Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
//===--- USRLocFinder.cpp - Clang refactoring library ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Methods for finding all instances of a USR. Our strategy is very
/// simple; we just compare the USR at every relevant AST node with the one
/// provided.
///
//===----------------------------------------------------------------------===//

#include "clang/Tooling/Refactoring/Rename/USRLocFinder.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Lexer.h"
#include "clang/Tooling/Core/Lookup.h"
#include "clang/Tooling/Refactoring/RecursiveSymbolVisitor.h"
#include "clang/Tooling/Refactoring/Rename/SymbolName.h"
#include "clang/Tooling/Refactoring/Rename/USRFinder.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include <cstddef>
#include <set>
#include <string>
#include <vector>

using namespace llvm;

namespace clang {
namespace tooling {

namespace {

// Returns true if the given Loc is valid for edit. We don't edit the
// SourceLocations that are valid or in temporary buffer.
bool IsValidEditLoc(const clang::SourceManager& SM, clang::SourceLocation Loc) {
  if (Loc.isInvalid())
    return false;
  const clang::FullSourceLoc FullLoc(Loc, SM);
  std::pair<clang::FileID, unsigned> FileIdAndOffset =
      FullLoc.getSpellingLoc().getDecomposedLoc();
  return SM.getFileEntryForID(FileIdAndOffset.first) != nullptr;
}

// This visitor recursively searches for all instances of a USR in a
// translation unit and stores them for later usage.
class USRLocFindingASTVisitor
    : public RecursiveSymbolVisitor<USRLocFindingASTVisitor> {
public:
  explicit USRLocFindingASTVisitor(const std::vector<std::string> &USRs,
                                   StringRef PrevName,
                                   const ASTContext &Context)
      : RecursiveSymbolVisitor(Context.getSourceManager(),
                               Context.getLangOpts()),
        USRSet(USRs.begin(), USRs.end()), PrevName(PrevName), Context(Context) {
  }

  bool visitSymbolOccurrence(const NamedDecl *ND,
                             ArrayRef<SourceRange> NameRanges) {
    if (USRSet.find(getUSRForDecl(ND)) != USRSet.end()) {
      assert(NameRanges.size() == 1 &&
             "Multiple name pieces are not supported yet!");
      SourceLocation Loc = NameRanges[0].getBegin();
      const SourceManager &SM = Context.getSourceManager();
      // TODO: Deal with macro occurrences correctly.
      if (Loc.isMacroID())
        Loc = SM.getSpellingLoc(Loc);
      checkAndAddLocation(Loc);
    }
    return true;
  }

  // Non-visitors:

  /// Returns a set of unique symbol occurrences. Duplicate or
  /// overlapping occurrences are erroneous and should be reported!
  SymbolOccurrences takeOccurrences() { return std::move(Occurrences); }

private:
  void checkAndAddLocation(SourceLocation Loc) {
    const SourceLocation BeginLoc = Loc;
    const SourceLocation EndLoc = Lexer::getLocForEndOfToken(
        BeginLoc, 0, Context.getSourceManager(), Context.getLangOpts());
    StringRef TokenName =
        Lexer::getSourceText(CharSourceRange::getTokenRange(BeginLoc, EndLoc),
                             Context.getSourceManager(), Context.getLangOpts());
    size_t Offset = TokenName.find(PrevName.getNamePieces()[0]);

    // The token of the source location we find actually has the old
    // name.
    if (Offset != StringRef::npos)
      Occurrences.emplace_back(PrevName, SymbolOccurrence::MatchingSymbol,
                               BeginLoc.getLocWithOffset(Offset));
  }

  const std::set<std::string> USRSet;
  const SymbolName PrevName;
  SymbolOccurrences Occurrences;
  const ASTContext &Context;
};

