Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
/*-
 * Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This material is based upon work partially supported by The
 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Various protocol related helper routines.
 *
 * This layer manipulates npf_cache_t structure i.e. caches requested headers
 * and stores which information was cached in the information bit field.
 * It is also responsibility of this layer to update or invalidate the cache
 * on rewrites (e.g. by translation routines).
 */

#ifdef _KERNEL
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.54.2.3 2020/06/20 15:46:48 martin Exp $");

#include <sys/param.h>
#include <sys/types.h>

#include <net/pfil.h>
#include <net/if.h>
#include <net/ethertypes.h>
#include <net/if_ether.h>

#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet6/in6_var.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <netinet/ip_icmp.h>
#endif

#include "npf_impl.h"

/*
 * npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
 */

uint16_t
npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
{
	uint32_t sum;

	/*
	 * RFC 1624:
	 *	HC' = ~(~HC + ~m + m')
	 *
	 * Note: 1's complement sum is endian-independent (RFC 1071, page 2).
	 */
	sum = ~cksum & 0xffff;
	sum += (~odatum & 0xffff) + ndatum;
	sum = (sum >> 16) + (sum & 0xffff);
	sum += (sum >> 16);

	return ~sum & 0xffff;
}

uint16_t
npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
{
	uint32_t sum;

	/*
	 * Checksum 32-bit datum as as two 16-bit.  Note, the first
	 * 32->16 bit reduction is not necessary.
	 */
	sum = ~cksum & 0xffff;
	sum += (~odatum & 0xffff) + (ndatum & 0xffff);

	sum += (~odatum >> 16) + (ndatum >> 16);
	sum = (sum >> 16) + (sum & 0xffff);
	sum += (sum >> 16);
	return ~sum & 0xffff;
}

/*
 * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
 */
uint16_t
npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
    const npf_addr_t *naddr)
{
	const uint32_t *oip32 = (const uint32_t *)oaddr;
	const uint32_t *nip32 = (const uint32_t *)naddr;

	KASSERT(sz % sizeof(uint32_t) == 0);
	do {
		cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
		sz -= sizeof(uint32_t);
	} while (sz);

	return cksum;
}

/*
 * npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
 * Note: used for hash function.
 */
uint32_t
npf_addr_mix(const int alen, const npf_addr_t *a1, const npf_addr_t *a2)
{
	const int nwords = alen >> 2;
	uint32_t mix = 0;

	KASSERT(alen > 0 && a1 != NULL && a2 != NULL);

	for (int i = 0; i < nwords; i++) {
		mix ^= a1->word32[i];
		mix ^= a2->word32[i];
	}
	return mix;
}

/*
 * npf_addr_mask: apply the mask to a given address and store the result.
 */
void
npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
    const int alen, npf_addr_t *out)
{
	const int nwords = alen >> 2;
	uint_fast8_t length = mask;

	/* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
	KASSERT(length <= NPF_MAX_NETMASK);

	for (int i = 0; i < nwords; i++) {
		uint32_t wordmask;

		if (length >= 32) {
			wordmask = htonl(0xffffffff);
			length -= 32;
		} else if (length) {
			wordmask = htonl(0xffffffff << (32 - length));
			length = 0;
		} else {
			wordmask = 0;
		}
		out->word32[i] = addr->word32[i] & wordmask;
	}
}

/*
 * npf_addr_bitor: bitwise OR the host part (given the netmask).
 * Zero mask can be used to OR the entire address.
 */
void
npf_addr_bitor(const npf_addr_t *addr, const npf_netmask_t mask,
    const int alen, npf_addr_t *out)
{
	const int nwords = alen >> 2;
	uint_fast8_t length = mask;

	/* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
	KASSERT(length <= NPF_MAX_NETMASK);

	for (int i = 0; i < nwords; i++) {
		uint32_t wordmask;

		if (length >= 32) {
			wordmask = htonl(0xffffffff);
			length -= 32;
		} else if (length) {
			wordmask = htonl(0xffffffff << (32 - length));
			length = 0;
		} else {
			wordmask = 0;
		}
		out->word32[i] |= addr->word32[i] & ~wordmask;
	}
}

