *);
int mpii_board_info(struct mpii_softc *);
int mpii_target_map(struct mpii_softc *);
int mpii_eventnotify(struct mpii_softc *);
void mpii_eventnotify_done(struct mpii_ccb *);
void mpii_eventack(struct work *, void *);
void mpii_eventack_done(struct mpii_ccb *);
void mpii_event_process(struct mpii_softc *, struct mpii_rcb *);
void mpii_event_done(struct mpii_softc *, struct mpii_rcb *);
void mpii_event_sas(struct mpii_softc *, struct mpii_rcb *);
void mpii_event_sas_work(struct work *, void *);
void mpii_event_raid(struct mpii_softc *,
struct mpii_msg_event_reply *);
void mpii_event_discovery(struct mpii_softc *,
struct mpii_msg_event_reply *);
void mpii_sas_remove_device(struct mpii_softc *, u_int16_t);
int mpii_req_cfg_header(struct mpii_softc *, u_int8_t,
u_int8_t, u_int32_t, int, void *);
int mpii_req_cfg_page(struct mpii_softc *, u_int32_t, int,
void *, int, void *, size_t);
#if 0
int mpii_ioctl_cache(struct scsi_link *, u_long, struct dk_cache *);
#endif
#if NBIO > 0
int mpii_ioctl(device_t, u_long, void *);
int mpii_ioctl_inq(struct mpii_softc *, struct bioc_inq *);
int mpii_ioctl_vol(struct mpii_softc *, struct bioc_vol *);
int mpii_ioctl_disk(struct mpii_softc *, struct bioc_disk *);
int mpii_bio_hs(struct mpii_softc *, struct bioc_disk *, int,
int, int *);
int mpii_bio_disk(struct mpii_softc *, struct bioc_disk *,
u_int8_t);
struct mpii_device *
mpii_find_vol(struct mpii_softc *, int);
#ifndef SMALL_KERNEL
int mpii_bio_volstate(struct mpii_softc *, struct bioc_vol *);
int mpii_create_sensors(struct mpii_softc *);
void mpii_refresh_sensors(struct sysmon_envsys *, envsys_data_t *);
int mpii_destroy_sensors(struct mpii_softc *);
#endif /* SMALL_KERNEL */
#endif /* NBIO > 0 */
#define DEVNAME(s) (device_xname((s)->sc_dev))
#define dwordsof(s) (sizeof(s) / sizeof(u_int32_t))
#define mpii_read_db(s) mpii_read((s), MPII_DOORBELL)
#define mpii_write_db(s, v) mpii_write((s), MPII_DOORBELL, (v))
#define mpii_read_intr(s) mpii_read((s), MPII_INTR_STATUS)
#define mpii_write_intr(s, v) mpii_write((s), MPII_INTR_STATUS, (v))
#define mpii_reply_waiting(s) ((mpii_read_intr((s)) & MPII_INTR_STATUS_REPLY)\
== MPII_INTR_STATUS_REPLY)
#define mpii_write_reply_free(s, v) \
bus_space_write_4((s)->sc_iot, (s)->sc_ioh, \
MPII_REPLY_FREE_HOST_INDEX, (v))
#define mpii_write_reply_post(s, v) \
bus_space_write_4((s)->sc_iot, (s)->sc_ioh, \
MPII_REPLY_POST_HOST_INDEX, (v))
#define mpii_wait_db_int(s) mpii_wait_ne((s), MPII_INTR_STATUS, \
MPII_INTR_STATUS_IOC2SYSDB, 0)
#define mpii_wait_db_ack(s) mpii_wait_eq((s), MPII_INTR_STATUS, \
MPII_INTR_STATUS_SYS2IOCDB, 0)
static inline void
mpii_dvatosge(struct mpii_sge *sge, u_int64_t dva)
{
sge->sg_addr_lo = htole32(dva);
sge->sg_addr_hi = htole32(dva >> 32);
}
#define MPII_PG_EXTENDED (1<<0)
#define MPII_PG_POLL (1<<1)
#define MPII_PG_FMT "\020" "\002POLL" "\001EXTENDED"
static const struct mpii_pci_product {
pci_vendor_id_t mpii_vendor;
pci_product_id_t mpii_product;
} mpii_devices[] = {
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2004 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2008 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2108_3 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2108_4 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2108_5 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2116_1 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2116_2 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_1 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_2 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_3 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_4 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_5 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_6 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2308_1 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2308_2 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2308_3 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3004 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3008 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3108_1 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3108_2 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3108_3 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3108_4 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3408 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3416 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3508 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3508_1 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3516 },
{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3516_1 },
{ 0, 0}
};
int
mpii_match(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = aux;
const struct mpii_pci_product *mpii;
for (mpii = mpii_devices; mpii->mpii_vendor != 0; mpii++) {
if (PCI_VENDOR(pa->pa_id) == mpii->mpii_vendor &&
PCI_PRODUCT(pa->pa_id) == mpii->mpii_product)
return (1);
}
return (0);
}
void
mpii_attach(device_t parent, device_t self, void *aux)
{
struct mpii_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
pcireg_t memtype;
int r;
struct mpii_ccb *ccb;
struct scsipi_adapter *adapt = &sc->sc_adapt;
struct scsipi_channel *chan = &sc->sc_chan;
char intrbuf[PCI_INTRSTR_LEN];
const char *intrstr;
pci_aprint_devinfo(pa, NULL);
sc->sc_pc = pa->pa_pc;
sc->sc_tag = pa->pa_tag;
sc->sc_dmat = pa->pa_dmat;
sc->sc_dev = self;
mutex_init(&sc->sc_req_mtx, MUTEX_DEFAULT, IPL_BIO);
mutex_init(&sc->sc_rep_mtx, MUTEX_DEFAULT, IPL_BIO);
/* find the appropriate memory base */
for (r = PCI_MAPREG_START; r < PCI_MAPREG_END; r += sizeof(memtype)) {
memtype = pci_mapreg_type(sc->sc_pc, sc->sc_tag, r);
if ((memtype & PCI_MAPREG_TYPE_MASK) == PCI_MAPREG_TYPE_MEM)
break;
}
if (r >= PCI_MAPREG_END) {
aprint_error_dev(self,
"unable to locate system interface registers\n");
return;
}
if (pci_mapreg_map(pa, r, memtype, 0, &sc->sc_iot, &sc->sc_ioh,
NULL, &sc->sc_ios) != 0) {
aprint_error_dev(self,
"unable to map system interface registers\n");
return;
}
/* disable the expansion rom */
pci_conf_write(sc->sc_pc, sc->sc_tag, PCI_MAPREG_ROM,
pci_conf_read(sc->sc_pc, sc->sc_tag, PCI_MAPREG_ROM) &
~PCI_MAPREG_ROM_ENABLE);
/* disable interrupts */
mpii_write(sc, MPII_INTR_MASK,
MPII_INTR_MASK_RESET | MPII_INTR_MASK_REPLY |
MPII_INTR_MASK_DOORBELL);
/* hook up the interrupt */
if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) {
aprint_error_dev(self, "unable to map interrupt\n");
goto unmap;
}
intrstr = pci_intr_string(pa->pa_pc, sc->sc_pihp[0],
intrbuf, sizeof(intrbuf));
pci_intr_setattr(pa->pa_pc, &sc->sc_pihp[0], PCI_INTR_MPSAFE, true);
sc->sc_ih = pci_intr_establish_xname(pa->pa_pc, sc->sc_pihp[0], IPL_BIO,
mpii_intr, sc, device_xname(self));
if (sc->sc_ih == NULL) {
aprint_error_dev(self, "couldn't establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
return;
}
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
aprint_naive("\n");
if (mpii_iocfacts(sc) != 0) {
aprint_error_dev(self, "unable to get iocfacts\n");
goto unmap;
}
if (mpii_init(sc) != 0) {
aprint_error_dev(self, "unable to initialize ioc\n");
goto unmap;
}
if (mpii_alloc_ccbs(sc) != 0) {
/* error already printed */
goto unmap;
}
if (mpii_alloc_replies(sc) != 0) {
aprint_error_dev(self, "unable to allocated reply space\n");
goto free_ccbs;
}
if (mpii_alloc_queues(sc) != 0) {
aprint_error_dev(self, "unable to allocate reply queues\n");
goto free_replies;
}
if (mpii_iocinit(sc) != 0) {
aprint_error_dev(self, "unable to send iocinit\n");
goto free_queues;
}
if (mpii_wait_eq(sc, MPII_DOORBELL, MPII_DOORBELL_STATE,
MPII_DOORBELL_STATE_OPER) != 0) {
aprint_error_dev(self, "state: 0x%08x\n",
mpii_read_db(sc) & MPII_DOORBELL_STATE);
aprint_error_dev(self, "operational state timeout\n");
goto free_queues;
}
mpii_push_replies(sc);
mpii_init_queues(sc);
if (mpii_board_info(sc) != 0) {
aprint_error_dev(self, "unable to get manufacturing page 0\n");
goto free_queues;
}
if (mpii_portfacts(sc) != 0) {
aprint_error_dev(self, "unable to get portfacts\n");
goto free_queues;
}
if (mpii_target_map(sc) != 0) {
aprint_error_dev(self, "unable to setup target mappings\n");
goto free_queues;
}
if (mpii_cfg_coalescing(sc) != 0) {
aprint_error_dev(self, "unable to configure coalescing\n");
goto free_queues;
}
/* XXX bail on unsupported porttype? */
if ((sc->sc_porttype == MPII_PORTFACTS_PORTTYPE_SAS_PHYSICAL) ||
(sc->sc_porttype == MPII_PORTFACTS_PORTTYPE_SAS_VIRTUAL) ||
(sc->sc_porttype == MPII_PORTFACTS_PORTTYPE_TRI_MODE)) {
if (mpii_eventnotify(sc) != 0) {
aprint_error_dev(self, "unable to enable events\n");
goto free_queues;
}
}
mutex_init(&sc->sc_devs_mtx, MUTEX_DEFAULT, IPL_BIO);
sc->sc_devs = malloc(sc->sc_max_devices * sizeof(struct mpii_device *),
M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc->sc_devs == NULL) {
aprint_error_dev(self,
"unable to allocate memory for mpii_device\n");
goto free_queues;
}
if (mpii_portenable(sc) != 0) {
aprint_error_dev(self, "unable to enable port\n");
goto free_devs;
}
/* we should be good to go now, attach scsibus */
memset(adapt, 0, sizeof(*adapt));
adapt->adapt_dev = sc->sc_dev;
adapt->adapt_nchannels = 1;
adapt->adapt_openings = sc->sc_max_cmds - 4;
adapt->adapt_max_periph = adapt->adapt_openings;
adapt->adapt_request = mpii_scsipi_request;
adapt->adapt_minphys = minphys;
adapt->adapt_flags = SCSIPI_ADAPT_MPSAFE;
memset(chan, 0, sizeof(*chan));
chan->chan_adapter = adapt;
chan->chan_bustype = &scsi_sas_bustype;
chan->chan_channel = 0;
chan->chan_flags = 0;
chan->chan_nluns = 8;
chan->chan_ntargets = sc->sc_max_devices;
chan->chan_id = -1;
mpii_rescan(self, "scsi", NULL);
/* enable interrupts */
mpii_write(sc, MPII_INTR_MASK, MPII_INTR_MASK_DOORBELL
| MPII_INTR_MASK_RESET);
#if NBIO > 0
if (ISSET(sc->sc_flags, MPII_F_RAID)) {
if (bio_register(sc->sc_dev, mpii_ioctl) != 0)
panic("%s: controller registration failed",
DEVNAME(sc));
if (mpii_create_sensors(sc) != 0)
aprint_error_dev(self, "unable to create sensors\n");
}
#endif
return;
free_devs:
free(sc->sc_devs, M_DEVBUF);
sc->sc_devs = NULL;
free_queues:
bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_freeq),
0, sc->sc_reply_free_qdepth * 4, BUS_DMASYNC_POSTREAD);
mpii_dmamem_free(sc, sc->sc_reply_freeq);
bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_postq),
0, sc->sc_reply_post_qdepth * 8, BUS_DMASYNC_POSTREAD);
mpii_dmamem_free(sc, sc->sc_reply_postq);
free_replies:
bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_replies),
0, PAGE_SIZE, BUS_DMASYNC_POSTREAD);
mpii_dmamem_free(sc, sc->sc_replies);
free_ccbs:
while ((ccb = mpii_get_ccb(sc)) != NULL)
bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
mpii_dmamem_free(sc, sc->sc_requests);
free(sc->sc_ccbs, M_DEVBUF);
unmap:
bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
sc->sc_ios = 0;
}
int
mpii_detach(device_t self, int flags)
{
struct mpii_softc *sc = device_private(self);
int error;
struct mpii_ccb *ccb;
if ((error = config_detach_children(sc->sc_dev, flags)) != 0)
return error;
#if NBIO > 0
mpii_destroy_sensors(sc);
bio_unregister(sc->sc_dev);
#endif /* NBIO > 0 */
if (sc->sc_ih != NULL) {
pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
sc->sc_ih = NULL;
}
if (sc->sc_ios != 0) {
bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios);
free(sc->sc_devs, M_DEVBUF);
sc->sc_devs = NULL;
bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_freeq),
0, sc->sc_reply_free_qdepth * 4, BUS_DMASYNC_POSTREAD);
mpii_dmamem_free(sc, sc->sc_reply_freeq);
bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_postq),
0, sc->sc_reply_post_qdepth * 8, BUS_DMASYNC_POSTREAD);
mpii_dmamem_free(sc, sc->sc_reply_postq);
bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_replies),
0, PAGE_SIZE, BUS_DMASYNC_POSTREAD);
mpii_dmamem_free(sc, sc->sc_replies);
while ((ccb = mpii_get_ccb(sc)) != NULL)
bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
mpii_dmamem_free(sc, sc->sc_requests);
free(sc->sc_ccbs, M_DEVBUF);
sc->sc_ios = 0;
}
return (0);
}
int
mpii_rescan(device_t self, const char *ifattr, const int *locators)
{
struct mpii_softc *sc = device_private(self);
if (sc->sc_child != NULL)
return 0;
sc->sc_child = config_found_sm_loc(self, ifattr, locators, &sc->sc_chan,
scsiprint, NULL);
return 0;
}
void
mpii_childdetached(device_t self, device_t child)
{
struct mpii_softc *sc = device_private(self);
KASSERT(self == sc->sc_dev);
KASSERT(child == sc->sc_child);
if (child == sc->sc_child)
sc->sc_child = NULL;
}
int
mpii_intr(void *arg)
{
struct mpii_rcb_list evts = SIMPLEQ_HEAD_INITIALIZER(evts);
struct mpii_ccb_list ccbs = SIMPLEQ_HEAD_INITIALIZER(ccbs);
struct mpii_softc *sc = arg;
struct mpii_reply_descr *postq = sc->sc_reply_postq_kva, *rdp;
struct mpii_ccb *ccb;
struct mpii_rcb *rcb;
int smid;
u_int idx;
int rv = 0;
mutex_enter(&sc->sc_rep_mtx);
bus_dmamap_sync(sc->sc_dmat,
MPII_DMA_MAP(sc->sc_reply_postq),
0, sc->sc_reply_post_qdepth * sizeof(*rdp),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
idx = sc->sc_reply_post_host_index;
for (;;) {
rdp = &postq[idx];
if ((rdp->reply_flags & MPII_REPLY_DESCR_TYPE_MASK) ==
MPII_REPLY_DESCR_UNUSED)
break;
if (rdp->data == 0xffffffff) {
/*
* ioc is still writing to the reply post queue
* race condition - bail!