SourceLocation StartLocationForType(TypeLoc TL) {
  // For elaborated types (e.g. `struct a::A`) we want the portion after the
  // `struct` but including the namespace qualifier, `a::`.
  if (auto ElaboratedTypeLoc = TL.getAs<clang::ElaboratedTypeLoc>()) {
    NestedNameSpecifierLoc NestedNameSpecifier =
        ElaboratedTypeLoc.getQualifierLoc();
    if (NestedNameSpecifier.getNestedNameSpecifier())
      return NestedNameSpecifier.getBeginLoc();
    TL = TL.getNextTypeLoc();
  }
  return TL.getLocStart();
}

SourceLocation EndLocationForType(TypeLoc TL) {
  // Dig past any namespace or keyword qualifications.
  while (TL.getTypeLocClass() == TypeLoc::Elaborated ||
         TL.getTypeLocClass() == TypeLoc::Qualified)
    TL = TL.getNextTypeLoc();

  // The location for template specializations (e.g. Foo<int>) includes the
  // templated types in its location range.  We want to restrict this to just
  // before the `<` character.
  if (TL.getTypeLocClass() == TypeLoc::TemplateSpecialization) {
    return TL.castAs<TemplateSpecializationTypeLoc>()
        .getLAngleLoc()
        .getLocWithOffset(-1);
  }
  return TL.getEndLoc();
}

NestedNameSpecifier *GetNestedNameForType(TypeLoc TL) {
  // Dig past any keyword qualifications.
  while (TL.getTypeLocClass() == TypeLoc::Qualified)
    TL = TL.getNextTypeLoc();

  // For elaborated types (e.g. `struct a::A`) we want the portion after the
  // `struct` but including the namespace qualifier, `a::`.
  if (auto ElaboratedTypeLoc = TL.getAs<clang::ElaboratedTypeLoc>())
    return ElaboratedTypeLoc.getQualifierLoc().getNestedNameSpecifier();
  return nullptr;
}

// Find all locations identified by the given USRs for rename.
//
// This class will traverse the AST and find every AST node whose USR is in the
// given USRs' set.
class RenameLocFinder : public RecursiveASTVisitor<RenameLocFinder> {
public:
  RenameLocFinder(llvm::ArrayRef<std::string> USRs, ASTContext &Context)
      : USRSet(USRs.begin(), USRs.end()), Context(Context) {}

  // A structure records all information of a symbol reference being renamed.
  // We try to add as few prefix qualifiers as possible.
  struct RenameInfo {
    // The begin location of a symbol being renamed.
    SourceLocation Begin;
    // The end location of a symbol being renamed.
    SourceLocation End;
    // The declaration of a symbol being renamed (can be nullptr).
    const NamedDecl *FromDecl;
    // The declaration in which the nested name is contained (can be nullptr).
    const Decl *Context;
    // The nested name being replaced (can be nullptr).
    const NestedNameSpecifier *Specifier;
    // Determine whether the prefix qualifiers of the NewName should be ignored.
    // Normally, we set it to true for the symbol declaration and definition to
    // avoid adding prefix qualifiers.
    // For example, if it is true and NewName is "a::b::foo", then the symbol
    // occurrence which the RenameInfo points to will be renamed to "foo".
    bool IgnorePrefixQualifers;
  };

  bool VisitNamedDecl(const NamedDecl *Decl) {
    // UsingDecl has been handled in other place.
    if (llvm::isa<UsingDecl>(Decl))
      return true;

    // DestructorDecl has been handled in Typeloc.
    if (llvm::isa<CXXDestructorDecl>(Decl))
      return true;

    if (Decl->isImplicit())
      return true;

    if (isInUSRSet(Decl)) {
      // For the case of renaming an alias template, we actually rename the
      // underlying alias declaration of the template.
      if (const auto* TAT = dyn_cast<TypeAliasTemplateDecl>(Decl))
        Decl = TAT->getTemplatedDecl();