/*
 * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
 *
 * => Return 0 if equal and negative/positive if less/greater accordingly.
 * => Ignore the mask, if NPF_NO_NETMASK is specified.
 */
int
npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
    const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
{
	npf_addr_t realaddr1, realaddr2;

	if (mask1 != NPF_NO_NETMASK) {
		npf_addr_mask(addr1, mask1, alen, &realaddr1);
		addr1 = &realaddr1;
	}
	if (mask2 != NPF_NO_NETMASK) {
		npf_addr_mask(addr2, mask2, alen, &realaddr2);
		addr2 = &realaddr2;
	}
	return memcmp(addr1, addr2, alen);
}

int
npf_netmask_check(const int alen, npf_netmask_t mask)
{
	switch (alen) {
	case sizeof(struct in_addr):
		if (__predict_false(mask > 32 && mask != NPF_NO_NETMASK)) {
			return EINVAL;
		}
		break;
	case sizeof(struct in6_addr):
		if (__predict_false(mask > 128 && mask != NPF_NO_NETMASK)) {
			return EINVAL;
		}
		break;
	default:
		return EINVAL;
	}
	return 0;
}

/*
 * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
 *
 * => Returns all values in host byte-order.
 */
int
npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
{
	const struct tcphdr *th = npc->npc_l4.tcp;
	u_int thlen;

	KASSERT(npf_iscached(npc, NPC_TCP));

	*seq = ntohl(th->th_seq);
	*ack = ntohl(th->th_ack);
	*win = (uint32_t)ntohs(th->th_win);
	thlen = th->th_off << 2;

	if (npf_iscached(npc, NPC_IP4)) {
		const struct ip *ip = npc->npc_ip.v4;
		return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
	} else if (npf_iscached(npc, NPC_IP6)) {
		const struct ip6_hdr *ip6 = npc->npc_ip.v6;
		return ntohs(ip6->ip6_plen) -
		    (npc->npc_hlen - sizeof(*ip6)) - thlen;
	}
	return 0;
}

/*
 * npf_fetch_tcpopts: parse and return TCP options.
 */
bool
npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
{
	nbuf_t *nbuf = npc->npc_nbuf;
	const struct tcphdr *th = npc->npc_l4.tcp;
	int cnt, optlen = 0;
	uint8_t *cp, opt;
	uint8_t val;
	bool ok;

	KASSERT(npf_iscached(npc, NPC_IP46));
	KASSERT(npf_iscached(npc, NPC_TCP));

	/* Determine if there are any TCP options, get their length. */
	cnt = (th->th_off << 2) - sizeof(struct tcphdr);
	if (cnt <= 0) {
		/* No options. */
		return false;
	}
	KASSERT(cnt <= MAX_TCPOPTLEN);

	/* Fetch all the options at once. */
	nbuf_reset(nbuf);
	const int step = npc->npc_hlen + sizeof(struct tcphdr);
	if ((cp = nbuf_advance(nbuf, step, cnt)) == NULL) {
		ok = false;
		goto done;
	}

	/* Scan the options. */
	for (; cnt > 0; cnt -= optlen, cp += optlen) {
		opt = cp[0];
		if (opt == TCPOPT_EOL)
			break;
		if (opt == TCPOPT_NOP)
			optlen = 1;
		else {
			if (cnt < 2)
				break;
			optlen = cp[1];
			if (optlen < 2 || optlen > cnt)
				break;
		}

		switch (opt) {
		case TCPOPT_MAXSEG:
			if (optlen != TCPOLEN_MAXSEG)
				continue;
			if (mss) {
				memcpy(mss, cp + 2, sizeof(uint16_t));
			}
			break;
		case TCPOPT_WINDOW:
			if (optlen != TCPOLEN_WINDOW)
				continue;
			val = *(cp + 2);
			*wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
			break;
		default:
			break;
		}
	}

	ok = true;
done:
	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
		npf_recache(npc);
	}
	return ok;
}