*/
break;
}
smid = le16toh(rdp->smid);
rcb = mpii_reply(sc, rdp);
if (smid) {
ccb = &sc->sc_ccbs[smid - 1];
ccb->ccb_state = MPII_CCB_READY;
ccb->ccb_rcb = rcb;
SIMPLEQ_INSERT_TAIL(&ccbs, ccb, ccb_link);
} else
SIMPLEQ_INSERT_TAIL(&evts, rcb, rcb_link);
if (++idx >= sc->sc_reply_post_qdepth)
idx = 0;
rv = 1;
}
bus_dmamap_sync(sc->sc_dmat,
MPII_DMA_MAP(sc->sc_reply_postq),
0, sc->sc_reply_post_qdepth * sizeof(*rdp),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (rv)
mpii_write_reply_post(sc, sc->sc_reply_post_host_index = idx);
mutex_exit(&sc->sc_rep_mtx);
if (rv == 0)
return (0);
while ((ccb = SIMPLEQ_FIRST(&ccbs)) != NULL) {
SIMPLEQ_REMOVE_HEAD(&ccbs, ccb_link);
ccb->ccb_done(ccb);
}
while ((rcb = SIMPLEQ_FIRST(&evts)) != NULL) {
SIMPLEQ_REMOVE_HEAD(&evts, rcb_link);
mpii_event_process(sc, rcb);
}
return (1);
}
int
mpii_load_xs_sas3(struct mpii_ccb *ccb)
{
struct mpii_softc *sc = ccb->ccb_sc;
struct scsipi_xfer *xs = ccb->ccb_cookie;
struct mpii_msg_scsi_io *io = ccb->ccb_cmd;
struct mpii_ieee_sge *csge, *nsge, *sge;
bus_dmamap_t dmap = ccb->ccb_dmamap;
int i, error;
/* Request frame structure is described in the mpii_iocfacts */
nsge = (struct mpii_ieee_sge *)(io + 1);
csge = nsge + sc->sc_chain_sge;
/* zero length transfer still requires an SGE */
if (xs->datalen == 0) {
nsge->sg_flags = MPII_IEEE_SGE_END_OF_LIST;
return (0);
}
error = bus_dmamap_load(sc->sc_dmat, dmap, xs->data, xs->datalen, NULL,
(xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK);
if (error) {
printf("%s: error %d loading dmamap\n", DEVNAME(sc), error);
return (1);
}
sge = nsge;
for (i = 0; i < dmap->dm_nsegs; i++, nsge++) {
if (nsge == csge) {
nsge++;
/* offset to the chain sge from the beginning */
io->chain_offset = ((uintptr_t)csge - (uintptr_t)io) / 4;
csge->sg_flags = MPII_IEEE_SGE_CHAIN_ELEMENT |
MPII_IEEE_SGE_ADDR_SYSTEM;
/* address of the next sge */
csge->sg_addr = htole64(ccb->ccb_cmd_dva +
((uintptr_t)nsge - (uintptr_t)io));
csge->sg_len = htole32((dmap->dm_nsegs - i) *
sizeof(*sge));
}
sge = nsge;
sge->sg_flags = MPII_IEEE_SGE_ADDR_SYSTEM;
sge->sg_len = htole32(dmap->dm_segs[i].ds_len);
sge->sg_addr = htole64(dmap->dm_segs[i].ds_addr);
}
/* terminate list */
sge->sg_flags |= MPII_IEEE_SGE_END_OF_LIST;
bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
(xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_PREREAD :
BUS_DMASYNC_PREWRITE);
return (0);
}
int
mpii_load_xs(struct mpii_ccb *ccb)
{
struct mpii_softc *sc = ccb->ccb_sc;
struct scsipi_xfer *xs = ccb->ccb_cookie;
struct mpii_msg_scsi_io *io = ccb->ccb_cmd;
struct mpii_sge *csge, *nsge, *sge;
bus_dmamap_t dmap = ccb->ccb_dmamap;
u_int32_t flags;
u_int16_t len;
int i, error;
/* Request frame structure is described in the mpii_iocfacts */
nsge = (struct mpii_sge *)(io + 1);
csge = nsge + sc->sc_chain_sge;
/* zero length transfer still requires an SGE */
if (xs->datalen == 0) {
nsge->sg_hdr = htole32(MPII_SGE_FL_TYPE_SIMPLE |
MPII_SGE_FL_LAST | MPII_SGE_FL_EOB | MPII_SGE_FL_EOL);
return (0);
}
error = bus_dmamap_load(sc->sc_dmat, dmap, xs->data, xs->datalen, NULL,
(xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK);
if (error) {
printf("%s: error %d loading dmamap\n", DEVNAME(sc), error);
return (1);
}
/* safe default starting flags */
flags = MPII_SGE_FL_TYPE_SIMPLE | MPII_SGE_FL_SIZE_64;
if (xs->xs_control & XS_CTL_DATA_OUT)
flags |= MPII_SGE_FL_DIR_OUT;
sge = nsge;
for (i = 0; i < dmap->dm_nsegs; i++, nsge++) {
if (nsge == csge) {
nsge++;
/* offset to the chain sge from the beginning */
io->chain_offset = ((uintptr_t)csge - (uintptr_t)io) / 4;
/* length of the sgl segment we're pointing to */
len = (dmap->dm_nsegs - i) * sizeof(*sge);
csge->sg_hdr = htole32(MPII_SGE_FL_TYPE_CHAIN |
MPII_SGE_FL_SIZE_64 | len);
/* address of the next sge */
mpii_dvatosge(csge, ccb->ccb_cmd_dva +
((uintptr_t)nsge - (uintptr_t)io));
}
sge = nsge;
sge->sg_hdr = htole32(flags | dmap->dm_segs[i].ds_len);
mpii_dvatosge(sge, dmap->dm_segs[i].ds_addr);
}
/* terminate list */
sge->sg_hdr |= htole32(MPII_SGE_FL_LAST | MPII_SGE_FL_EOB |
MPII_SGE_FL_EOL);
bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
(xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_PREREAD :
BUS_DMASYNC_PREWRITE);
return (0);
}
u_int32_t
mpii_read(struct mpii_softc *sc, bus_size_t r)
{
u_int32_t rv;
bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
BUS_SPACE_BARRIER_READ);
rv = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r);
DNPRINTF(MPII_D_RW, "%s: mpii_read %#lx %#x\n", DEVNAME(sc), r, rv);
return (rv);
}
void
mpii_write(struct mpii_softc *sc, bus_size_t r, u_int32_t v)
{
DNPRINTF(MPII_D_RW, "%s: mpii_write %#lx %#x\n", DEVNAME(sc), r, v);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v);
bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
BUS_SPACE_BARRIER_WRITE);
}
int
mpii_wait_eq(struct mpii_softc *sc, bus_size_t r, u_int32_t mask,
u_int32_t target)
{
int i;
DNPRINTF(MPII_D_RW, "%s: mpii_wait_eq %#lx %#x %#x\n", DEVNAME(sc), r,
mask, target);
for (i = 0; i < 15000; i++) {
if ((mpii_read(sc, r) & mask) == target)
return (0);
delay(1000);
}
return (1);
}
int
mpii_wait_ne(struct mpii_softc *sc, bus_size_t r, u_int32_t mask,
u_int32_t target)
{
int i;
DNPRINTF(MPII_D_RW, "%s: mpii_wait_ne %#lx %#x %#x\n", DEVNAME(sc), r,
mask, target);
for (i = 0; i < 15000; i++) {
if ((mpii_read(sc, r) & mask) != target)
return (0);
delay(1000);
}
return (1);
}
int
mpii_init(struct mpii_softc *sc)
{
u_int32_t db;
int i;
/* spin until the ioc leaves the reset state */
if (mpii_wait_ne(sc, MPII_DOORBELL, MPII_DOORBELL_STATE,
MPII_DOORBELL_STATE_RESET) != 0) {
DNPRINTF(MPII_D_MISC, "%s: mpii_init timeout waiting to leave "
"reset state\n", DEVNAME(sc));
return (1);
}
/* check current ownership */
db = mpii_read_db(sc);
if ((db & MPII_DOORBELL_WHOINIT) == MPII_DOORBELL_WHOINIT_PCIPEER) {
DNPRINTF(MPII_D_MISC, "%s: mpii_init initialised by pci peer\n",
DEVNAME(sc));
return (0);
}
for (i = 0; i < 5; i++) {
switch (db & MPII_DOORBELL_STATE) {
case MPII_DOORBELL_STATE_READY:
DNPRINTF(MPII_D_MISC, "%s: mpii_init ioc is ready\n",
DEVNAME(sc));
return (0);
case MPII_DOORBELL_STATE_OPER:
DNPRINTF(MPII_D_MISC, "%s: mpii_init ioc is oper\n",
DEVNAME(sc));
if (sc->sc_ioc_event_replay)
mpii_reset_soft(sc);
else
mpii_reset_hard(sc);
break;
case MPII_DOORBELL_STATE_FAULT:
DNPRINTF(MPII_D_MISC, "%s: mpii_init ioc is being "
"reset hard\n" , DEVNAME(sc));
mpii_reset_hard(sc);
break;
case MPII_DOORBELL_STATE_RESET:
DNPRINTF(MPII_D_MISC, "%s: mpii_init waiting to come "
"out of reset\n", DEVNAME(sc));
if (mpii_wait_ne(sc, MPII_DOORBELL, MPII_DOORBELL_STATE,
MPII_DOORBELL_STATE_RESET) != 0)
return (1);
break;
}
db = mpii_read_db(sc);
}
return (1);
}
int
mpii_reset_soft(struct mpii_softc *sc)
{
DNPRINTF(MPII_D_MISC, "%s: mpii_reset_soft\n", DEVNAME(sc));
if (mpii_read_db(sc) & MPII_DOORBELL_INUSE) {
return (1);
}
mpii_write_db(sc,
MPII_DOORBELL_FUNCTION(MPII_FUNCTION_IOC_MESSAGE_UNIT_RESET));
/* XXX LSI waits 15 sec */
if (mpii_wait_db_ack(sc) != 0)
return (1);
/* XXX LSI waits 15 sec */
if (mpii_wait_eq(sc, MPII_DOORBELL, MPII_DOORBELL_STATE,
MPII_DOORBELL_STATE_READY) != 0)
return (1);
/* XXX wait for Sys2IOCDB bit to clear in HIS?? */
return (0);
}
int
mpii_reset_hard(struct mpii_softc *sc)
{
u_int16_t i;
DNPRINTF(MPII_D_MISC, "%s: mpii_reset_hard\n", DEVNAME(sc));
mpii_write_intr(sc, 0);
/* enable diagnostic register */
mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_FLUSH);
mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_1);
mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_2);
mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_3);
mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_4);
mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_5);
mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_6);
delay(100);
if ((mpii_read(sc, MPII_HOSTDIAG) & MPII_HOSTDIAG_DWRE) == 0) {
DNPRINTF(MPII_D_MISC, "%s: mpii_reset_hard failure to enable "
"diagnostic read/write\n", DEVNAME(sc));
return(1);
}
/* reset ioc */
mpii_write(sc, MPII_HOSTDIAG, MPII_HOSTDIAG_RESET_ADAPTER);
/* 240 milliseconds */
delay(240000);
/* XXX this whole function should be more robust */
/* XXX read the host diagnostic reg until reset adapter bit clears ? */
for (i = 0; i < 30000; i++) {
if ((mpii_read(sc, MPII_HOSTDIAG) &
MPII_HOSTDIAG_RESET_ADAPTER) == 0)
break;
delay(10000);
}
/* disable diagnostic register */
mpii_write(sc, MPII_WRITESEQ, 0xff);
/* XXX what else? */
DNPRINTF(MPII_D_MISC, "%s: done with mpii_reset_hard\n", DEVNAME(sc));
return(0);
}
int
mpii_handshake_send(struct mpii_softc *sc, void *buf, size_t dwords)
{
u_int32_t *query = buf;
int i;
/* make sure the doorbell is not in use. */
if (mpii_read_db(sc) & MPII_DOORBELL_INUSE)
return (1);
/* clear pending doorbell interrupts */
if (mpii_read_intr(sc) & MPII_INTR_STATUS_IOC2SYSDB)
mpii_write_intr(sc, 0);
/*
* first write the doorbell with the handshake function and the
* dword count.
*/
mpii_write_db(sc, MPII_DOORBELL_FUNCTION(MPII_FUNCTION_HANDSHAKE) |
MPII_DOORBELL_DWORDS(dwords));
/*
* the doorbell used bit will be set because a doorbell function has
* started. wait for the interrupt and then ack it.
*/
if (mpii_wait_db_int(sc) != 0)
return (1);
mpii_write_intr(sc, 0);
/* poll for the acknowledgement. */
if (mpii_wait_db_ack(sc) != 0)
return (1);
/* write the query through the doorbell. */
for (i = 0; i < dwords; i++) {
mpii_write_db(sc, htole32(query[i]));
if (mpii_wait_db_ack(sc) != 0)
return (1);
}
return (0);
}
int
mpii_handshake_recv_dword(struct mpii_softc *sc, u_int32_t *dword)
{
u_int16_t *words = (u_int16_t *)dword;
int i;
for (i = 0; i < 2; i++) {
if (mpii_wait_db_int(sc) != 0)
return (1);
words[i] = le16toh(mpii_read_db(sc) & MPII_DOORBELL_DATA_MASK);
mpii_write_intr(sc, 0);
}
return (0);
}
int
mpii_handshake_recv(struct mpii_softc *sc, void *buf, size_t dwords)
{
struct mpii_msg_reply *reply = buf;
u_int32_t *dbuf = buf, dummy;
int i;
/* get the first dword so we can read the length out of the header. */
if (mpii_handshake_recv_dword(sc, &dbuf[0]) != 0)
return (1);
DNPRINTF(MPII_D_CMD, "%s: mpii_handshake_recv dwords: %lu reply: %d\n",
DEVNAME(sc), dwords, reply->msg_length);
/*
* the total length, in dwords, is in the message length field of the
* reply header.
*/
for (i = 1; i < MIN(dwords, reply->msg_length); i++) {
if (mpii_handshake_recv_dword(sc, &dbuf[i]) != 0)
return (1);
}
/* if there's extra stuff to come off the ioc, discard it */
while (i++ < reply->msg_length) {
if (mpii_handshake_recv_dword(sc, &dummy) != 0)
return (1);
DNPRINTF(MPII_D_CMD, "%s: mpii_handshake_recv dummy read: "
"0x%08x\n", DEVNAME(sc), dummy);
}
/* wait for the doorbell used bit to be reset and clear the intr */
if (mpii_wait_db_int(sc) != 0)
return (1);
if (mpii_wait_eq(sc, MPII_DOORBELL, MPII_DOORBELL_INUSE, 0) != 0)
return (1);
mpii_write_intr(sc, 0);
return (0);
}
void
mpii_empty_done(struct mpii_ccb *ccb)
{
/* nothing to do */
}
int
mpii_iocfacts(struct mpii_softc *sc)
{
struct mpii_msg_iocfacts_request ifq;
struct mpii_msg_iocfacts_reply ifp;
int irs;
int sge_size;
u_int qdepth;
DNPRINTF(MPII_D_MISC, "%s: mpii_iocfacts\n", DEVNAME(sc));
memset(&ifq, 0, sizeof(ifq));
memset(&ifp, 0, sizeof(ifp));
ifq.function = MPII_FUNCTION_IOC_FACTS;
if (mpii_handshake_send(sc, &ifq, dwordsof(ifq)) != 0) {
DNPRINTF(MPII_D_MISC, "%s: mpii_iocfacts send failed\n",
DEVNAME(sc));
return (1);
}
if (mpii_handshake_recv(sc, &ifp, dwordsof(ifp)) != 0) {
DNPRINTF(MPII_D_MISC, "%s: mpii_iocfacts recv failed\n",
DEVNAME(sc));
return (1);
}
sc->sc_ioc_number = ifp.ioc_number;
sc->sc_vf_id = ifp.vf_id;
sc->sc_max_volumes = ifp.max_volumes;
sc->sc_max_devices = ifp.max_volumes + le16toh(ifp.max_targets);
if (ISSET(le32toh(ifp.ioc_capabilities),
MPII_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
SET(sc->sc_flags, MPII_F_RAID);
if (ISSET(le32toh(ifp.ioc_capabilities),
MPII_IOCFACTS_CAPABILITY_EVENT_REPLAY))
sc->sc_ioc_event_replay = 1;
sc->sc_max_cmds = MIN(le16toh(ifp.request_credit),
MPII_REQUEST_CREDIT);
/* SAS3 and 3.5 controllers have different sgl layouts */
if (ifp.msg_version_maj == 2 && ((ifp.msg_version_min == 5)
|| (ifp.msg_version_min == 6)))
SET(sc->sc_flags, MPII_F_SAS3);
/*
* The host driver must ensure that there is at least one
* unused entry in the Reply Free Queue. One way to ensure
* that this requirement is met is to never allocate a number
* of reply frames that is a multiple of 16.