      auto StartLoc = Decl->getLocation();
      auto EndLoc = StartLoc;
      if (IsValidEditLoc(Context.getSourceManager(), StartLoc)) {
        RenameInfo Info = {StartLoc,
                           EndLoc,
                           /*FromDecl=*/nullptr,
                           /*Context=*/nullptr,
                           /*Specifier=*/nullptr,
                           /*IgnorePrefixQualifers=*/true};
        RenameInfos.push_back(Info);
      }
    }
    return true;
  }

  bool VisitMemberExpr(const MemberExpr *Expr) {
    const NamedDecl *Decl = Expr->getFoundDecl();
    auto StartLoc = Expr->getMemberLoc();
    auto EndLoc = Expr->getMemberLoc();
    if (isInUSRSet(Decl)) {
      RenameInfos.push_back({StartLoc, EndLoc,
                            /*FromDecl=*/nullptr,
                            /*Context=*/nullptr,
                            /*Specifier=*/nullptr,
                            /*IgnorePrefixQualifiers=*/true});
    }
    return true;
  }

  bool VisitCXXConstructorDecl(const CXXConstructorDecl *CD) {
    // Fix the constructor initializer when renaming class members.
    for (const auto *Initializer : CD->inits()) {
      // Ignore implicit initializers.
      if (!Initializer->isWritten())
        continue;

      if (const FieldDecl *FD = Initializer->getMember()) {
        if (isInUSRSet(FD)) {
          auto Loc = Initializer->getSourceLocation();
          RenameInfos.push_back({Loc, Loc,
                                 /*FromDecl=*/nullptr,
                                 /*Context=*/nullptr,
                                 /*Specifier=*/nullptr,
                                 /*IgnorePrefixQualifiers=*/true});
        }
      }
    }
    return true;
  }

  bool VisitDeclRefExpr(const DeclRefExpr *Expr) {
    const NamedDecl *Decl = Expr->getFoundDecl();
    // Get the underlying declaration of the shadow declaration introduced by a
    // using declaration.
    if (auto *UsingShadow = llvm::dyn_cast<UsingShadowDecl>(Decl)) {
      Decl = UsingShadow->getTargetDecl();
    }

    auto StartLoc = Expr->getLocStart();
    // For template function call expressions like `foo<int>()`, we want to
    // restrict the end of location to just before the `<` character.
    SourceLocation EndLoc = Expr->hasExplicitTemplateArgs()
                                ? Expr->getLAngleLoc().getLocWithOffset(-1)
                                : Expr->getLocEnd();

    if (const auto *MD = llvm::dyn_cast<CXXMethodDecl>(Decl)) {
      if (isInUSRSet(MD)) {
        // Handle renaming static template class methods, we only rename the
        // name without prefix qualifiers and restrict the source range to the
        // name.
        RenameInfos.push_back({EndLoc, EndLoc,
                               /*FromDecl=*/nullptr,
                               /*Context=*/nullptr,
                               /*Specifier=*/nullptr,
                               /*IgnorePrefixQualifiers=*/true});
        return true;
      }
    }

    // In case of renaming an enum declaration, we have to explicitly handle
    // unscoped enum constants referenced in expressions (e.g.
    // "auto r = ns1::ns2::Green" where Green is an enum constant of an unscoped
    // enum decl "ns1::ns2::Color") as these enum constants cannot be caught by
    // TypeLoc.
    if (const auto *T = llvm::dyn_cast<EnumConstantDecl>(Decl)) {
      // FIXME: Handle the enum constant without prefix qualifiers (`a = Green`)
      // when renaming an unscoped enum declaration with a new namespace.
      if (!Expr->hasQualifier())
        return true;