/*
 * npf_set_mss: set the MSS.
 */
bool
npf_set_mss(npf_cache_t *npc, uint16_t mss, uint16_t *old, uint16_t *new,
    bool *mid)
{
	nbuf_t *nbuf = npc->npc_nbuf;
	const struct tcphdr *th = npc->npc_l4.tcp;
	int cnt, optlen = 0;
	uint8_t *cp, *base, opt;
	bool ok;

	KASSERT(npf_iscached(npc, NPC_IP46));
	KASSERT(npf_iscached(npc, NPC_TCP));

	/* Determine if there are any TCP options, get their length. */
	cnt = (th->th_off << 2) - sizeof(struct tcphdr);
	if (cnt <= 0) {
		/* No options. */
		return false;
	}
	KASSERT(cnt <= MAX_TCPOPTLEN);

	/* Fetch all the options at once. */
	nbuf_reset(nbuf);
	const int step = npc->npc_hlen + sizeof(struct tcphdr);
	if ((base = nbuf_advance(nbuf, step, cnt)) == NULL) {
		ok = false;
		goto done;
	}

	/* Scan the options. */
	for (cp = base; cnt > 0; cnt -= optlen, cp += optlen) {
		opt = cp[0];
		if (opt == TCPOPT_EOL)
			break;
		if (opt == TCPOPT_NOP)
			optlen = 1;
		else {
			if (cnt < 2)
				break;
			optlen = cp[1];
			if (optlen < 2 || optlen > cnt)
				break;
		}

		switch (opt) {
		case TCPOPT_MAXSEG:
			if (optlen != TCPOLEN_MAXSEG)
				continue;
			if (((cp + 2) - base) % sizeof(uint16_t) != 0) {
				*mid = true;
				memcpy(&old[0], cp + 1, sizeof(uint16_t));
				memcpy(&old[1], cp + 3, sizeof(uint16_t));
				memcpy(cp + 2, &mss, sizeof(uint16_t));
				memcpy(&new[0], cp + 1, sizeof(uint16_t));
				memcpy(&new[1], cp + 3, sizeof(uint16_t));
			} else {
				*mid = false;
				memcpy(cp + 2, &mss, sizeof(uint16_t));
			}
			break;
		default:
			break;
		}
	}

	ok = true;
done:
	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
		npf_recache(npc);
	}
	return ok;
}

static int
npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
{
	const void *nptr = nbuf_dataptr(nbuf);
	const uint8_t ver = *(const uint8_t *)nptr;
	int flags = 0;

	/*
	 * We intentionally don't read the L4 payload after IPPROTO_AH.
	 */

	switch (ver >> 4) {
	case IPVERSION: {
		struct ip *ip;

		ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
		if (ip == NULL) {
			return NPC_FMTERR;
		}

		/* Retrieve the complete header. */
		if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
			return NPC_FMTERR;
		}
		ip = nbuf_ensure_contig(nbuf, (u_int)(ip->ip_hl << 2));
		if (ip == NULL) {
			return NPC_FMTERR;
		}

		if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
			/* Note fragmentation. */
			flags |= NPC_IPFRAG;
		}

		/* Cache: layer 3 - IPv4. */
		npc->npc_alen = sizeof(struct in_addr);
		npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
		npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
		npc->npc_hlen = ip->ip_hl << 2;
		npc->npc_proto = ip->ip_p;

		npc->npc_ip.v4 = ip;
		flags |= NPC_IP4;
		break;
	}

	case (IPV6_VERSION >> 4): {
		struct ip6_hdr *ip6;
		struct ip6_ext *ip6e;
		struct ip6_frag *ip6f;
		size_t off, hlen;
		int frag_present;

		ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
		if (ip6 == NULL) {
			return NPC_FMTERR;
		}