*/
sc->sc_num_reply_frames = sc->sc_max_cmds + 32;
if (!(sc->sc_num_reply_frames % 16))
sc->sc_num_reply_frames--;
/* must be multiple of 16 */
sc->sc_reply_post_qdepth = sc->sc_max_cmds +
sc->sc_num_reply_frames;
sc->sc_reply_post_qdepth += 16 - (sc->sc_reply_post_qdepth % 16);
qdepth = le16toh(ifp.max_reply_descriptor_post_queue_depth);
if (sc->sc_reply_post_qdepth > qdepth) {
sc->sc_reply_post_qdepth = qdepth;
if (sc->sc_reply_post_qdepth < 16) {
printf("%s: RDPQ is too shallow\n", DEVNAME(sc));
return (1);
}
sc->sc_max_cmds = sc->sc_reply_post_qdepth / 2 - 4;
sc->sc_num_reply_frames = sc->sc_max_cmds + 4;
}
sc->sc_reply_free_qdepth = sc->sc_num_reply_frames +
16 - (sc->sc_num_reply_frames % 16);
/*
* Our request frame for an I/O operation looks like this:
*
* +-------------------+ -.
* | mpii_msg_scsi_io | |
* +-------------------| |
* | mpii_sge | |
* + - - - - - - - - - + |
* | ... | > ioc_request_frame_size
* + - - - - - - - - - + |
* | mpii_sge (tail) | |
* + - - - - - - - - - + |
* | mpii_sge (csge) | | --.
* + - - - - - - - - - + -' | chain sge points to the next sge
* | mpii_sge |<-----'
* + - - - - - - - - - +
* | ... |
* + - - - - - - - - - +
* | mpii_sge (tail) |
* +-------------------+
* | |
* ~~~~~~~~~~~~~~~~~~~~~
* | |
* +-------------------+ <- sc_request_size - sizeof(scsi_sense_data)
* | scsi_sense_data |
* +-------------------+
*/
/* both sizes are in 32-bit words */
sc->sc_reply_size = ifp.reply_frame_size * 4;
irs = le16toh(ifp.ioc_request_frame_size) * 4;
sc->sc_request_size = MPII_REQUEST_SIZE;
/* make sure we have enough space for scsi sense data */
if (irs > sc->sc_request_size) {
sc->sc_request_size = irs + sizeof(struct scsi_sense_data);
sc->sc_request_size += 16 - (sc->sc_request_size % 16);
}
if (ISSET(sc->sc_flags, MPII_F_SAS3)) {
sge_size = sizeof(struct mpii_ieee_sge);
} else {
sge_size = sizeof(struct mpii_sge);
}
/* offset to the chain sge */
sc->sc_chain_sge = (irs - sizeof(struct mpii_msg_scsi_io)) /
sge_size - 1;
/*
* A number of simple scatter-gather elements we can fit into the
* request buffer after the I/O command minus the chain element.
*/
sc->sc_max_sgl = (sc->sc_request_size -
sizeof(struct mpii_msg_scsi_io) - sizeof(struct scsi_sense_data)) /
sge_size - 1;
return (0);
}
int
mpii_iocinit(struct mpii_softc *sc)
{
struct mpii_msg_iocinit_request iiq;
struct mpii_msg_iocinit_reply iip;
DNPRINTF(MPII_D_MISC, "%s: mpii_iocinit\n", DEVNAME(sc));
memset(&iiq, 0, sizeof(iiq));
memset(&iip, 0, sizeof(iip));
iiq.function = MPII_FUNCTION_IOC_INIT;
iiq.whoinit = MPII_WHOINIT_HOST_DRIVER;
/* XXX JPG do something about vf_id */
iiq.vf_id = 0;
iiq.msg_version_maj = 0x02;
iiq.msg_version_min = 0x00;
/* XXX JPG ensure compliance with some level and hard-code? */
iiq.hdr_version_unit = 0x00;
iiq.hdr_version_dev = 0x00;
iiq.system_request_frame_size = htole16(sc->sc_request_size / 4);
iiq.reply_descriptor_post_queue_depth =
htole16(sc->sc_reply_post_qdepth);
iiq.reply_free_queue_depth = htole16(sc->sc_reply_free_qdepth);
iiq.sense_buffer_address_high =
htole32(MPII_DMA_DVA(sc->sc_requests) >> 32);
iiq.system_reply_address_high =
htole32(MPII_DMA_DVA(sc->sc_replies) >> 32);
iiq.system_request_frame_base_address_lo =
htole32(MPII_DMA_DVA(sc->sc_requests));
iiq.system_request_frame_base_address_hi =
htole32(MPII_DMA_DVA(sc->sc_requests) >> 32);
iiq.reply_descriptor_post_queue_address_lo =
htole32(MPII_DMA_DVA(sc->sc_reply_postq));
iiq.reply_descriptor_post_queue_address_hi =
htole32(MPII_DMA_DVA(sc->sc_reply_postq) >> 32);
iiq.reply_free_queue_address_lo =
htole32(MPII_DMA_DVA(sc->sc_reply_freeq));
iiq.reply_free_queue_address_hi =
htole32(MPII_DMA_DVA(sc->sc_reply_freeq) >> 32);
if (mpii_handshake_send(sc, &iiq, dwordsof(iiq)) != 0) {
DNPRINTF(MPII_D_MISC, "%s: mpii_iocinit send failed\n",
DEVNAME(sc));
return (1);
}
if (mpii_handshake_recv(sc, &iip, dwordsof(iip)) != 0) {
DNPRINTF(MPII_D_MISC, "%s: mpii_iocinit recv failed\n",
DEVNAME(sc));
return (1);
}
DNPRINTF(MPII_D_MISC, "%s: function: 0x%02x msg_length: %d "
"whoinit: 0x%02x\n", DEVNAME(sc), iip.function,
iip.msg_length, iip.whoinit);
DNPRINTF(MPII_D_MISC, "%s: msg_flags: 0x%02x\n", DEVNAME(sc),
iip.msg_flags);
DNPRINTF(MPII_D_MISC, "%s: vf_id: 0x%02x vp_id: 0x%02x\n", DEVNAME(sc),
iip.vf_id, iip.vp_id);
DNPRINTF(MPII_D_MISC, "%s: ioc_status: 0x%04x\n", DEVNAME(sc),
le16toh(iip.ioc_status));
DNPRINTF(MPII_D_MISC, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc),
le32toh(iip.ioc_loginfo));
if (le16toh(iip.ioc_status) != MPII_IOCSTATUS_SUCCESS ||
le32toh(iip.ioc_loginfo))
return (1);
return (0);
}
void
mpii_push_reply(struct mpii_softc *sc, struct mpii_rcb *rcb)
{
u_int32_t *rfp;
u_int idx;
if (rcb == NULL)
return;
mutex_enter(&sc->sc_reply_free_mtx);
idx = sc->sc_reply_free_host_index;
rfp = MPII_DMA_KVA(sc->sc_reply_freeq);
rfp[idx] = htole32(rcb->rcb_reply_dva);
if (++idx >= sc->sc_reply_free_qdepth)
idx = 0;
mpii_write_reply_free(sc, sc->sc_reply_free_host_index = idx);
mutex_exit(&sc->sc_reply_free_mtx);
}
int
mpii_portfacts(struct mpii_softc *sc)
{
struct mpii_msg_portfacts_request *pfq;
struct mpii_msg_portfacts_reply *pfp;
struct mpii_ccb *ccb;
int rv = 1;
DNPRINTF(MPII_D_MISC, "%s: mpii_portfacts\n", DEVNAME(sc));
ccb = mpii_get_ccb(sc);
if (ccb == NULL) {
DNPRINTF(MPII_D_MISC, "%s: mpii_portfacts mpii_get_ccb fail\n",
DEVNAME(sc));
return (rv);
}
ccb->ccb_done = mpii_empty_done;
pfq = ccb->ccb_cmd;
memset(pfq, 0, sizeof(*pfq));
pfq->function = MPII_FUNCTION_PORT_FACTS;
pfq->chain_offset = 0;
pfq->msg_flags = 0;
pfq->port_number = 0;
pfq->vp_id = 0;
pfq->vf_id = 0;
if (mpii_poll(sc, ccb) != 0) {
DNPRINTF(MPII_D_MISC, "%s: mpii_portfacts poll\n",
DEVNAME(sc));
goto err;
}
if (ccb->ccb_rcb == NULL) {
DNPRINTF(MPII_D_MISC, "%s: empty portfacts reply\n",
DEVNAME(sc));
goto err;
}
pfp = ccb->ccb_rcb->rcb_reply;
sc->sc_porttype = pfp->port_type;
mpii_push_reply(sc, ccb->ccb_rcb);
rv = 0;
err:
mpii_put_ccb(sc, ccb);
return (rv);
}
void
mpii_eventack(struct work *wk, void * cookie)
{
struct mpii_softc *sc = cookie;
struct mpii_ccb *ccb;
struct mpii_rcb *rcb, *next;
struct mpii_msg_event_reply *enp;
struct mpii_msg_eventack_request *eaq;
mutex_enter(&sc->sc_evt_ack_mtx);
next = SIMPLEQ_FIRST(&sc->sc_evt_ack_queue);
SIMPLEQ_INIT(&sc->sc_evt_ack_queue);
mutex_exit(&sc->sc_evt_ack_mtx);
while (next != NULL) {
rcb = next;
next = SIMPLEQ_NEXT(rcb, rcb_link);
enp = (struct mpii_msg_event_reply *)rcb->rcb_reply;
ccb = mpii_get_ccb(sc);
ccb->ccb_done = mpii_eventack_done;
eaq = ccb->ccb_cmd;
eaq->function = MPII_FUNCTION_EVENT_ACK;
eaq->event = enp->event;
eaq->event_context = enp->event_context;
mpii_push_reply(sc, rcb);
mpii_start(sc, ccb);
}
}
void
mpii_eventack_done(struct mpii_ccb *ccb)
{
struct mpii_softc *sc = ccb->ccb_sc;
DNPRINTF(MPII_D_EVT, "%s: event ack done\n", DEVNAME(sc));
mpii_push_reply(sc, ccb->ccb_rcb);
mpii_put_ccb(sc, ccb);
}
int
mpii_portenable(struct mpii_softc *sc)
{
struct mpii_msg_portenable_request *peq;
struct mpii_ccb *ccb;
DNPRINTF(MPII_D_MISC, "%s: mpii_portenable\n", DEVNAME(sc));
ccb = mpii_get_ccb(sc);
if (ccb == NULL) {
DNPRINTF(MPII_D_MISC, "%s: mpii_portenable ccb_get\n",
DEVNAME(sc));
return (1);
}
ccb->ccb_done = mpii_empty_done;
peq = ccb->ccb_cmd;
peq->function = MPII_FUNCTION_PORT_ENABLE;
peq->vf_id = sc->sc_vf_id;
if (mpii_poll(sc, ccb) != 0) {
DNPRINTF(MPII_D_MISC, "%s: mpii_portenable poll\n",
DEVNAME(sc));
return (1);
}
if (ccb->ccb_rcb == NULL) {
DNPRINTF(MPII_D_MISC, "%s: empty portenable reply\n",
DEVNAME(sc));
return (1);
}
mpii_push_reply(sc, ccb->ccb_rcb);
mpii_put_ccb(sc, ccb);
return (0);
}
int
mpii_cfg_coalescing(struct mpii_softc *sc)
{
struct mpii_cfg_hdr hdr;
struct mpii_cfg_ioc_pg1 ipg;
hdr.page_version = 0;
hdr.page_length = sizeof(ipg) / 4;
hdr.page_number = 1;
hdr.page_type = MPII_CONFIG_REQ_PAGE_TYPE_IOC;
memset(&ipg, 0, sizeof(ipg));
if (mpii_req_cfg_page(sc, 0, MPII_PG_POLL, &hdr, 1, &ipg,
sizeof(ipg)) != 0) {
DNPRINTF(MPII_D_MISC, "%s: unable to fetch IOC page 1\n"
"page 1\n", DEVNAME(sc));
return (1);
}
if (!ISSET(le32toh(ipg.flags), MPII_CFG_IOC_1_REPLY_COALESCING))
return (0);
/* Disable coalescing */
CLR(ipg.flags, htole32(MPII_CFG_IOC_1_REPLY_COALESCING));
if (mpii_req_cfg_page(sc, 0, MPII_PG_POLL, &hdr, 0, &ipg,
sizeof(ipg)) != 0) {
DNPRINTF(MPII_D_MISC, "%s: unable to clear coalescing\n",
DEVNAME(sc));
return (1);
}
return (0);
}
#define MPII_EVENT_MASKALL(enq) do { \
enq->event_masks[0] = 0xffffffff; \
enq->event_masks[1] = 0xffffffff; \
enq->event_masks[2] = 0xffffffff; \
enq->event_masks[3] = 0xffffffff; \
} while (0)
#define MPII_EVENT_UNMASK(enq, evt) do { \
enq->event_masks[evt / 32] &= \
htole32(~(1 << (evt % 32))); \
} while (0)
int
mpii_eventnotify(struct mpii_softc *sc)
{
struct mpii_msg_event_request *enq;
struct mpii_ccb *ccb;
char wkname[15];
ccb = mpii_get_ccb(sc);
if (ccb == NULL) {
DNPRINTF(MPII_D_MISC, "%s: mpii_eventnotify ccb_get\n",
DEVNAME(sc));
return (1);
}
SIMPLEQ_INIT(&sc->sc_evt_sas_queue);
mutex_init(&sc->sc_evt_sas_mtx, MUTEX_DEFAULT, IPL_BIO);
snprintf(wkname, sizeof(wkname), "%ssas", DEVNAME(sc));
if (workqueue_create(&sc->sc_evt_sas_wq, wkname,
mpii_event_sas_work, sc, PRI_NONE, IPL_BIO, WQ_MPSAFE) != 0) {
mpii_put_ccb(sc, ccb);
aprint_error_dev(sc->sc_dev,
"can't create %s workqueue\n", wkname);
return 1;
}
SIMPLEQ_INIT(&sc->sc_evt_ack_queue);
mutex_init(&sc->sc_evt_ack_mtx, MUTEX_DEFAULT, IPL_BIO);
snprintf(wkname, sizeof(wkname), "%sevt", DEVNAME(sc));
if (workqueue_create(&sc->sc_evt_ack_wq, wkname,
mpii_eventack, sc, PRI_NONE, IPL_BIO, WQ_MPSAFE) != 0) {
mpii_put_ccb(sc, ccb);
aprint_error_dev(sc->sc_dev,
"can't create %s workqueue\n", wkname);
return 1;
}
ccb->ccb_done = mpii_eventnotify_done;
enq = ccb->ccb_cmd;
enq->function = MPII_FUNCTION_EVENT_NOTIFICATION;
/*
* Enable reporting of the following events:
*
* MPII_EVENT_SAS_DISCOVERY
* MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST
* MPII_EVENT_SAS_DEVICE_STATUS_CHANGE
* MPII_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE
* MPII_EVENT_IR_CONFIGURATION_CHANGE_LIST
* MPII_EVENT_IR_VOLUME
* MPII_EVENT_IR_PHYSICAL_DISK
* MPII_EVENT_IR_OPERATION_STATUS
*/
MPII_EVENT_MASKALL(enq);
MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_DISCOVERY);
MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_DEVICE_STATUS_CHANGE);
MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_CONFIGURATION_CHANGE_LIST);
MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_VOLUME);
MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_PHYSICAL_DISK);
MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_OPERATION_STATUS);
mpii_start(sc, ccb);
return (0);
}
void
mpii_eventnotify_done(struct mpii_ccb *ccb)
{
struct mpii_softc *sc = ccb->ccb_sc;
struct mpii_rcb *rcb = ccb->ccb_rcb;
DNPRINTF(MPII_D_EVT, "%s: mpii_eventnotify_done\n", DEVNAME(sc));
mpii_put_ccb(sc, ccb);
mpii_event_process(sc, rcb);
}
void
mpii_event_raid(struct mpii_softc *sc, struct mpii_msg_event_reply *enp)
{
struct mpii_evt_ir_cfg_change_list *ccl;
struct mpii_evt_ir_cfg_element *ce;
struct mpii_device *dev;
u_int16_t type;
int i;
ccl = (struct mpii_evt_ir_cfg_change_list *)(enp + 1);
if (ccl->num_elements == 0)
return;
if (ISSET(le32toh(ccl->flags), MPII_EVT_IR_CFG_CHANGE_LIST_FOREIGN)) {
/* bail on foreign configurations */
return;
}
ce = (struct mpii_evt_ir_cfg_element *)(ccl + 1);
for (i = 0; i < ccl->num_elements; i++, ce++) {
type = (le16toh(ce->element_flags) &
MPII_EVT_IR_CFG_ELEMENT_TYPE_MASK);
switch (type) {
case MPII_EVT_IR_CFG_ELEMENT_TYPE_VOLUME:
switch (ce->reason_code) {
case MPII_EVT_IR_CFG_ELEMENT_RC_ADDED:
case MPII_EVT_IR_CFG_ELEMENT_RC_VOLUME_CREATED:
dev = malloc(sizeof(*dev), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (!dev) {
printf("%s: failed to allocate a "
"device structure\n", DEVNAME(sc));
break;
}
mutex_enter(&sc->sc_devs_mtx);
if (mpii_find_dev(sc,
le16toh(ce->vol_dev_handle))) {
mutex_exit(&sc->sc_devs_mtx);
free(dev, M_DEVBUF);
printf("%s: device %#x is already "
"configured\n", DEVNAME(sc),
le16toh(ce->vol_dev_handle));
break;
}
SET(dev->flags, MPII_DF_VOLUME);
dev->slot = sc->sc_vd_id_low;
dev->dev_handle = le16toh(ce->vol_dev_handle);
if (mpii_insert_dev(sc, dev)) {
mutex_exit(&sc->sc_devs_mtx);
free(dev, M_DEVBUF);
break;
}
sc->sc_vd_count++;
mutex_exit(&sc->sc_devs_mtx);
break;
case MPII_EVT_IR_CFG_ELEMENT_RC_REMOVED:
case MPII_EVT_IR_CFG_ELEMENT_RC_VOLUME_DELETED:
mutex_enter(&sc->sc_devs_mtx);
if (!(dev = mpii_find_dev(sc,
le16toh(ce->vol_dev_handle)))) {
mutex_exit(&sc->sc_devs_mtx);
break;
}
mpii_remove_dev(sc, dev);
sc->sc_vd_count--;
mutex_exit(&sc->sc_devs_mtx);
break;
}
break;
case MPII_EVT_IR_CFG_ELEMENT_TYPE_VOLUME_DISK:
if (ce->reason_code ==
MPII_EVT_IR_CFG_ELEMENT_RC_PD_CREATED ||
ce->reason_code ==
MPII_EVT_IR_CFG_ELEMENT_RC_HIDE) {
/* there should be an underlying sas drive */
mutex_enter(&sc->sc_devs_mtx);
if (!(dev = mpii_find_dev(sc,
le16toh(ce->phys_disk_dev_handle)))) {
mutex_exit(&sc->sc_devs_mtx);
break;
}
/* promoted from a hot spare? */
CLR(dev->flags, MPII_DF_HOT_SPARE);
SET(dev->flags, MPII_DF_VOLUME_DISK |
MPII_DF_HIDDEN);
mutex_exit(&sc->sc_devs_mtx);
}
break;
case MPII_EVT_IR_CFG_ELEMENT_TYPE_HOT_SPARE:
if (ce->reason_code ==
MPII_EVT_IR_CFG_ELEMENT_RC_HIDE) {
/* there should be an underlying sas drive */
mutex_enter(&sc->sc_devs_mtx);
if (!(dev = mpii_find_dev(sc,
le16toh(ce->phys_disk_dev_handle)))) {
mutex_exit(&sc->sc_devs_mtx);
break;
}
SET(dev->flags, MPII_DF_HOT_SPARE |
MPII_DF_HIDDEN);
mutex_exit(&sc->sc_devs_mtx);
}
break;
}
}
}
void
mpii_event_sas(struct mpii_softc *sc, struct mpii_rcb *rcb)
{
struct mpii_msg_event_reply *enp;
struct mpii_evt_sas_tcl *tcl;
struct mpii_evt_phy_entry *pe;
struct mpii_device *dev;
int i;
u_int16_t handle;
int need_queue = 0;
enp = (struct mpii_msg_event_reply *)rcb->rcb_reply;
DNPRINTF(MPII_D_EVT, "%s: mpii_event_sas 0x%x\n",
DEVNAME(sc), le16toh(enp->event));
KASSERT(le16toh(enp->event) == MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
tcl = (struct mpii_evt_sas_tcl *)(enp + 1);
pe = (struct mpii_evt_phy_entry *)(tcl + 1);
for (i = 0; i < tcl->num_entries; i++, pe++) {
DNPRINTF(MPII_D_EVT, "%s: sas change %d stat %d h %d slot %d phy %d enc %d expand %d\n",
DEVNAME(sc), i, pe->phy_status,
le16toh(pe->dev_handle),
sc->sc_pd_id_start + tcl->start_phy_num + i,
tcl->start_phy_num + i, le16toh(tcl->enclosure_handle), le16toh(tcl->expander_handle));
switch (pe->phy_status & MPII_EVENT_SAS_TOPO_PS_RC_MASK) {
case MPII_EVENT_SAS_TOPO_PS_RC_ADDED:
handle = le16toh(pe->dev_handle);
DNPRINTF(MPII_D_EVT, "%s: sas add handle %d\n",
DEVNAME(sc), handle);
dev = malloc(sizeof(*dev), M_DEVBUF, M_WAITOK | M_ZERO);
mutex_enter(&sc->sc_devs_mtx);
if (mpii_find_dev(sc, handle)) {
mutex_exit(&sc->sc_devs_mtx);
free(dev, M_DEVBUF);
printf("%s: device %#x is already "
"configured\n", DEVNAME(sc), handle);
break;
}
dev->slot = sc->sc_pd_id_start + tcl->start_phy_num + i;
dev->dev_handle = handle;
dev->phy_num = tcl->start_phy_num + i;
if (tcl->enclosure_handle)
dev->physical_port = tcl->physical_port;
dev->enclosure = le16toh(tcl->enclosure_handle);
dev->expander = le16toh(tcl->expander_handle);
if (mpii_insert_dev(sc, dev)) {
mutex_exit(&sc->sc_devs_mtx);
free(dev, M_DEVBUF);
break;
}
printf("%s: physical device inserted in slot %d\n",
DEVNAME(sc), dev->slot);
mutex_exit(&sc->sc_devs_mtx);
break;
case MPII_EVENT_SAS_TOPO_PS_RC_MISSING:
/* defer to workqueue thread */
need_queue++;
break;
}
}
if (need_queue) {
bool start_wk;
mutex_enter(&sc->sc_evt_sas_mtx);
start_wk = (SIMPLEQ_FIRST(&sc->sc_evt_sas_queue) == 0);
SIMPLEQ_INSERT_TAIL(&sc->sc_evt_sas_queue, rcb, rcb_link);
if (start_wk) {
workqueue_enqueue(sc->sc_evt_sas_wq,
&sc->sc_evt_sas_work, NULL);
}
mutex_exit(&sc->sc_evt_sas_mtx);
} else
mpii_event_done(sc, rcb);
}
void
mpii_event_sas_work(struct work *wq, void *xsc)
{
struct mpii_softc *sc = xsc;
struct mpii_rcb *rcb, *next;
struct mpii_msg_event_reply *enp;
struct mpii_evt_sas_tcl *tcl;
struct mpii_evt_phy_entry *pe;
struct mpii_device *dev;
int i;
mutex_enter(&sc->sc_evt_sas_mtx);
next = SIMPLEQ_FIRST(&sc->sc_evt_sas_queue);
SIMPLEQ_INIT(&sc->sc_evt_sas_queue);
mutex_exit(&sc->sc_evt_sas_mtx);
while (next != NULL) {
rcb = next;
next = SIMPLEQ_NEXT(rcb, rcb_link);
enp = (struct mpii_msg_event_reply *)rcb->rcb_reply;
DNPRINTF(MPII_D_EVT, "%s: mpii_event_sas_work 0x%x\n",
DEVNAME(sc), le16toh(enp->event));
KASSERT(le16toh(enp->event) == MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
tcl = (struct mpii_evt_sas_tcl *)(enp + 1);
pe = (struct mpii_evt_phy_entry *)(tcl + 1);
for (i = 0; i < tcl->num_entries; i++, pe++) {
DNPRINTF(MPII_D_EVT, "%s: sas change %d stat %d h %d slot %d phy %d enc %d expand %d\n",
DEVNAME(sc), i, pe->phy_status,
le16toh(pe->dev_handle),
sc->sc_pd_id_start + tcl->start_phy_num + i,
tcl->start_phy_num + i, le16toh(tcl->enclosure_handle), le16toh(tcl->expander_handle));
switch (pe->phy_status & MPII_EVENT_SAS_TOPO_PS_RC_MASK) {
case MPII_EVENT_SAS_TOPO_PS_RC_ADDED:
/* already handled */
break;
case MPII_EVENT_SAS_TOPO_PS_RC_MISSING:
mutex_enter(&sc->sc_devs_mtx);
dev = mpii_find_dev(sc, le16toh(pe->dev_handle));
if (dev == NULL) {
mutex_exit(&sc->sc_devs_mtx);
break;
}
printf(
"%s: physical device removed from slot %d\n",
DEVNAME(sc), dev->slot);
mpii_remove_dev(sc, dev);
mutex_exit(&sc->sc_devs_mtx);
mpii_sas_remove_device(sc, dev->dev_handle);
if (!ISSET(dev->flags, MPII_DF_HIDDEN)) {
scsipi_target_detach(&sc->sc_chan,
dev->slot, 0, DETACH_FORCE);
}
free(dev, M_DEVBUF);
break;
}
}
mpii_event_done(sc, rcb);
}
}
void
mpii_event_discovery(struct mpii_softc *sc, struct mpii_msg_event_reply *enp)
{
struct mpii_evt_sas_discovery *esd =
(struct mpii_evt_sas_discovery *)(enp + 1);
if (esd->reason_code == MPII_EVENT_SAS_DISC_REASON_CODE_COMPLETED) {
if (esd->discovery_status != 0) {
printf("%s: sas discovery completed with status %#x\n",
DEVNAME(sc), esd->discovery_status);
}
}
}
void
mpii_event_process(struct mpii_softc *sc, struct mpii_rcb *rcb)
{
struct mpii_msg_event_reply *enp;
enp = (struct mpii_msg_event_reply *)rcb->rcb_reply;
DNPRINTF(MPII_D_EVT, "%s: mpii_event_process: %#x\n", DEVNAME(sc),
le16toh(enp->event));
switch (le16toh(enp->event)) {
case MPII_EVENT_EVENT_CHANGE:
/* should be properly ignored */
break;
case MPII_EVENT_SAS_DISCOVERY:
mpii_event_discovery(sc, enp);
break;
case MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
mpii_event_sas(sc, rcb);
return;
case MPII_EVENT_SAS_DEVICE_STATUS_CHANGE:
break;
case MPII_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
break;
case MPII_EVENT_IR_VOLUME: {
struct mpii_evt_ir_volume *evd =
(struct mpii_evt_ir_volume *)(enp + 1);
struct mpii_device *dev;
#if NBIO > 0
const char *vol_states[] = {
BIOC_SVINVALID_S,
BIOC_SVOFFLINE_S,
BIOC_SVBUILDING_S,
BIOC_SVONLINE_S,
BIOC_SVDEGRADED_S,
BIOC_SVONLINE_S,
};
#endif
if (cold)
break;
mutex_enter(&sc->sc_devs_mtx);
dev = mpii_find_dev(sc, le16toh(evd->vol_dev_handle));
if (dev == NULL) {
mutex_exit(&sc->sc_devs_mtx);
break;
}
#if NBIO > 0
if (evd->reason_code == MPII_EVENT_IR_VOL_RC_STATE_CHANGED)
printf("%s: volume %d state changed from %s to %s\n",
DEVNAME(sc), dev->slot - sc->sc_vd_id_low,
vol_states[evd->prev_value],
vol_states[evd->new_value]);
#endif
if (evd->reason_code == MPII_EVENT_IR_VOL_RC_STATUS_CHANGED &&
ISSET(evd->new_value, MPII_CFG_RAID_VOL_0_STATUS_RESYNC) &&
!ISSET(evd->prev_value, MPII_CFG_RAID_VOL_0_STATUS_RESYNC))
printf("%s: started resync on a volume %d\n",
DEVNAME(sc), dev->slot - sc->sc_vd_id_low);
}
mutex_exit(&sc->sc_devs_mtx);
break;
case MPII_EVENT_IR_PHYSICAL_DISK:
break;
case MPII_EVENT_IR_CONFIGURATION_CHANGE_LIST:
mpii_event_raid(sc, enp);
break;
case MPII_EVENT_IR_OPERATION_STATUS: {
struct mpii_evt_ir_status *evs =
(struct mpii_evt_ir_status *)(enp + 1);
struct mpii_device *dev;
mutex_enter(&sc->sc_devs_mtx);
dev = mpii_find_dev(sc, le16toh(evs->vol_dev_handle));
if (dev != NULL &&
evs->operation == MPII_EVENT_IR_RAIDOP_RESYNC)
dev->percent = evs->percent;
mutex_exit(&sc->sc_devs_mtx);
break;
}
default:
DNPRINTF(MPII_D_EVT, "%s: unhandled event 0x%02x\n",
DEVNAME(sc), le16toh(enp->event));
}
mpii_event_done(sc, rcb);
}
void
mpii_event_done(struct mpii_softc *sc, struct mpii_rcb *rcb)
{
struct mpii_msg_event_reply *enp = rcb->rcb_reply;
bool need_start;
if (enp->ack_required) {
mutex_enter(&sc->sc_evt_ack_mtx);
need_start = (SIMPLEQ_FIRST(&sc->sc_evt_ack_queue) == 0);
SIMPLEQ_INSERT_TAIL(&sc->sc_evt_ack_queue, rcb, rcb_link);
if (need_start)
workqueue_enqueue(sc->sc_evt_ack_wq,
&sc->sc_evt_ack_work, NULL);
mutex_exit(&sc->sc_evt_ack_mtx);
} else
mpii_push_reply(sc, rcb);
}
void
mpii_sas_remove_device(struct mpii_softc *sc, u_int16_t handle)
{
struct mpii_msg_scsi_task_request *stq;
struct mpii_msg_sas_oper_request *soq;