      if (const auto *ED =
              llvm::dyn_cast_or_null<EnumDecl>(getClosestAncestorDecl(*T))) {
        if (ED->isScoped())
          return true;
        Decl = ED;
      }
      // The current fix would qualify "ns1::ns2::Green" as
      // "ns1::ns2::Color::Green".
      //
      // Get the EndLoc of the replacement by moving 1 character backward (
      // to exclude the last '::').
      //
      //    ns1::ns2::Green;
      //    ^      ^^
      // BeginLoc  |EndLoc of the qualifier
      //           new EndLoc
      EndLoc = Expr->getQualifierLoc().getEndLoc().getLocWithOffset(-1);
      assert(EndLoc.isValid() &&
             "The enum constant should have prefix qualifers.");
    }
    if (isInUSRSet(Decl) &&
        IsValidEditLoc(Context.getSourceManager(), StartLoc)) {
      RenameInfo Info = {StartLoc,
                         EndLoc,
                         Decl,
                         getClosestAncestorDecl(*Expr),
                         Expr->getQualifier(),
                         /*IgnorePrefixQualifers=*/false};
      RenameInfos.push_back(Info);
    }

    return true;
  }

  bool VisitUsingDecl(const UsingDecl *Using) {
    for (const auto *UsingShadow : Using->shadows()) {
      if (isInUSRSet(UsingShadow->getTargetDecl())) {
        UsingDecls.push_back(Using);
        break;
      }
    }
    return true;
  }

  bool VisitNestedNameSpecifierLocations(NestedNameSpecifierLoc NestedLoc) {
    if (!NestedLoc.getNestedNameSpecifier()->getAsType())
      return true;

    if (const auto *TargetDecl =
            getSupportedDeclFromTypeLoc(NestedLoc.getTypeLoc())) {
      if (isInUSRSet(TargetDecl)) {
        RenameInfo Info = {NestedLoc.getBeginLoc(),
                           EndLocationForType(NestedLoc.getTypeLoc()),
                           TargetDecl,
                           getClosestAncestorDecl(NestedLoc),
                           NestedLoc.getNestedNameSpecifier()->getPrefix(),
                           /*IgnorePrefixQualifers=*/false};
        RenameInfos.push_back(Info);
      }
    }
    return true;
  }

  bool VisitTypeLoc(TypeLoc Loc) {
    auto Parents = Context.getParents(Loc);
    TypeLoc ParentTypeLoc;
    if (!Parents.empty()) {
      // Handle cases of nested name specificier locations.
      //
      // The VisitNestedNameSpecifierLoc interface is not impelmented in
      // RecursiveASTVisitor, we have to handle it explicitly.
      if (const auto *NSL = Parents[0].get<NestedNameSpecifierLoc>()) {
        VisitNestedNameSpecifierLocations(*NSL);
        return true;
      }

      if (const auto *TL = Parents[0].get<TypeLoc>())
        ParentTypeLoc = *TL;
    }

    // Handle the outermost TypeLoc which is directly linked to the interesting
    // declaration and don't handle nested name specifier locations.
    if (const auto *TargetDecl = getSupportedDeclFromTypeLoc(Loc)) {
      if (isInUSRSet(TargetDecl)) {
        // Only handle the outermost typeLoc.
        //
        // For a type like "a::Foo", there will be two typeLocs for it.
        // One ElaboratedType, the other is RecordType:
        //
        //   ElaboratedType 0x33b9390 'a::Foo' sugar
        //   `-RecordType 0x338fef0 'class a::Foo'
        //     `-CXXRecord 0x338fe58 'Foo'
        //
        // Skip if this is an inner typeLoc.
        if (!ParentTypeLoc.isNull() &&
            isInUSRSet(getSupportedDeclFromTypeLoc(ParentTypeLoc)))
          return true;

        auto StartLoc = StartLocationForType(Loc);
        auto EndLoc = EndLocationForType(Loc);
        if (IsValidEditLoc(Context.getSourceManager(), StartLoc)) {
          RenameInfo Info = {StartLoc,
                             EndLoc,
                             TargetDecl,
                             getClosestAncestorDecl(Loc),
                             GetNestedNameForType(Loc),
                             /*IgnorePrefixQualifers=*/false};
          RenameInfos.push_back(Info);
        }
        return true;
      }
    }