		/*
		 * XXX: We don't handle IPv6 Jumbograms.
		 */

		/* Set initial next-protocol value. */
		hlen = sizeof(struct ip6_hdr);
		npc->npc_proto = ip6->ip6_nxt;
		npc->npc_hlen = hlen;

		frag_present = 0;

		/*
		 * Advance by the length of the current header.
		 */
		off = nbuf_offset(nbuf);
		while ((ip6e = nbuf_advance(nbuf, hlen, sizeof(*ip6e))) != NULL) {
			/*
			 * Determine whether we are going to continue.
			 */
			switch (npc->npc_proto) {
			case IPPROTO_HOPOPTS:
			case IPPROTO_DSTOPTS:
			case IPPROTO_ROUTING:
				hlen = (ip6e->ip6e_len + 1) << 3;
				break;
			case IPPROTO_FRAGMENT:
				if (frag_present++)
					return NPC_FMTERR;
				ip6f = nbuf_ensure_contig(nbuf, sizeof(*ip6f));
				if (ip6f == NULL)
					return NPC_FMTERR;

				/* RFC6946: Skip dummy fragments. */
				if (!ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK) &&
				    !(ip6f->ip6f_offlg & IP6F_MORE_FRAG)) {
					hlen = sizeof(struct ip6_frag);
					break;
				}

				hlen = 0;
				flags |= NPC_IPFRAG;

				break;
			default:
				hlen = 0;
				break;
			}

			if (!hlen) {
				break;
			}
			npc->npc_proto = ip6e->ip6e_nxt;
			npc->npc_hlen += hlen;
		}

		if (ip6e == NULL) {
			return NPC_FMTERR;
		}

		/*
		 * Re-fetch the header pointers (nbufs might have been
		 * reallocated).  Restore the original offset (if any).
		 */
		nbuf_reset(nbuf);
		ip6 = nbuf_dataptr(nbuf);
		if (off) {
			nbuf_advance(nbuf, off, 0);
		}

		/* Cache: layer 3 - IPv6. */
		npc->npc_alen = sizeof(struct in6_addr);
		npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
		npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip6->ip6_dst;

		npc->npc_ip.v6 = ip6;
		flags |= NPC_IP6;
		break;
	}
	default:
		break;
	}
	return flags;
}

static inline int
npf_cache_tcp(npf_cache_t *npc, nbuf_t *nbuf, unsigned hlen)
{
	struct tcphdr *th;

	th = nbuf_advance(nbuf, hlen, sizeof(struct tcphdr));
	if (__predict_false(th == NULL)) {
		return NPC_FMTERR;
	}
	if (__predict_false(th->th_off < 5)) {
		return NPC_FMTERR;
	}
	npc->npc_l4.tcp = th;
	return NPC_LAYER4 | NPC_TCP;
}

/*
 * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
 * and TCP, UDP or ICMP headers.
 *
 * => nbuf offset shall be set accordingly.
 */
int
npf_cache_all(npf_cache_t *npc)
{
	nbuf_t *nbuf = npc->npc_nbuf;
	int flags, l4flags;
	u_int hlen;

	/*
	 * This routine is a main point where the references are cached,
	 * therefore clear the flag as we reset.
	 */
again:
	nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);

	/*
	 * First, cache the L3 header (IPv4 or IPv6).  If IP packet is
	 * fragmented, then we cannot look into L4.
	 */
	flags = npf_cache_ip(npc, nbuf);
	if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0 ||
	    (flags & NPC_FMTERR) != 0) {
		goto out;
	}
	hlen = npc->npc_hlen;