struct mpii_ccb *ccb;
ccb = mpii_get_ccb(sc);
if (ccb == NULL)
return;
stq = ccb->ccb_cmd;
stq->function = MPII_FUNCTION_SCSI_TASK_MGMT;
stq->task_type = MPII_SCSI_TASK_TARGET_RESET;
stq->dev_handle = htole16(handle);
ccb->ccb_done = mpii_empty_done;
mpii_wait(sc, ccb);
if (ccb->ccb_rcb != NULL)
mpii_push_reply(sc, ccb->ccb_rcb);
/* reuse a ccb */
ccb->ccb_state = MPII_CCB_READY;
ccb->ccb_rcb = NULL;
soq = ccb->ccb_cmd;
memset(soq, 0, sizeof(*soq));
soq->function = MPII_FUNCTION_SAS_IO_UNIT_CONTROL;
soq->operation = MPII_SAS_OP_REMOVE_DEVICE;
soq->dev_handle = htole16(handle);
ccb->ccb_done = mpii_empty_done;
mpii_wait(sc, ccb);
if (ccb->ccb_rcb != NULL)
mpii_push_reply(sc, ccb->ccb_rcb);
mpii_put_ccb(sc, ccb);
}
int
mpii_board_info(struct mpii_softc *sc)
{
struct mpii_msg_iocfacts_request ifq;
struct mpii_msg_iocfacts_reply ifp;
struct mpii_cfg_manufacturing_pg0 mpg;
struct mpii_cfg_hdr hdr;
memset(&ifq, 0, sizeof(ifq));
memset(&ifp, 0, sizeof(ifp));
ifq.function = MPII_FUNCTION_IOC_FACTS;
if (mpii_handshake_send(sc, &ifq, dwordsof(ifq)) != 0) {
DNPRINTF(MPII_D_MISC, "%s: failed to request ioc facts\n",
DEVNAME(sc));
return (1);
}
if (mpii_handshake_recv(sc, &ifp, dwordsof(ifp)) != 0) {
DNPRINTF(MPII_D_MISC, "%s: failed to receive ioc facts\n",
DEVNAME(sc));
return (1);
}
hdr.page_version = 0;
hdr.page_length = sizeof(mpg) / 4;
hdr.page_number = 0;
hdr.page_type = MPII_CONFIG_REQ_PAGE_TYPE_MANUFACTURING;
memset(&mpg, 0, sizeof(mpg));
if (mpii_req_cfg_page(sc, 0, MPII_PG_POLL, &hdr, 1, &mpg,
sizeof(mpg)) != 0) {
printf("%s: unable to fetch manufacturing page 0\n",
DEVNAME(sc));
return (EINVAL);
}
printf("%s: %s, firmware %u.%u.%u.%u%s, MPI %u.%u\n", DEVNAME(sc),
mpg.board_name, ifp.fw_version_maj, ifp.fw_version_min,
ifp.fw_version_unit, ifp.fw_version_dev,
ISSET(sc->sc_flags, MPII_F_RAID) ? " IR" : "",
ifp.msg_version_maj, ifp.msg_version_min);
return (0);
}
int
mpii_target_map(struct mpii_softc *sc)
{
struct mpii_cfg_hdr hdr;
struct mpii_cfg_ioc_pg8 ipg;
int flags, pad = 0;
hdr.page_version = 0;
hdr.page_length = sizeof(ipg) / 4;
hdr.page_number = 8;
hdr.page_type = MPII_CONFIG_REQ_PAGE_TYPE_IOC;
memset(&ipg, 0, sizeof(ipg));
if (mpii_req_cfg_page(sc, 0, MPII_PG_POLL, &hdr, 1, &ipg,
sizeof(ipg)) != 0) {
printf("%s: unable to fetch ioc page 8\n",
DEVNAME(sc));
return (EINVAL);
}
if (le16toh(ipg.flags) & MPII_IOC_PG8_FLAGS_RESERVED_TARGETID_0)
pad = 1;
flags = le16toh(ipg.ir_volume_mapping_flags) &
MPII_IOC_PG8_IRFLAGS_VOLUME_MAPPING_MODE_MASK;
if (ISSET(sc->sc_flags, MPII_F_RAID)) {
if (flags == MPII_IOC_PG8_IRFLAGS_LOW_VOLUME_MAPPING) {
sc->sc_vd_id_low += pad;
pad = sc->sc_max_volumes; /* for sc_pd_id_start */
} else
sc->sc_vd_id_low = sc->sc_max_devices -
sc->sc_max_volumes;
}
sc->sc_pd_id_start += pad;
return (0);
}
int
mpii_req_cfg_header(struct mpii_softc *sc, u_int8_t type, u_int8_t number,
u_int32_t address, int flags, void *p)
{
struct mpii_msg_config_request *cq;
struct mpii_msg_config_reply *cp;
struct mpii_ccb *ccb;
struct mpii_cfg_hdr *hdr = p;
struct mpii_ecfg_hdr *ehdr = p;
int etype = 0;
int rv = 0;
DNPRINTF(MPII_D_MISC, "%s: mpii_req_cfg_header type: %#x number: %x "
"address: 0x%08x flags: 0x%x\n", DEVNAME(sc), type, number,
address, flags);
ccb = mpii_get_ccb(sc);
if (ccb == NULL) {
DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_header ccb_get\n",
DEVNAME(sc));
return (1);
}
if (ISSET(flags, MPII_PG_EXTENDED)) {
etype = type;
type = MPII_CONFIG_REQ_PAGE_TYPE_EXTENDED;
}
cq = ccb->ccb_cmd;
cq->function = MPII_FUNCTION_CONFIG;
cq->action = MPII_CONFIG_REQ_ACTION_PAGE_HEADER;
cq->config_header.page_number = number;
cq->config_header.page_type = type;
cq->ext_page_type = etype;
cq->page_address = htole32(address);
cq->page_buffer.sg_hdr = htole32(MPII_SGE_FL_TYPE_SIMPLE |
MPII_SGE_FL_LAST | MPII_SGE_FL_EOB | MPII_SGE_FL_EOL);
ccb->ccb_done = mpii_empty_done;
if (ISSET(flags, MPII_PG_POLL)) {
if (mpii_poll(sc, ccb) != 0) {
DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_header poll\n",
DEVNAME(sc));
return (1);
}
} else
mpii_wait(sc, ccb);
if (ccb->ccb_rcb == NULL) {
mpii_put_ccb(sc, ccb);
return (1);
}
cp = ccb->ccb_rcb->rcb_reply;
DNPRINTF(MPII_D_MISC, "%s: action: 0x%02x sgl_flags: 0x%02x "
"msg_length: %d function: 0x%02x\n", DEVNAME(sc), cp->action,
cp->sgl_flags, cp->msg_length, cp->function);
DNPRINTF(MPII_D_MISC, "%s: ext_page_length: %d ext_page_type: 0x%02x "
"msg_flags: 0x%02x\n", DEVNAME(sc),
le16toh(cp->ext_page_length), cp->ext_page_type,
cp->msg_flags);
DNPRINTF(MPII_D_MISC, "%s: vp_id: 0x%02x vf_id: 0x%02x\n", DEVNAME(sc),
cp->vp_id, cp->vf_id);
DNPRINTF(MPII_D_MISC, "%s: ioc_status: 0x%04x\n", DEVNAME(sc),
le16toh(cp->ioc_status));
DNPRINTF(MPII_D_MISC, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc),
le32toh(cp->ioc_loginfo));
DNPRINTF(MPII_D_MISC, "%s: page_version: 0x%02x page_length: %d "
"page_number: 0x%02x page_type: 0x%02x\n", DEVNAME(sc),
cp->config_header.page_version,
cp->config_header.page_length,
cp->config_header.page_number,
cp->config_header.page_type);
if (le16toh(cp->ioc_status) != MPII_IOCSTATUS_SUCCESS)
rv = 1;
else if (ISSET(flags, MPII_PG_EXTENDED)) {
memset(ehdr, 0, sizeof(*ehdr));
ehdr->page_version = cp->config_header.page_version;
ehdr->page_number = cp->config_header.page_number;
ehdr->page_type = cp->config_header.page_type;
ehdr->ext_page_length = cp->ext_page_length;
ehdr->ext_page_type = cp->ext_page_type;
} else
*hdr = cp->config_header;
mpii_push_reply(sc, ccb->ccb_rcb);
mpii_put_ccb(sc, ccb);
return (rv);
}
int
mpii_req_cfg_page(struct mpii_softc *sc, u_int32_t address, int flags,
void *p, int read, void *page, size_t len)
{
struct mpii_msg_config_request *cq;
struct mpii_msg_config_reply *cp;
struct mpii_ccb *ccb;
struct mpii_cfg_hdr *hdr = p;
struct mpii_ecfg_hdr *ehdr = p;
uintptr_t kva;
int page_length;
int rv = 0;
DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_page address: %d read: %d "
"type: %x\n", DEVNAME(sc), address, read, hdr->page_type);
page_length = ISSET(flags, MPII_PG_EXTENDED) ?
le16toh(ehdr->ext_page_length) : hdr->page_length;
if (len > sc->sc_request_size - sizeof(*cq) || len < page_length * 4)
return (1);
ccb = mpii_get_ccb(sc);
if (ccb == NULL) {
DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_page ccb_get\n",
DEVNAME(sc));
return (1);
}
cq = ccb->ccb_cmd;
cq->function = MPII_FUNCTION_CONFIG;
cq->action = (read ? MPII_CONFIG_REQ_ACTION_PAGE_READ_CURRENT :
MPII_CONFIG_REQ_ACTION_PAGE_WRITE_CURRENT);
if (ISSET(flags, MPII_PG_EXTENDED)) {
cq->config_header.page_version = ehdr->page_version;
cq->config_header.page_number = ehdr->page_number;
cq->config_header.page_type = ehdr->page_type;
cq->ext_page_len = ehdr->ext_page_length;
cq->ext_page_type = ehdr->ext_page_type;
} else
cq->config_header = *hdr;
cq->config_header.page_type &= MPII_CONFIG_REQ_PAGE_TYPE_MASK;
cq->page_address = htole32(address);
cq->page_buffer.sg_hdr = htole32(MPII_SGE_FL_TYPE_SIMPLE |
MPII_SGE_FL_LAST | MPII_SGE_FL_EOB | MPII_SGE_FL_EOL |
MPII_SGE_FL_SIZE_64 | (page_length * 4) |
(read ? MPII_SGE_FL_DIR_IN : MPII_SGE_FL_DIR_OUT));
/* bounce the page via the request space to avoid more bus_dma games */
mpii_dvatosge(&cq->page_buffer, ccb->ccb_cmd_dva +
sizeof(struct mpii_msg_config_request));
kva = (uintptr_t)ccb->ccb_cmd;
kva += sizeof(struct mpii_msg_config_request);
if (!read)
memcpy((void *)kva, page, len);
ccb->ccb_done = mpii_empty_done;
if (ISSET(flags, MPII_PG_POLL)) {
if (mpii_poll(sc, ccb) != 0) {
DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_header poll\n",
DEVNAME(sc));
return (1);
}
} else
mpii_wait(sc, ccb);
if (ccb->ccb_rcb == NULL) {
mpii_put_ccb(sc, ccb);
return (1);
}
cp = ccb->ccb_rcb->rcb_reply;
DNPRINTF(MPII_D_MISC, "%s: action: 0x%02x msg_length: %d "
"function: 0x%02x\n", DEVNAME(sc), cp->action, cp->msg_length,
cp->function);
DNPRINTF(MPII_D_MISC, "%s: ext_page_length: %d ext_page_type: 0x%02x "
"msg_flags: 0x%02x\n", DEVNAME(sc),
le16toh(cp->ext_page_length), cp->ext_page_type,
cp->msg_flags);
DNPRINTF(MPII_D_MISC, "%s: vp_id: 0x%02x vf_id: 0x%02x\n", DEVNAME(sc),
cp->vp_id, cp->vf_id);
DNPRINTF(MPII_D_MISC, "%s: ioc_status: 0x%04x\n", DEVNAME(sc),
le16toh(cp->ioc_status));
DNPRINTF(MPII_D_MISC, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc),
le32toh(cp->ioc_loginfo));
DNPRINTF(MPII_D_MISC, "%s: page_version: 0x%02x page_length: %d "
"page_number: 0x%02x page_type: 0x%02x\n", DEVNAME(sc),
cp->config_header.page_version,
cp->config_header.page_length,
cp->config_header.page_number,
cp->config_header.page_type);
if (le16toh(cp->ioc_status) != MPII_IOCSTATUS_SUCCESS)
rv = 1;
else if (read)
memcpy(page, (void *)kva, len);
mpii_push_reply(sc, ccb->ccb_rcb);
mpii_put_ccb(sc, ccb);
return (rv);
}
struct mpii_rcb *
mpii_reply(struct mpii_softc *sc, struct mpii_reply_descr *rdp)
{
struct mpii_rcb *rcb = NULL;
u_int32_t rfid;
KASSERT(mutex_owned(&sc->sc_rep_mtx));
DNPRINTF(MPII_D_INTR, "%s: mpii_reply\n", DEVNAME(sc));
if ((rdp->reply_flags & MPII_REPLY_DESCR_TYPE_MASK) ==
MPII_REPLY_DESCR_ADDRESS_REPLY) {
rfid = (le32toh(rdp->frame_addr) -
(u_int32_t)MPII_DMA_DVA(sc->sc_replies)) /
sc->sc_reply_size;
bus_dmamap_sync(sc->sc_dmat,
MPII_DMA_MAP(sc->sc_replies), sc->sc_reply_size * rfid,
sc->sc_reply_size, BUS_DMASYNC_POSTREAD);
rcb = &sc->sc_rcbs[rfid];
}
memset(rdp, 0xff, sizeof(*rdp));
bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_postq),
8 * sc->sc_reply_post_host_index, 8,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
return (rcb);
}
struct mpii_dmamem *
mpii_dmamem_alloc(struct mpii_softc *sc, size_t size)
{
struct mpii_dmamem *mdm;
int nsegs;
mdm = malloc(sizeof(*mdm), M_DEVBUF, M_NOWAIT | M_ZERO);
if (mdm == NULL)
return (NULL);
mdm->mdm_size = size;
if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mdm->mdm_map) != 0)
goto mdmfree;
if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &mdm->mdm_seg,
1, &nsegs, BUS_DMA_NOWAIT) != 0)
goto destroy;
if (bus_dmamem_map(sc->sc_dmat, &mdm->mdm_seg, nsegs, size,
&mdm->mdm_kva, BUS_DMA_NOWAIT) != 0)
goto free;
if (bus_dmamap_load(sc->sc_dmat, mdm->mdm_map, mdm->mdm_kva, size,
NULL, BUS_DMA_NOWAIT) != 0)
goto unmap;
memset(mdm->mdm_kva, 0, size);
return (mdm);
unmap:
bus_dmamem_unmap(sc->sc_dmat, mdm->mdm_kva, size);
free:
bus_dmamem_free(sc->sc_dmat, &mdm->mdm_seg, 1);
destroy:
bus_dmamap_destroy(sc->sc_dmat, mdm->mdm_map);
mdmfree:
free(mdm, M_DEVBUF);
return (NULL);
}
void
mpii_dmamem_free(struct mpii_softc *sc, struct mpii_dmamem *mdm)
{
DNPRINTF(MPII_D_MEM, "%s: mpii_dmamem_free %p\n", DEVNAME(sc), mdm);
bus_dmamap_unload(sc->sc_dmat, mdm->mdm_map);
bus_dmamem_unmap(sc->sc_dmat, mdm->mdm_kva, mdm->mdm_size);
bus_dmamem_free(sc->sc_dmat, &mdm->mdm_seg, 1);
bus_dmamap_destroy(sc->sc_dmat, mdm->mdm_map);
free(mdm, M_DEVBUF);
}
int
mpii_insert_dev(struct mpii_softc *sc, struct mpii_device *dev)
{
int slot; /* initial hint */
KASSERT(mutex_owned(&sc->sc_devs_mtx));
DNPRINTF(MPII_D_EVT, "%s: mpii_insert_dev wants slot %d\n",
DEVNAME(sc), dev->slot);
if (dev == NULL || dev->slot < 0)
return (1);
slot = dev->slot;
while (slot < sc->sc_max_devices && sc->sc_devs[slot] != NULL)
slot++;
if (slot >= sc->sc_max_devices)
return (1);
DNPRINTF(MPII_D_EVT, "%s: mpii_insert_dev alloc slot %d\n",
DEVNAME(sc), slot);
dev->slot = slot;
sc->sc_devs[slot] = dev;
return (0);
}
int
mpii_remove_dev(struct mpii_softc *sc, struct mpii_device *dev)
{
int i;
KASSERT(mutex_owned(&sc->sc_devs_mtx));
if (dev == NULL)
return (1);
for (i = 0; i < sc->sc_max_devices; i++) {
if (sc->sc_devs[i] == NULL)
continue;
if (sc->sc_devs[i]->dev_handle == dev->dev_handle) {
sc->sc_devs[i] = NULL;
return (0);
}
}
return (1);
}
struct mpii_device *
mpii_find_dev(struct mpii_softc *sc, u_int16_t handle)
{
int i;
KASSERT(mutex_owned(&sc->sc_devs_mtx));
for (i = 0; i < sc->sc_max_devices; i++) {
if (sc->sc_devs[i] == NULL)
continue;
if (sc->sc_devs[i]->dev_handle == handle)
return (sc->sc_devs[i]);
}
return (NULL);
}
int
mpii_alloc_ccbs(struct mpii_softc *sc)
{
struct mpii_ccb *ccb;
u_int8_t *cmd;
int i;
char wqname[16];
SIMPLEQ_INIT(&sc->sc_ccb_free);
SIMPLEQ_INIT(&sc->sc_ccb_tmos);
mutex_init(&sc->sc_ccb_free_mtx, MUTEX_DEFAULT, IPL_BIO);
cv_init(&sc->sc_ccb_free_cv, "mpii_ccbs");
mutex_init(&sc->sc_ssb_tmomtx, MUTEX_DEFAULT, IPL_BIO);
snprintf(wqname, sizeof(wqname) - 1, "%sabrt", DEVNAME(sc));
workqueue_create(&sc->sc_ssb_tmowk, wqname, mpii_scsi_cmd_tmo_handler,
sc, PRI_BIO, IPL_BIO, WQ_MPSAFE);
if (sc->sc_ssb_tmowk == NULL)
return 1;
sc->sc_ccbs = malloc((sc->sc_max_cmds-1) * sizeof(*ccb),
M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc->sc_ccbs == NULL) {
printf("%s: unable to allocate ccbs\n", DEVNAME(sc));
return (1);
}
sc->sc_requests = mpii_dmamem_alloc(sc,
sc->sc_request_size * sc->sc_max_cmds);
if (sc->sc_requests == NULL) {
printf("%s: unable to allocate ccb dmamem\n", DEVNAME(sc));
goto free_ccbs;
}
cmd = MPII_DMA_KVA(sc->sc_requests);
/*
* we have sc->sc_max_cmds system request message
* frames, but smid zero cannot be used. so we then
* have (sc->sc_max_cmds - 1) number of ccbs
*/
for (i = 1; i < sc->sc_max_cmds; i++) {
ccb = &sc->sc_ccbs[i - 1];
if (bus_dmamap_create(sc->sc_dmat, MAXPHYS, sc->sc_max_sgl,
MAXPHYS, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&ccb->ccb_dmamap) != 0) {
printf("%s: unable to create dma map\n", DEVNAME(sc));
goto free_maps;
}
ccb->ccb_sc = sc;
mutex_init(&ccb->ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
cv_init(&ccb->ccb_cv, "mpiiexec");
ccb->ccb_smid = htole16(i);
ccb->ccb_offset = sc->sc_request_size * i;
ccb->ccb_cmd = &cmd[ccb->ccb_offset];
ccb->ccb_cmd_dva = (u_int32_t)MPII_DMA_DVA(sc->sc_requests) +
ccb->ccb_offset;
DNPRINTF(MPII_D_CCB, "%s: mpii_alloc_ccbs(%d) ccb: %p map: %p "
"sc: %p smid: %#x offs: %#lx cmd: %p dva: %#lx\n",
DEVNAME(sc), i, ccb, ccb->ccb_dmamap, ccb->ccb_sc,
ccb->ccb_smid, ccb->ccb_offset, ccb->ccb_cmd,
ccb->ccb_cmd_dva);
mpii_put_ccb(sc, ccb);
}
return (0);
free_maps:
while ((ccb = mpii_get_ccb(sc)) != NULL)
bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
mpii_dmamem_free(sc, sc->sc_requests);
free_ccbs:
free(sc->sc_ccbs, M_DEVBUF);
return (1);
}
void
mpii_put_ccb(struct mpii_softc *sc, struct mpii_ccb *ccb)
{
DNPRINTF(MPII_D_CCB, "%s: mpii_put_ccb %p\n", DEVNAME(sc), ccb);
ccb->ccb_state = MPII_CCB_FREE;
ccb->ccb_cookie = NULL;
ccb->ccb_done = NULL;
ccb->ccb_rcb = NULL;
memset(ccb->ccb_cmd, 0, sc->sc_request_size);
mutex_enter(&sc->sc_ccb_free_mtx);
SIMPLEQ_INSERT_HEAD(&sc->sc_ccb_free, ccb, ccb_link);
mutex_exit(&sc->sc_ccb_free_mtx);
}
struct mpii_ccb *
mpii_get_ccb(struct mpii_softc *sc)
{
struct mpii_ccb *ccb;
mutex_enter(&sc->sc_ccb_free_mtx);
ccb = SIMPLEQ_FIRST(&sc->sc_ccb_free);
if (ccb != NULL) {
SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_free, ccb_link);
ccb->ccb_state = MPII_CCB_READY;
KASSERT(ccb->ccb_sc == sc);
}
mutex_exit(&sc->sc_ccb_free_mtx);
DNPRINTF(MPII_D_CCB, "%s: mpii_get_ccb %p\n", DEVNAME(sc), ccb);
return (ccb);
}
int
mpii_alloc_replies(struct mpii_softc *sc)
{
DNPRINTF(MPII_D_MISC, "%s: mpii_alloc_replies\n", DEVNAME(sc));
sc->sc_rcbs = malloc(sc->sc_num_reply_frames * sizeof(struct mpii_rcb),
M_DEVBUF, M_NOWAIT);
if (sc->sc_rcbs == NULL)
return (1);
sc->sc_replies = mpii_dmamem_alloc(sc, sc->sc_reply_size *
sc->sc_num_reply_frames);
if (sc->sc_replies == NULL) {
free(sc->sc_rcbs, M_DEVBUF);
return (1);
}
return (0);
}
void
mpii_push_replies(struct mpii_softc *sc)
{
struct mpii_rcb *rcb;
uintptr_t kva = (uintptr_t)MPII_DMA_KVA(sc->sc_replies);
int i;
bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_replies),
0, sc->sc_reply_size * sc->sc_num_reply_frames,
BUS_DMASYNC_PREREAD);
for (i = 0; i < sc->sc_num_reply_frames; i++) {
rcb = &sc->sc_rcbs[i];
rcb->rcb_reply = (void *)(kva + sc->sc_reply_size * i);
rcb->rcb_reply_dva = (u_int32_t)MPII_DMA_DVA(sc->sc_replies) +
sc->sc_reply_size * i;
mpii_push_reply(sc, rcb);
}
}
void
mpii_start(struct mpii_softc *sc, struct mpii_ccb *ccb)
{
struct mpii_request_header *rhp;
struct mpii_request_descr descr;
#if defined(__LP64__) && 0
u_long *rdp = (u_long *)&descr;
#else
u_int32_t *rdp = (u_int32_t *)&descr;
#endif
DNPRINTF(MPII_D_RW, "%s: mpii_start %#lx\n", DEVNAME(sc),
ccb->ccb_cmd_dva);
bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_requests),
ccb->ccb_offset, sc->sc_request_size,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
ccb->ccb_state = MPII_CCB_QUEUED;
rhp = ccb->ccb_cmd;
memset(&descr, 0, sizeof(descr));
switch (rhp->function) {
case MPII_FUNCTION_SCSI_IO_REQUEST:
descr.request_flags = MPII_REQ_DESCR_SCSI_IO;
descr.dev_handle = htole16(ccb->ccb_dev_handle);
break;
case MPII_FUNCTION_SCSI_TASK_MGMT:
descr.request_flags = MPII_REQ_DESCR_HIGH_PRIORITY;
break;
default:
descr.request_flags = MPII_REQ_DESCR_DEFAULT;
}
descr.vf_id = sc->sc_vf_id;
descr.smid = ccb->ccb_smid;
#if defined(__LP64__) && 0
DNPRINTF(MPII_D_RW, "%s: MPII_REQ_DESCR_POST_LOW (0x%08x) write "
"0x%08lx\n", DEVNAME(sc), MPII_REQ_DESCR_POST_LOW, *rdp);
bus_space_write_raw_8(sc->sc_iot, sc->sc_ioh,
MPII_REQ_DESCR_POST_LOW, *rdp);
#else
DNPRINTF(MPII_D_RW, "%s: MPII_REQ_DESCR_POST_LOW (0x%08x) write "
"0x%04x\n", DEVNAME(sc), MPII_REQ_DESCR_POST_LOW, *rdp);
DNPRINTF(MPII_D_RW, "%s: MPII_REQ_DESCR_POST_HIGH (0x%08x) write "
"0x%04x\n", DEVNAME(sc), MPII_REQ_DESCR_POST_HIGH, *(rdp+1));
mutex_enter(&sc->sc_req_mtx);
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
MPII_REQ_DESCR_POST_LOW, rdp[0]);
bus_space_barrier(sc->sc_iot, sc->sc_ioh,
MPII_REQ_DESCR_POST_LOW, 8, BUS_SPACE_BARRIER_WRITE);
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
MPII_REQ_DESCR_POST_HIGH, rdp[1]);
bus_space_barrier(sc->sc_iot, sc->sc_ioh,
MPII_REQ_DESCR_POST_LOW, 8, BUS_SPACE_BARRIER_WRITE);
mutex_exit(&sc->sc_req_mtx);
#endif
}
int
mpii_poll(struct mpii_softc *sc, struct mpii_ccb *ccb)
{
void (*done)(struct mpii_ccb *);
void *cookie;
int rv = 1;
DNPRINTF(MPII_D_INTR, "%s: mpii_poll\n", DEVNAME(sc));
done = ccb->ccb_done;
cookie = ccb->ccb_cookie;
ccb->ccb_done = mpii_poll_done;
ccb->ccb_cookie = &rv;
mpii_start(sc, ccb);
while (rv == 1) {
/* avoid excessive polling */
if (mpii_reply_waiting(sc))
mpii_intr(sc);
else
delay(10);
}
ccb->ccb_cookie = cookie;
done(ccb);
return (0);
}
void
mpii_poll_done(struct mpii_ccb *ccb)
{
int *rv = ccb->ccb_cookie;
*rv = 0;
}
int
mpii_alloc_queues(struct mpii_softc *sc)
{
u_int32_t *rfp;
int i;
DNPRINTF(MPII_D_MISC, "%s: mpii_alloc_queues\n", DEVNAME(sc));
mutex_init(&sc->sc_reply_free_mtx, MUTEX_DEFAULT, IPL_BIO);
sc->sc_reply_freeq = mpii_dmamem_alloc(sc,
sc->sc_reply_free_qdepth * sizeof(*rfp));
if (sc->sc_reply_freeq == NULL)
return (1);
rfp = MPII_DMA_KVA(sc->sc_reply_freeq);
for (i = 0; i < sc->sc_num_reply_frames; i++) {
rfp[i] = (u_int32_t)MPII_DMA_DVA(sc->sc_replies) +
sc->sc_reply_size * i;
}
sc->sc_reply_postq = mpii_dmamem_alloc(sc,
sc->sc_reply_post_qdepth * sizeof(struct mpii_reply_descr));
if (sc->sc_reply_postq == NULL)
goto free_reply_freeq;
sc->sc_reply_postq_kva = MPII_DMA_KVA(sc->sc_reply_postq);
memset(sc->sc_reply_postq_kva, 0xff, sc->sc_reply_post_qdepth *
sizeof(struct mpii_reply_descr));
return (0);
free_reply_freeq:
mpii_dmamem_free(sc, sc->sc_reply_freeq);
return (1);
}
void
mpii_init_queues(struct mpii_softc *sc)
{
DNPRINTF(MPII_D_MISC, "%s: mpii_init_queues\n", DEVNAME(sc));
sc->sc_reply_free_host_index = sc->sc_reply_free_qdepth - 1;
sc->sc_reply_post_host_index = 0;
mpii_write_reply_free(sc, sc->sc_reply_free_host_index);
mpii_write_reply_post(sc, sc->sc_reply_post_host_index);
}
void
mpii_wait(struct mpii_softc *sc, struct mpii_ccb *ccb)
{
void (*done)(struct mpii_ccb *);
void *cookie;
done = ccb->ccb_done;
cookie = ccb->ccb_cookie;
ccb->ccb_done = mpii_wait_done;
ccb->ccb_cookie = ccb;
/* XXX this will wait forever for the ccb to complete */
mpii_start(sc, ccb);
mutex_enter(&ccb->ccb_mtx);
while (ccb->ccb_cookie != NULL)
cv_wait(&ccb->ccb_cv, &ccb->ccb_mtx);
mutex_exit(&ccb->ccb_mtx);
ccb->ccb_cookie = cookie;
done(ccb);
}
void
mpii_wait_done(struct mpii_ccb *ccb)
{
mutex_enter(&ccb->ccb_mtx);
ccb->ccb_cookie = NULL;
cv_signal(&ccb->ccb_cv);
mutex_exit(&ccb->ccb_mtx);
}
void
mpii_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
void *arg)
{
struct scsipi_periph *periph;
struct scsipi_xfer *xs;
struct scsipi_adapter *adapt = chan->chan_adapter;
struct mpii_softc *sc = device_private(adapt->adapt_dev);
struct mpii_ccb *ccb;
struct mpii_msg_scsi_io *io;
struct mpii_device *dev;
int target, timeout, ret;
u_int16_t dev_handle;
DNPRINTF(MPII_D_CMD, "%s: mpii_scsipi_request\n", DEVNAME(sc));
switch (req) {
case ADAPTER_REQ_GROW_RESOURCES:
/* Not supported. */
return;
case ADAPTER_REQ_SET_XFER_MODE:
{
struct scsipi_xfer_mode *xm = arg;
xm->xm_mode = PERIPH_CAP_TQING;
xm->xm_period = 0;
xm->xm_offset = 0;