    // Handle specific template class specialiation cases.
    if (const auto *TemplateSpecType =
            dyn_cast<TemplateSpecializationType>(Loc.getType())) {
      TypeLoc TargetLoc = Loc;
      if (!ParentTypeLoc.isNull()) {
        if (llvm::isa<ElaboratedType>(ParentTypeLoc.getType()))
          TargetLoc = ParentTypeLoc;
      }

      if (isInUSRSet(TemplateSpecType->getTemplateName().getAsTemplateDecl())) {
        TypeLoc TargetLoc = Loc;
        // FIXME: Find a better way to handle this case.
        // For the qualified template class specification type like
        // "ns::Foo<int>" in "ns::Foo<int>& f();", we want the parent typeLoc
        // (ElaboratedType) of the TemplateSpecializationType in order to
        // catch the prefix qualifiers "ns::".
        if (!ParentTypeLoc.isNull() &&
            llvm::isa<ElaboratedType>(ParentTypeLoc.getType()))
          TargetLoc = ParentTypeLoc;

        auto StartLoc = StartLocationForType(TargetLoc);
        auto EndLoc = EndLocationForType(TargetLoc);
        if (IsValidEditLoc(Context.getSourceManager(), StartLoc)) {
          RenameInfo Info = {
              StartLoc,
              EndLoc,
              TemplateSpecType->getTemplateName().getAsTemplateDecl(),
              getClosestAncestorDecl(
                  ast_type_traits::DynTypedNode::create(TargetLoc)),
              GetNestedNameForType(TargetLoc),
              /*IgnorePrefixQualifers=*/false};
          RenameInfos.push_back(Info);
        }
      }
    }
    return true;
  }

  // Returns a list of RenameInfo.
  const std::vector<RenameInfo> &getRenameInfos() const { return RenameInfos; }

  // Returns a list of using declarations which are needed to update.
  const std::vector<const UsingDecl *> &getUsingDecls() const {
    return UsingDecls;
  }

private:
  // Get the supported declaration from a given typeLoc. If the declaration type
  // is not supported, returns nullptr.
  const NamedDecl *getSupportedDeclFromTypeLoc(TypeLoc Loc) {
    if (const auto* TT = Loc.getType()->getAs<clang::TypedefType>())
      return TT->getDecl();
    if (const auto *RD = Loc.getType()->getAsCXXRecordDecl())
      return RD;
    if (const auto *ED =
            llvm::dyn_cast_or_null<EnumDecl>(Loc.getType()->getAsTagDecl()))
      return ED;
    return nullptr;
  }

  // Get the closest ancester which is a declaration of a given AST node.
  template <typename ASTNodeType>
  const Decl *getClosestAncestorDecl(const ASTNodeType &Node) {
    auto Parents = Context.getParents(Node);
    // FIXME: figure out how to handle it when there are multiple parents.
    if (Parents.size() != 1)
      return nullptr;
    if (ast_type_traits::ASTNodeKind::getFromNodeKind<Decl>().isBaseOf(
            Parents[0].getNodeKind()))
      return Parents[0].template get<Decl>();
    return getClosestAncestorDecl(Parents[0]);
  }

  // Get the parent typeLoc of a given typeLoc. If there is no such parent,
  // return nullptr.
  const TypeLoc *getParentTypeLoc(TypeLoc Loc) const {
    auto Parents = Context.getParents(Loc);
    // FIXME: figure out how to handle it when there are multiple parents.
    if (Parents.size() != 1)
      return nullptr;
    return Parents[0].get<TypeLoc>();
  }

  // Check whether the USR of a given Decl is in the USRSet.
  bool isInUSRSet(const Decl *Decl) const {
    auto USR = getUSRForDecl(Decl);
    if (USR.empty())
      return false;
    return llvm::is_contained(USRSet, USR);
  }

  const std::set<std::string> USRSet;
  ASTContext &Context;
  std::vector<RenameInfo> RenameInfos;
  // Record all interested using declarations which contains the using-shadow
  // declarations of the symbol declarations being renamed.
  std::vector<const UsingDecl *> UsingDecls;
};