	/*
	 * Note: we guarantee that the potential "Query Id" field of the
	 * ICMPv4/ICMPv6 packets is in the nbuf. This field is used in the
	 * ICMP ALG.
	 */
	switch (npc->npc_proto) {
	case IPPROTO_TCP:
		/* Cache: layer 4 - TCP. */
		l4flags = npf_cache_tcp(npc, nbuf, hlen);
		break;
	case IPPROTO_UDP:
		/* Cache: layer 4 - UDP. */
		npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
		    sizeof(struct udphdr));
		l4flags = NPC_LAYER4 | NPC_UDP;
		break;
	case IPPROTO_ICMP:
		/* Cache: layer 4 - ICMPv4. */
		npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
		    ICMP_MINLEN);
		l4flags = NPC_LAYER4 | NPC_ICMP;
		break;
	case IPPROTO_ICMPV6:
		/* Cache: layer 4 - ICMPv6. */
		npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
		    sizeof(struct icmp6_hdr));
		l4flags = NPC_LAYER4 | NPC_ICMP;
		break;
	default:
		l4flags = 0;
		break;
	}

	/*
	 * Error out if nbuf_advance() failed.
	 */
	if (__predict_false(l4flags && !npc->npc_l4.hdr)) {
		goto err;
	}

	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
		goto again;
	}

	flags |= l4flags;
	npc->npc_info |= flags;
	return flags;

err:
	flags = NPC_FMTERR;
out:
	nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
	npc->npc_info |= flags;
	return flags;
}

void
npf_recache(npf_cache_t *npc)
{
	nbuf_t *nbuf = npc->npc_nbuf;
	const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
	int flags __diagused;

	nbuf_reset(nbuf);
	npc->npc_info = 0;
	flags = npf_cache_all(npc);

	KASSERT((flags & mflags) == mflags);
	KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
}

/*
 * npf_rwrip: rewrite required IP address.
 */
bool
npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
{
	KASSERT(npf_iscached(npc, NPC_IP46));
	KASSERT(which == NPF_SRC || which == NPF_DST);

	memcpy(npc->npc_ips[which], addr, npc->npc_alen);
	return true;
}

/*
 * npf_rwrport: rewrite required TCP/UDP port.
 */
bool
npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
{
	const int proto = npc->npc_proto;
	in_port_t *oport;

	KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
	KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
	KASSERT(which == NPF_SRC || which == NPF_DST);

	/* Get the offset and store the port in it. */
	if (proto == IPPROTO_TCP) {
		struct tcphdr *th = npc->npc_l4.tcp;
		oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
	} else {
		struct udphdr *uh = npc->npc_l4.udp;
		oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
	}
	memcpy(oport, &port, sizeof(in_port_t));
	return true;
}

/*
 * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
 */
bool
npf_rwrcksum(const npf_cache_t *npc, u_int which,
    const npf_addr_t *addr, const in_port_t port)
{
	const npf_addr_t *oaddr = npc->npc_ips[which];
	const int proto = npc->npc_proto;
	const int alen = npc->npc_alen;
	uint16_t cksum, *ocksum;
	struct tcphdr *th;
	struct udphdr *uh;
	in_port_t oport;

	KASSERT(npf_iscached(npc, NPC_LAYER4));
	KASSERT(which == NPF_SRC || which == NPF_DST);

	if (npf_iscached(npc, NPC_IP4)) {
		struct ip *ip = npc->npc_ip.v4;
		uint16_t ipsum = ip->ip_sum;

		/* Recalculate IPv4 checksum and rewrite. */
		ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
	} else {
		/* No checksum for IPv6. */
		KASSERT(npf_iscached(npc, NPC_IP6));
	}

	/*
	 * Calculate TCP/UDP checksum:
	 * - Skip if UDP and the current checksum is zero.
	 * - Fixup the IP address change.
	 * - Fixup the port change, if required (non-zero).
	 */
	switch (proto) {
	case IPPROTO_TCP:
		KASSERT(npf_iscached(npc, NPC_TCP));
		th = npc->npc_l4.tcp;
		ocksum = &th->th_sum;
		oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
		break;
	case IPPROTO_UDP:
		KASSERT(npf_iscached(npc, NPC_UDP));
		uh = npc->npc_l4.udp;
		ocksum = &uh->uh_sum;
		if (*ocksum == 0) {
			/* No need to update. */
			return true;
		}
		oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
		break;
	case IPPROTO_ICMP:
	case IPPROTO_ICMPV6:
	default:
		/* Nothing else to do for ICMP. */
		return true;
	}