scsipi_async_event(&sc->sc_chan, ASYNC_EVENT_XFER_MODE, xm);
return;
}
case ADAPTER_REQ_RUN_XFER:
break;
}
xs = arg;
periph = xs->xs_periph;
target = periph->periph_target;
if (xs->cmdlen > MPII_CDB_LEN) {
DNPRINTF(MPII_D_CMD, "%s: CDB too big %d\n",
DEVNAME(sc), xs->cmdlen);
memset(&xs->sense, 0, sizeof(xs->sense));
xs->sense.scsi_sense.response_code =
SSD_RCODE_VALID | SSD_RCODE_CURRENT;
xs->sense.scsi_sense.flags = SKEY_ILLEGAL_REQUEST;
xs->sense.scsi_sense.asc = 0x20;
xs->error = XS_SENSE;
scsipi_done(xs);
return;
}
mutex_enter(&sc->sc_devs_mtx);
if ((dev = sc->sc_devs[target]) == NULL) {
mutex_exit(&sc->sc_devs_mtx);
/* device no longer exists */
xs->error = XS_SELTIMEOUT;
scsipi_done(xs);
return;
}
dev_handle = dev->dev_handle;
mutex_exit(&sc->sc_devs_mtx);
ccb = mpii_get_ccb(sc);
if (ccb == NULL) {
xs->error = XS_RESOURCE_SHORTAGE;
scsipi_done(xs);
return;
}
DNPRINTF(MPII_D_CMD, "%s: ccb_smid: %d xs->cmd->opcode: 0x%02x xs->xs_control: 0x%x\n",
DEVNAME(sc), ccb->ccb_smid, xs->cmd->opcode, xs->xs_control);
ccb->ccb_cookie = xs;
ccb->ccb_done = mpii_scsi_cmd_done;
ccb->ccb_dev_handle = dev_handle;
io = ccb->ccb_cmd;
memset(io, 0, sizeof(*io));
io->function = MPII_FUNCTION_SCSI_IO_REQUEST;
io->sense_buffer_length = sizeof(xs->sense);
io->sgl_offset0 = sizeof(struct mpii_msg_scsi_io) / 4;
io->io_flags = htole16(xs->cmdlen);
io->dev_handle = htole16(ccb->ccb_dev_handle);
io->lun[0] = htobe16(periph->periph_lun);
switch (xs->xs_control & (XS_CTL_DATA_IN | XS_CTL_DATA_OUT)) {
case XS_CTL_DATA_IN:
io->direction = MPII_SCSIIO_DIR_READ;
break;
case XS_CTL_DATA_OUT:
io->direction = MPII_SCSIIO_DIR_WRITE;
break;
default:
io->direction = MPII_SCSIIO_DIR_NONE;
break;
}
io->tagging = MPII_SCSIIO_ATTR_SIMPLE_Q;
memcpy(io->cdb, xs->cmd, xs->cmdlen);
io->data_length = htole32(xs->datalen);
/* sense data is at the end of a request */
io->sense_buffer_low_address = htole32(ccb->ccb_cmd_dva +
sc->sc_request_size - sizeof(struct scsi_sense_data));
if (ISSET(sc->sc_flags, MPII_F_SAS3))
ret = mpii_load_xs_sas3(ccb);
else
ret = mpii_load_xs(ccb);
if (ret != 0) {
xs->error = XS_DRIVER_STUFFUP;
goto done;
}
if (xs->xs_control & XS_CTL_POLL) {
if (mpii_poll(sc, ccb) != 0) {
xs->error = XS_DRIVER_STUFFUP;
goto done;
}
return;
}
timeout = mstohz(xs->timeout);
if (timeout == 0)
timeout = 1;
callout_reset(&xs->xs_callout, timeout, mpii_scsi_cmd_tmo, ccb);
mpii_start(sc, ccb);
return;
done:
mpii_put_ccb(sc, ccb);
scsipi_done(xs);
}
void
mpii_scsi_cmd_tmo(void *xccb)
{
struct mpii_ccb *ccb = xccb;
struct mpii_softc *sc = ccb->ccb_sc;
bool start_work;
printf("%s: mpii_scsi_cmd_tmo\n", DEVNAME(sc));
if (ccb->ccb_state == MPII_CCB_QUEUED) {
mutex_enter(&sc->sc_ssb_tmomtx);
start_work = (SIMPLEQ_FIRST(&sc->sc_ccb_tmos) == 0);
ccb->ccb_state = MPII_CCB_TIMEOUT;
SIMPLEQ_INSERT_HEAD(&sc->sc_ccb_tmos, ccb, ccb_link);
if (start_work) {
workqueue_enqueue(sc->sc_ssb_tmowk,
&sc->sc_ssb_tmowork, NULL);
}
mutex_exit(&sc->sc_ssb_tmomtx);
}
}
void
mpii_scsi_cmd_tmo_handler(struct work *wk, void *cookie)
{
struct mpii_softc *sc = cookie;
struct mpii_ccb *next;
struct mpii_ccb *ccb;
struct mpii_ccb *tccb;
struct mpii_msg_scsi_task_request *stq;
mutex_enter(&sc->sc_ssb_tmomtx);
next = SIMPLEQ_FIRST(&sc->sc_ccb_tmos);
SIMPLEQ_INIT(&sc->sc_ccb_tmos);
mutex_exit(&sc->sc_ssb_tmomtx);
while (next != NULL) {
ccb = next;
next = SIMPLEQ_NEXT(ccb, ccb_link);
if (ccb->ccb_state != MPII_CCB_TIMEOUT)
continue;
tccb = mpii_get_ccb(sc);
stq = tccb->ccb_cmd;
stq->function = MPII_FUNCTION_SCSI_TASK_MGMT;
stq->task_type = MPII_SCSI_TASK_TARGET_RESET;
stq->dev_handle = htole16(ccb->ccb_dev_handle);
tccb->ccb_done = mpii_scsi_cmd_tmo_done;
mpii_wait(sc, tccb);
}
}
void
mpii_scsi_cmd_tmo_done(struct mpii_ccb *tccb)
{
mpii_put_ccb(tccb->ccb_sc, tccb);
}
static u_int8_t
map_scsi_status(u_int8_t mpii_scsi_status)
{
u_int8_t scsi_status;
switch (mpii_scsi_status)
{
case MPII_SCSIIO_STATUS_GOOD:
scsi_status = SCSI_OK;
break;
case MPII_SCSIIO_STATUS_CHECK_COND:
scsi_status = SCSI_CHECK;
break;
case MPII_SCSIIO_STATUS_BUSY:
scsi_status = SCSI_BUSY;
break;
case MPII_SCSIIO_STATUS_INTERMEDIATE:
scsi_status = SCSI_INTERM;
break;
case MPII_SCSIIO_STATUS_INTERMEDIATE_CONDMET:
scsi_status = SCSI_INTERM;
break;
case MPII_SCSIIO_STATUS_RESERVATION_CONFLICT:
scsi_status = SCSI_RESV_CONFLICT;
break;
case MPII_SCSIIO_STATUS_CMD_TERM:
case MPII_SCSIIO_STATUS_TASK_ABORTED:
scsi_status = SCSI_TERMINATED;
break;
case MPII_SCSIIO_STATUS_TASK_SET_FULL:
scsi_status = SCSI_QUEUE_FULL;
break;
case MPII_SCSIIO_STATUS_ACA_ACTIVE:
scsi_status = SCSI_ACA_ACTIVE;
break;
default:
/* XXX: for the lack of anything better and other than OK */
scsi_status = 0xFF;
break;
}
return scsi_status;
}
void
mpii_scsi_cmd_done(struct mpii_ccb *ccb)
{
struct mpii_msg_scsi_io_error *sie;
struct mpii_softc *sc = ccb->ccb_sc;
struct scsipi_xfer *xs = ccb->ccb_cookie;
struct scsi_sense_data *sense;
bus_dmamap_t dmap = ccb->ccb_dmamap;
bool timeout = 1;
callout_stop(&xs->xs_callout);
if (ccb->ccb_state == MPII_CCB_TIMEOUT)
timeout = 1;
ccb->ccb_state = MPII_CCB_READY;
if (xs->datalen != 0) {
bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
(xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_POSTREAD :
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, dmap);
}
KASSERT(xs->error == XS_NOERROR);
KASSERT(xs->resid == xs->datalen);
KASSERT(xs->status == SCSI_OK);
if (ccb->ccb_rcb == NULL) {
/* no scsi error, we're ok so drop out early */
xs->resid = 0;
goto done;
}
sie = ccb->ccb_rcb->rcb_reply;
DNPRINTF(MPII_D_CMD, "%s: mpii_scsi_cmd_done xs cmd: 0x%02x len: %d "
"flags 0x%x\n", DEVNAME(sc), xs->cmd->opcode, xs->datalen,
xs->xs_control);
DNPRINTF(MPII_D_CMD, "%s: dev_handle: %d msg_length: %d "
"function: 0x%02x\n", DEVNAME(sc), le16toh(sie->dev_handle),
sie->msg_length, sie->function);
DNPRINTF(MPII_D_CMD, "%s: vp_id: 0x%02x vf_id: 0x%02x\n", DEVNAME(sc),
sie->vp_id, sie->vf_id);
DNPRINTF(MPII_D_CMD, "%s: scsi_status: 0x%02x scsi_state: 0x%02x "
"ioc_status: 0x%04x\n", DEVNAME(sc), sie->scsi_status,
sie->scsi_state, le16toh(sie->ioc_status));
DNPRINTF(MPII_D_CMD, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc),
le32toh(sie->ioc_loginfo));
DNPRINTF(MPII_D_CMD, "%s: transfer_count: %d\n", DEVNAME(sc),
le32toh(sie->transfer_count));
DNPRINTF(MPII_D_CMD, "%s: sense_count: %d\n", DEVNAME(sc),
le32toh(sie->sense_count));
DNPRINTF(MPII_D_CMD, "%s: response_info: 0x%08x\n", DEVNAME(sc),
le32toh(sie->response_info));
DNPRINTF(MPII_D_CMD, "%s: task_tag: 0x%04x\n", DEVNAME(sc),
le16toh(sie->task_tag));
DNPRINTF(MPII_D_CMD, "%s: bidirectional_transfer_count: 0x%08x\n",
DEVNAME(sc), le32toh(sie->bidirectional_transfer_count));
xs->status = map_scsi_status(sie->scsi_status);
switch (le16toh(sie->ioc_status) & MPII_IOCSTATUS_MASK) {
case MPII_IOCSTATUS_SCSI_DATA_UNDERRUN:
switch(sie->scsi_status) {
case MPII_SCSIIO_STATUS_CHECK_COND:
xs->error = XS_SENSE;
/* FALLTHROUGH */
case MPII_SCSIIO_STATUS_GOOD:
xs->resid = xs->datalen - le32toh(sie->transfer_count);
break;
default:
xs->error = XS_DRIVER_STUFFUP;
break;
}
break;
case MPII_IOCSTATUS_SUCCESS:
case MPII_IOCSTATUS_SCSI_RECOVERED_ERROR:
switch (sie->scsi_status) {
case MPII_SCSIIO_STATUS_GOOD:
xs->resid = 0;
break;
case MPII_SCSIIO_STATUS_CHECK_COND:
xs->resid = 0;
xs->error = XS_SENSE;
break;
case MPII_SCSIIO_STATUS_BUSY:
case MPII_SCSIIO_STATUS_TASK_SET_FULL:
xs->error = XS_BUSY;
break;
default:
xs->error = XS_DRIVER_STUFFUP;
}
break;
case MPII_IOCSTATUS_BUSY:
case MPII_IOCSTATUS_INSUFFICIENT_RESOURCES:
xs->error = XS_BUSY;
break;
case MPII_IOCSTATUS_SCSI_IOC_TERMINATED:
case MPII_IOCSTATUS_SCSI_TASK_TERMINATED:
xs->error = timeout ? XS_TIMEOUT : XS_RESET;
break;
case MPII_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
case MPII_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
xs->error = XS_SELTIMEOUT;
break;
default:
xs->error = XS_DRIVER_STUFFUP;
break;
}
sense = (struct scsi_sense_data *)((uintptr_t)ccb->ccb_cmd +
sc->sc_request_size - sizeof(*sense));
if (sie->scsi_state & MPII_SCSIIO_STATE_AUTOSENSE_VALID)
memcpy(&xs->sense, sense, sizeof(xs->sense));
mpii_push_reply(sc, ccb->ccb_rcb);
done:
mpii_put_ccb(sc, ccb);
DNPRINTF(MPII_D_CMD, "%s: xs err: %d status: %#x len: %d resid: %d\n",
DEVNAME(sc), xs->error, xs->status, xs->datalen, xs->resid);
scsipi_done(xs);
}
#if 0
int
mpii_scsi_ioctl(struct scsi_link *link, u_long cmd, void *addr, int flag)
{
struct mpii_softc *sc = (struct mpii_softc *)link->adapter_softc;
struct mpii_device *dev = sc->sc_devs[link->target];
DNPRINTF(MPII_D_IOCTL, "%s: mpii_scsi_ioctl\n", DEVNAME(sc));
switch (cmd) {
case DIOCGCACHE:
case DIOCSCACHE:
if (dev != NULL && ISSET(dev->flags, MPII_DF_VOLUME)) {
return (mpii_ioctl_cache(link, cmd,
(struct dk_cache *)addr));
}
break;
default:
if (sc->sc_ioctl)
return (sc->sc_ioctl(link->adapter_softc, cmd, addr));
break;
}
return (ENOTTY);
}
int
mpii_ioctl_cache(struct scsi_link *link, u_long cmd, struct dk_cache *dc)
{
struct mpii_softc *sc = (struct mpii_softc *)link->adapter_softc;
struct mpii_device *dev = sc->sc_devs[link->target];
struct mpii_cfg_raid_vol_pg0 *vpg;
struct mpii_msg_raid_action_request *req;
struct mpii_msg_raid_action_reply *rep;
struct mpii_cfg_hdr hdr;
struct mpii_ccb *ccb;
u_int32_t addr = MPII_CFG_RAID_VOL_ADDR_HANDLE | dev->dev_handle;
size_t pagelen;
int rv = 0;
int enabled;
if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0,
addr, MPII_PG_POLL, &hdr) != 0)
return (EINVAL);
pagelen = hdr.page_length * 4;
vpg = malloc(pagelen, M_TEMP, M_WAITOK | M_ZERO);
if (vpg == NULL)
return (ENOMEM);
if (mpii_req_cfg_page(sc, addr, MPII_PG_POLL, &hdr, 1,
vpg, pagelen) != 0) {
rv = EINVAL;
goto done;
}
enabled = ((le16toh(vpg->volume_settings) &
MPII_CFG_RAID_VOL_0_SETTINGS_CACHE_MASK) ==
MPII_CFG_RAID_VOL_0_SETTINGS_CACHE_ENABLED) ? 1 : 0;
if (cmd == DIOCGCACHE) {
dc->wrcache = enabled;
dc->rdcache = 0;
goto done;
} /* else DIOCSCACHE */
if (dc->rdcache) {
rv = EOPNOTSUPP;
goto done;
}
if (((dc->wrcache) ? 1 : 0) == enabled)
goto done;
ccb = scsi_io_get(&sc->sc_iopool, SCSI_POLL);
if (ccb == NULL) {
rv = ENOMEM;
goto done;
}
ccb->ccb_done = mpii_empty_done;
req = ccb->ccb_cmd;
memset(req, 0, sizeof(*req));
req->function = MPII_FUNCTION_RAID_ACTION;
req->action = MPII_RAID_ACTION_CHANGE_VOL_WRITE_CACHE;
req->vol_dev_handle = htole16(dev->dev_handle);
req->action_data = htole32(dc->wrcache ?