} // namespace

SymbolOccurrences getOccurrencesOfUSRs(ArrayRef<std::string> USRs,
                                       StringRef PrevName, Decl *Decl) {
  USRLocFindingASTVisitor Visitor(USRs, PrevName, Decl->getASTContext());
  Visitor.TraverseDecl(Decl);
  return Visitor.takeOccurrences();
}

std::vector<tooling::AtomicChange>
createRenameAtomicChanges(llvm::ArrayRef<std::string> USRs,
                          llvm::StringRef NewName, Decl *TranslationUnitDecl) {
  RenameLocFinder Finder(USRs, TranslationUnitDecl->getASTContext());
  Finder.TraverseDecl(TranslationUnitDecl);

  const SourceManager &SM =
      TranslationUnitDecl->getASTContext().getSourceManager();

  std::vector<tooling::AtomicChange> AtomicChanges;
  auto Replace = [&](SourceLocation Start, SourceLocation End,
                     llvm::StringRef Text) {
    tooling::AtomicChange ReplaceChange = tooling::AtomicChange(SM, Start);
    llvm::Error Err = ReplaceChange.replace(
        SM, CharSourceRange::getTokenRange(Start, End), Text);
    if (Err) {
      llvm::errs() << "Failed to add replacement to AtomicChange: "
                   << llvm::toString(std::move(Err)) << "\n";
      return;
    }
    AtomicChanges.push_back(std::move(ReplaceChange));
  };

  for (const auto &RenameInfo : Finder.getRenameInfos()) {
    std::string ReplacedName = NewName.str();
    if (RenameInfo.IgnorePrefixQualifers) {
      // Get the name without prefix qualifiers from NewName.
      size_t LastColonPos = NewName.find_last_of(':');
      if (LastColonPos != std::string::npos)
        ReplacedName = NewName.substr(LastColonPos + 1);
    } else {
      if (RenameInfo.FromDecl && RenameInfo.Context) {
        if (!llvm::isa<clang::TranslationUnitDecl>(
                RenameInfo.Context->getDeclContext())) {
          ReplacedName = tooling::replaceNestedName(
              RenameInfo.Specifier, RenameInfo.Context->getDeclContext(),
              RenameInfo.FromDecl,
              NewName.startswith("::") ? NewName.str()
                                       : ("::" + NewName).str());
        } else {
          // This fixes the case where type `T` is a parameter inside a function
          // type (e.g. `std::function<void(T)>`) and the DeclContext of `T`
          // becomes the translation unit. As a workaround, we simply use
          // fully-qualified name here for all references whose `DeclContext` is
          // the translation unit and ignore the possible existence of
          // using-decls (in the global scope) that can shorten the replaced
          // name.
          llvm::StringRef ActualName = Lexer::getSourceText(
              CharSourceRange::getTokenRange(
                  SourceRange(RenameInfo.Begin, RenameInfo.End)),
              SM, TranslationUnitDecl->getASTContext().getLangOpts());
          // Add the leading "::" back if the name written in the code contains
          // it.
          if (ActualName.startswith("::") && !NewName.startswith("::")) {
            ReplacedName = "::" + NewName.str();
          }
        }
      }
      // If the NewName contains leading "::", add it back.
      if (NewName.startswith("::") && NewName.substr(2) == ReplacedName)
        ReplacedName = NewName.str();
    }
    Replace(RenameInfo.Begin, RenameInfo.End, ReplacedName);
  }

  // Hanlde using declarations explicitly as "using a::Foo" don't trigger
  // typeLoc for "a::Foo".
  for (const auto *Using : Finder.getUsingDecls())
    Replace(Using->getLocStart(), Using->getLocEnd(), "using " + NewName.str());

  return AtomicChanges;
}

} // end namespace tooling
} // end namespace clang