	/*
	 * Update and rewrite the TCP/UDP checksum.
	 */
	cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
	if (port) {
		cksum = npf_fixup16_cksum(cksum, oport, port);
	}
	memcpy(ocksum, &cksum, sizeof(uint16_t));
	return true;
}

/*
 * npf_napt_rwr: perform address and/or port translation.
 */
int
npf_napt_rwr(const npf_cache_t *npc, u_int which,
    const npf_addr_t *addr, const in_addr_t port)
{
	const unsigned proto = npc->npc_proto;

	/*
	 * Rewrite IP and/or TCP/UDP checksums first, since we need the
	 * current (old) address/port for the calculations.  Then perform
	 * the address translation i.e. rewrite source or destination.
	 */
	if (!npf_rwrcksum(npc, which, addr, port)) {
		return EINVAL;
	}
	if (!npf_rwrip(npc, which, addr)) {
		return EINVAL;
	}
	if (port == 0) {
		/* Done. */
		return 0;
	}

	switch (proto) {
	case IPPROTO_TCP:
	case IPPROTO_UDP:
		/* Rewrite source/destination port. */
		if (!npf_rwrport(npc, which, port)) {
			return EINVAL;
		}
		break;
	case IPPROTO_ICMP:
	case IPPROTO_ICMPV6:
		KASSERT(npf_iscached(npc, NPC_ICMP));
		/* Nothing. */
		break;
	default:
		return ENOTSUP;
	}
	return 0;
}

/*
 * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
 */
int
npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
    npf_netmask_t len, uint16_t adj)
{
	npf_addr_t *addr = npc->npc_ips[which];
	unsigned remnant, word, preflen = len >> 4;
	uint32_t sum;

	KASSERT(which == NPF_SRC || which == NPF_DST);

	if (!npf_iscached(npc, NPC_IP6)) {
		return EINVAL;
	}
	if (len <= 48) {
		/*
		 * The word to adjust.  Cannot translate the 0xffff
		 * subnet if /48 or shorter.
		 */
		word = 3;
		if (addr->word16[word] == 0xffff) {
			return EINVAL;
		}
	} else {
		/*
		 * Also, all 0s or 1s in the host part are disallowed for
		 * longer than /48 prefixes.
		 */
		if ((addr->word32[2] == 0 && addr->word32[3] == 0) ||
		    (addr->word32[2] == ~0U && addr->word32[3] == ~0U))
			return EINVAL;

		/* Determine the 16-bit word to adjust. */
		for (word = 4; word < 8; word++)
			if (addr->word16[word] != 0xffff)
				break;
	}

	/* Rewrite the prefix. */
	for (unsigned i = 0; i < preflen; i++) {
		addr->word16[i] = pref->word16[i];
	}

	/*
	 * If prefix length is within a 16-bit word (not dividable by 16),
	 * then prepare a mask, determine the word and adjust it.
	 */
	if ((remnant = len - (preflen << 4)) != 0) {
		const uint16_t wordmask = (1U << remnant) - 1;
		const unsigned i = preflen;

		addr->word16[i] = (pref->word16[i] & wordmask) |
		    (addr->word16[i] & ~wordmask);
	}

	/*
	 * Performing 1's complement sum/difference.
	 */
	sum = addr->word16[word] + adj;
	while (sum >> 16) {
		sum = (sum >> 16) + (sum & 0xffff);
	}
	if (sum == 0xffff) {
		/* RFC 1071. */
		sum = 0x0000;
	}
	addr->word16[word] = sum;
	return 0;
}

#if defined(DDB) || defined(_NPF_TESTING)

const char *
npf_addr_dump(const npf_addr_t *addr, int alen)
{
	if (alen == sizeof(struct in_addr)) {
		struct in_addr ip;
		memcpy(&ip, addr, alen);
		return inet_ntoa(ip);
	}
	return "[IPv6]";
}

#endif