MPII_RAID_VOL_WRITE_CACHE_ENABLE :
MPII_RAID_VOL_WRITE_CACHE_DISABLE);
if (mpii_poll(sc, ccb) != 0) {
rv = EIO;
goto done;
}
if (ccb->ccb_rcb != NULL) {
rep = ccb->ccb_rcb->rcb_reply;
if ((rep->ioc_status != MPII_IOCSTATUS_SUCCESS) ||
((rep->action_data[0] &
MPII_RAID_VOL_WRITE_CACHE_MASK) !=
(dc->wrcache ? MPII_RAID_VOL_WRITE_CACHE_ENABLE :
MPII_RAID_VOL_WRITE_CACHE_DISABLE)))
rv = EINVAL;
mpii_push_reply(sc, ccb->ccb_rcb);
}
scsi_io_put(&sc->sc_iopool, ccb);
done:
free(vpg, M_TEMP);
return (rv);
}
#endif /* 0 */
#if NBIO > 0
int
mpii_ioctl(device_t dev, u_long cmd, void *addr)
{
struct mpii_softc *sc = device_private(dev);
int error = 0;
DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl ", DEVNAME(sc));
switch (cmd) {
case BIOCINQ:
DNPRINTF(MPII_D_IOCTL, "inq\n");
error = mpii_ioctl_inq(sc, (struct bioc_inq *)addr);
break;
case BIOCVOL:
DNPRINTF(MPII_D_IOCTL, "vol\n");
error = mpii_ioctl_vol(sc, (struct bioc_vol *)addr);
break;
case BIOCDISK:
DNPRINTF(MPII_D_IOCTL, "disk\n");
error = mpii_ioctl_disk(sc, (struct bioc_disk *)addr);
break;
default:
DNPRINTF(MPII_D_IOCTL, " invalid ioctl\n");
error = ENOTTY;
}
return (error);
}
int
mpii_ioctl_inq(struct mpii_softc *sc, struct bioc_inq *bi)
{
int i;
DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl_inq\n", DEVNAME(sc));
strlcpy(bi->bi_dev, DEVNAME(sc), sizeof(bi->bi_dev));
mutex_enter(&sc->sc_devs_mtx);
for (i = 0; i < sc->sc_max_devices; i++)
if (sc->sc_devs[i] &&
ISSET(sc->sc_devs[i]->flags, MPII_DF_VOLUME))
bi->bi_novol++;
mutex_exit(&sc->sc_devs_mtx);
return (0);
}
int
mpii_ioctl_vol(struct mpii_softc *sc, struct bioc_vol *bv)
{
struct mpii_cfg_raid_vol_pg0 *vpg;
struct mpii_cfg_hdr hdr;
struct mpii_device *dev;
size_t pagelen;
u_int16_t volh;
int rv, hcnt = 0;
int percent;
DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl_vol %d\n",
DEVNAME(sc), bv->bv_volid);
mutex_enter(&sc->sc_devs_mtx);
if ((dev = mpii_find_vol(sc, bv->bv_volid)) == NULL) {
mutex_exit(&sc->sc_devs_mtx);
return (ENODEV);
}
volh = dev->dev_handle;
percent = dev->percent;
mutex_exit(&sc->sc_devs_mtx);
if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0,
MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0, &hdr) != 0) {
printf("%s: unable to fetch header for raid volume page 0\n",
DEVNAME(sc));
return (EINVAL);
}
pagelen = hdr.page_length * 4;
vpg = malloc(pagelen, M_TEMP, M_WAITOK | M_ZERO);
if (vpg == NULL) {
printf("%s: unable to allocate space for raid "
"volume page 0\n", DEVNAME(sc));
return (ENOMEM);
}
if (mpii_req_cfg_page(sc, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0,
&hdr, 1, vpg, pagelen) != 0) {
printf("%s: unable to fetch raid volume page 0\n",
DEVNAME(sc));
free(vpg, M_TEMP);
return (EINVAL);
}
switch (vpg->volume_state) {
case MPII_CFG_RAID_VOL_0_STATE_ONLINE:
case MPII_CFG_RAID_VOL_0_STATE_OPTIMAL:
bv->bv_status = BIOC_SVONLINE;
break;
case MPII_CFG_RAID_VOL_0_STATE_DEGRADED:
if (ISSET(le32toh(vpg->volume_status),
MPII_CFG_RAID_VOL_0_STATUS_RESYNC)) {
bv->bv_status = BIOC_SVREBUILD;
bv->bv_percent = percent;
} else
bv->bv_status = BIOC_SVDEGRADED;
break;
case MPII_CFG_RAID_VOL_0_STATE_FAILED:
bv->bv_status = BIOC_SVOFFLINE;
break;
case MPII_CFG_RAID_VOL_0_STATE_INITIALIZING:
bv->bv_status = BIOC_SVBUILDING;
break;
case MPII_CFG_RAID_VOL_0_STATE_MISSING:
default:
bv->bv_status = BIOC_SVINVALID;
break;
}
switch (vpg->volume_type) {
case MPII_CFG_RAID_VOL_0_TYPE_RAID0:
bv->bv_level = 0;
break;
case MPII_CFG_RAID_VOL_0_TYPE_RAID1:
bv->bv_level = 1;
break;
case MPII_CFG_RAID_VOL_0_TYPE_RAID1E:
case MPII_CFG_RAID_VOL_0_TYPE_RAID10:
bv->bv_level = 10;
break;
default:
bv->bv_level = -1;
}
if ((rv = mpii_bio_hs(sc, NULL, 0, vpg->hot_spare_pool, &hcnt)) != 0) {
free(vpg, M_TEMP);
return (rv);
}
bv->bv_nodisk = vpg->num_phys_disks + hcnt;
bv->bv_size = le64toh(vpg->max_lba) * le16toh(vpg->block_size);
free(vpg, M_TEMP);
return (0);
}
int
mpii_ioctl_disk(struct mpii_softc *sc, struct bioc_disk *bd)
{
struct mpii_cfg_raid_vol_pg0 *vpg;
struct mpii_cfg_raid_vol_pg0_physdisk *pd;
struct mpii_cfg_hdr hdr;
struct mpii_device *dev;
size_t pagelen;
u_int16_t volh;
u_int8_t dn;
DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl_disk %d/%d\n",
DEVNAME(sc), bd->bd_volid, bd->bd_diskid);
mutex_enter(&sc->sc_devs_mtx);
if ((dev = mpii_find_vol(sc, bd->bd_volid)) == NULL) {
mutex_exit(&sc->sc_devs_mtx);
return (ENODEV);
}
volh = dev->dev_handle;
mutex_exit(&sc->sc_devs_mtx);
if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0,
MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0, &hdr) != 0) {
printf("%s: unable to fetch header for raid volume page 0\n",
DEVNAME(sc));
return (EINVAL);
}
pagelen = hdr.page_length * 4;
vpg = malloc(pagelen, M_TEMP, M_WAITOK | M_ZERO);
if (vpg == NULL) {
printf("%s: unable to allocate space for raid "
"volume page 0\n", DEVNAME(sc));
return (ENOMEM);
}
if (mpii_req_cfg_page(sc, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0,
&hdr, 1, vpg, pagelen) != 0) {
printf("%s: unable to fetch raid volume page 0\n",
DEVNAME(sc));
free(vpg, M_TEMP);
return (EINVAL);
}
if (bd->bd_diskid >= vpg->num_phys_disks) {
int nvdsk = vpg->num_phys_disks;
int hsmap = vpg->hot_spare_pool;
free(vpg, M_TEMP);
return (mpii_bio_hs(sc, bd, nvdsk, hsmap, NULL));
}
pd = (struct mpii_cfg_raid_vol_pg0_physdisk *)(vpg + 1) +
bd->bd_diskid;
dn = pd->phys_disk_num;
free(vpg, M_TEMP);
return (mpii_bio_disk(sc, bd, dn));
}
int
mpii_bio_hs(struct mpii_softc *sc, struct bioc_disk *bd, int nvdsk,
int hsmap, int *hscnt)
{
struct mpii_cfg_raid_config_pg0 *cpg;
struct mpii_raid_config_element *el;
struct mpii_ecfg_hdr ehdr;
size_t pagelen;
int i, nhs = 0;
if (bd) {
DNPRINTF(MPII_D_IOCTL, "%s: mpii_bio_hs %d\n", DEVNAME(sc),
bd->bd_diskid - nvdsk);
} else {
DNPRINTF(MPII_D_IOCTL, "%s: mpii_bio_hs\n", DEVNAME(sc));
}
if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_CONFIG,
0, MPII_CFG_RAID_CONFIG_ACTIVE_CONFIG, MPII_PG_EXTENDED,
&ehdr) != 0) {
printf("%s: unable to fetch header for raid config page 0\n",
DEVNAME(sc));
return (EINVAL);
}
pagelen = le16toh(ehdr.ext_page_length) * 4;
cpg = malloc(pagelen, M_TEMP, M_WAITOK | M_ZERO);
if (cpg == NULL) {
printf("%s: unable to allocate space for raid config page 0\n",
DEVNAME(sc));
return (ENOMEM);
}
if (mpii_req_cfg_page(sc, MPII_CFG_RAID_CONFIG_ACTIVE_CONFIG,
MPII_PG_EXTENDED, &ehdr, 1, cpg, pagelen) != 0) {
printf("%s: unable to fetch raid config page 0\n",
DEVNAME(sc));
free(cpg, M_TEMP);
return (EINVAL);
}
el = (struct mpii_raid_config_element *)(cpg + 1);
for (i = 0; i < cpg->num_elements; i++, el++) {
if (ISSET(le16toh(el->element_flags),
MPII_RAID_CONFIG_ELEMENT_FLAG_HSP_PHYS_DISK) &&
el->hot_spare_pool == hsmap) {
/*
* diskid comparison is based on the idea that all
* disks are counted by the bio(4) in sequence, thus
* substracting the number of disks in the volume
* from the diskid yields us a "relative" hotspare
* number, which is good enough for us.
*/
if (bd != NULL && bd->bd_diskid == nhs + nvdsk) {
u_int8_t dn = el->phys_disk_num;
free(cpg, M_TEMP);
return (mpii_bio_disk(sc, bd, dn));
}
nhs++;
}
}
if (hscnt)
*hscnt = nhs;
free(cpg, M_TEMP);
return (0);
}
int
mpii_bio_disk(struct mpii_softc *sc, struct bioc_disk *bd, u_int8_t dn)
{
struct mpii_cfg_raid_physdisk_pg0 *ppg;
struct mpii_cfg_hdr hdr;
struct mpii_device *dev;
int len;
DNPRINTF(MPII_D_IOCTL, "%s: mpii_bio_disk %d\n", DEVNAME(sc),
bd->bd_diskid);
ppg = malloc(sizeof(*ppg), M_TEMP, M_WAITOK | M_ZERO);
if (ppg == NULL) {
printf("%s: unable to allocate space for raid physical disk "
"page 0\n", DEVNAME(sc));
return (ENOMEM);
}
hdr.page_version = 0;
hdr.page_length = sizeof(*ppg) / 4;
hdr.page_number = 0;
hdr.page_type = MPII_CONFIG_REQ_PAGE_TYPE_RAID_PD;
if (mpii_req_cfg_page(sc, MPII_CFG_RAID_PHYS_DISK_ADDR_NUMBER | dn, 0,
&hdr, 1, ppg, sizeof(*ppg)) != 0) {
printf("%s: unable to fetch raid drive page 0\n",
DEVNAME(sc));
free(ppg, M_TEMP);
return (EINVAL);
}
bd->bd_target = ppg->phys_disk_num;
mutex_enter(&sc->sc_devs_mtx);
if ((dev = mpii_find_dev(sc, le16toh(ppg->dev_handle))) == NULL) {
mutex_exit(&sc->sc_devs_mtx);
bd->bd_status = BIOC_SDINVALID;
free(ppg, M_TEMP);
return (0);
}
mutex_exit(&sc->sc_devs_mtx);
switch (ppg->phys_disk_state) {
case MPII_CFG_RAID_PHYDISK_0_STATE_ONLINE:
case MPII_CFG_RAID_PHYDISK_0_STATE_OPTIMAL:
bd->bd_status = BIOC_SDONLINE;
break;
case MPII_CFG_RAID_PHYDISK_0_STATE_OFFLINE:
if (ppg->offline_reason ==
MPII_CFG_RAID_PHYDISK_0_OFFLINE_FAILED ||
ppg->offline_reason ==
MPII_CFG_RAID_PHYDISK_0_OFFLINE_FAILEDREQ)
bd->bd_status = BIOC_SDFAILED;
else
bd->bd_status = BIOC_SDOFFLINE;
break;
case MPII_CFG_RAID_PHYDISK_0_STATE_DEGRADED:
bd->bd_status = BIOC_SDFAILED;
break;
case MPII_CFG_RAID_PHYDISK_0_STATE_REBUILDING:
bd->bd_status = BIOC_SDREBUILD;
break;
case MPII_CFG_RAID_PHYDISK_0_STATE_HOTSPARE:
bd->bd_status = BIOC_SDHOTSPARE;
break;
case MPII_CFG_RAID_PHYDISK_0_STATE_NOTCONFIGURED:
bd->bd_status = BIOC_SDUNUSED;
break;
case MPII_CFG_RAID_PHYDISK_0_STATE_NOTCOMPATIBLE:
default:
bd->bd_status = BIOC_SDINVALID;
break;
}
bd->bd_size = le64toh(ppg->dev_max_lba) * le16toh(ppg->block_size);
strnvisx(bd->bd_vendor, sizeof(bd->bd_vendor),
ppg->vendor_id, sizeof(ppg->vendor_id),
VIS_TRIM|VIS_SAFE|VIS_OCTAL);
len = strlen(bd->bd_vendor);
bd->bd_vendor[len] = ' ';
strnvisx(&bd->bd_vendor[len + 1], sizeof(ppg->vendor_id) - len - 1,
ppg->product_id, sizeof(ppg->product_id),
VIS_TRIM|VIS_SAFE|VIS_OCTAL);
strnvisx(bd->bd_serial, sizeof(bd->bd_serial),
ppg->serial, sizeof(ppg->serial), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
free(ppg, M_TEMP);
return (0);
}
struct mpii_device *
mpii_find_vol(struct mpii_softc *sc, int volid)
{
struct mpii_device *dev = NULL;
KASSERT(mutex_owned(&sc->sc_devs_mtx));
if (sc->sc_vd_id_low + volid >= sc->sc_max_devices)
return (NULL);
dev = sc->sc_devs[sc->sc_vd_id_low + volid];
if (dev && ISSET(dev->flags, MPII_DF_VOLUME))
return (dev);
return (NULL);
}
/*
* Non-sleeping lightweight version of the mpii_ioctl_vol
*/
int
mpii_bio_volstate(struct mpii_softc *sc, struct bioc_vol *bv)
{
struct mpii_cfg_raid_vol_pg0 *vpg;
struct mpii_cfg_hdr hdr;
struct mpii_device *dev = NULL;
size_t pagelen;
u_int16_t volh;
mutex_enter(&sc->sc_devs_mtx);
if ((dev = mpii_find_vol(sc, bv->bv_volid)) == NULL) {
mutex_exit(&sc->sc_devs_mtx);
return (ENODEV);
}
volh = dev->dev_handle;
mutex_exit(&sc->sc_devs_mtx);
if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0,
MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, MPII_PG_POLL, &hdr) != 0) {
DNPRINTF(MPII_D_MISC, "%s: unable to fetch header for raid "
"volume page 0\n", DEVNAME(sc));
return (EINVAL);
}
pagelen = hdr.page_length * 4;
vpg = malloc(pagelen, M_TEMP, M_NOWAIT | M_ZERO);
if (vpg == NULL) {
DNPRINTF(MPII_D_MISC, "%s: unable to allocate space for raid "
"volume page 0\n", DEVNAME(sc));
return (ENOMEM);
}
if (mpii_req_cfg_page(sc, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh,
MPII_PG_POLL, &hdr, 1, vpg, pagelen) != 0) {
DNPRINTF(MPII_D_MISC, "%s: unable to fetch raid volume "
"page 0\n", DEVNAME(sc));
free(vpg, M_TEMP);
return (EINVAL);
}
switch (vpg->volume_state) {
case MPII_CFG_RAID_VOL_0_STATE_ONLINE:
case MPII_CFG_RAID_VOL_0_STATE_OPTIMAL:
bv->bv_status = BIOC_SVONLINE;
break;
case MPII_CFG_RAID_VOL_0_STATE_DEGRADED:
if (ISSET(le32toh(vpg->volume_status),
MPII_CFG_RAID_VOL_0_STATUS_RESYNC))
bv->bv_status = BIOC_SVREBUILD;
else
bv->bv_status = BIOC_SVDEGRADED;
break;
case MPII_CFG_RAID_VOL_0_STATE_FAILED:
bv->bv_status = BIOC_SVOFFLINE;
break;
case MPII_CFG_RAID_VOL_0_STATE_INITIALIZING:
bv->bv_status = BIOC_SVBUILDING;
break;
case MPII_CFG_RAID_VOL_0_STATE_MISSING:
default:
bv->bv_status = BIOC_SVINVALID;
break;
}
free(vpg, M_TEMP);
return (0);
}
int
mpii_create_sensors(struct mpii_softc *sc)
{
int i, rv;
DNPRINTF(MPII_D_MISC, "%s: mpii_create_sensors(%d)\n",
DEVNAME(sc), sc->sc_max_volumes);
sc->sc_sme = sysmon_envsys_create();
sc->sc_sensors = malloc(sizeof(envsys_data_t) * sc->sc_max_volumes,
M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc->sc_sensors == NULL) {
aprint_error_dev(sc->sc_dev, "can't allocate envsys_data_t\n");
return (1);
}
for (i = 0; i < sc->sc_max_volumes; i++) {
sc->sc_sensors[i].units = ENVSYS_DRIVE;
sc->sc_sensors[i].state = ENVSYS_SINVALID;
sc->sc_sensors[i].value_cur = ENVSYS_DRIVE_EMPTY;
sc->sc_sensors[i].flags |= ENVSYS_FMONSTCHANGED;
/* logical drives */
snprintf(sc->sc_sensors[i].desc,
sizeof(sc->sc_sensors[i].desc), "%s:%d",
DEVNAME(sc), i);
if ((rv = sysmon_envsys_sensor_attach(sc->sc_sme,
&sc->sc_sensors[i])) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to attach sensor (rv = %d)\n", rv);
goto out;
}
}
sc->sc_sme->sme_name = DEVNAME(sc);
sc->sc_sme->sme_cookie = sc;
sc->sc_sme->sme_refresh = mpii_refresh_sensors;
rv = sysmon_envsys_register(sc->sc_sme);
if (rv != 0) {
aprint_error_dev(sc->sc_dev,
"unable to register with sysmon (rv = %d)\n", rv);
goto out;
}
return 0;
out:
free(sc->sc_sensors, M_DEVBUF);
sysmon_envsys_destroy(sc->sc_sme);
sc->sc_sme = NULL;
return 1;
}
int
mpii_destroy_sensors(struct mpii_softc *sc)
{
if (sc->sc_sme == NULL)
return 0;
sysmon_envsys_unregister(sc->sc_sme);
sc->sc_sme = NULL;
free(sc->sc_sensors, M_DEVBUF);
return 0;
}
void
mpii_refresh_sensors(struct sysmon_envsys *sme, envsys_data_t *edata)
{
struct mpii_softc *sc = sme->sme_cookie;
struct bioc_vol bv;
memset(&bv, 0, sizeof(bv));
bv.bv_volid = edata->sensor;
if (mpii_bio_volstate(sc, &bv))
bv.bv_status = BIOC_SVINVALID;
bio_vol_to_envsys(edata, &bv);
}
#endif /* NBIO > 0 */